
Endothelial Relaxation Mechanisms and Oxidative Stress
Are Restored by Atorvastatin Therapy in Ovariectomized
Rats
Izabela Facco Caliman1, Aline Zandonadi Lamas1, Polyana Lima Meireles Dalpiaz1, Ana Raquel Santos
Medeiros2, Glaucia Rodrigues Abreu1, Suely Gomes Figueiredo1, Lara Nascimento Gusmão1, Tadeu
Uggere Andrade3, Nazaré Souza Bissoli1*

1 Department of Physiological Sciences, Federal University of Espirito Santo, Vitória, Espirito Santo, Brazil, 2 Biological and Health Sciences, Federal Institute
of Espirito Santo, Vitória, Espirito Santo, Brazil, 3 Department of Pharmacy, University Center of Vila Velha, Vila Velha, Espirito Santo, Brazil

Abstract

The studies on hormone replacement therapy (HRT) in females with estrogen deficiency are not conclusive. Thus,
non-estrogen therapies, such as atorvastatin (ATO), could be new strategies to substitute or complement HRT. This
study evaluated the effects of ATO on mesenteric vascular bed (MVB) function from ovariectomized (OVX) female
rats. Female rats were divided into control SHAM, OVX, and OVX treated with 17β-estradiol (EST) or ATO groups.
The MVB reactivity was determined in organ chambers, vascular oxidative stress by dihydroethidine staining, and the
expression of target proteins by western blot. The reduction in acetylcholine-induced relaxation in OVX rats was
restored by ATO or EST treatment. The endothelium-dependent nitric oxide (NO) component was reduced in OVX
rats, whereas the endothelium-derived hyperpolarizing factor (EDHF) component or prostanoids were not altered in
the MVBs. Endothelial dysfunction in OVX rats was associated with oxidative stress, an up-regulation of iNOS and
NADPH oxidase expression and a down-regulation of eNOS expression. Treatment with ATO or EST improved the
NO component of the relaxation and normalized oxidative stress and the expression of those signaling pathways
enzymes. Thus, the protective effect of ATO on endothelial dysfunction caused by estrogen deficiency highlights a
significant therapeutic benefit for statins independent of its effects on cholesterol, thus providing evidence that non-
estrogen therapy could be used for cardiovascular benefit in an estrogen-deficient state, such as menopause.
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Introduction

The role of estrogens in vascular function has received
considerable research interest because epidemiological studies
have shown a greater risk of developing cardiovascular
disease (CVD) due to reduced 17β-estradiol levels after
menopause [1–3]. One of the interesting factors is the
proposed interaction between estrogens and endothelial
factors [4,5].

The main mechanisms involved in the impaired vascular
response in estrogen deficiency models are connected
decreased nitric oxide (NO) bioavailability and the attenuation
of hyperpolarization and relaxation transduced by endothelium-
derived hyperpolarizing factor (EDHF) [6–8]. This impaired
vascular response may occur in long-term (ovariectomy) and
short-term (diestrous cycle) estrogen-deficient states [6]. In

addition, impaired endothelial function in ovariectomized rats
was associated with an increase in superoxide anion
production and the increased protein expression of NADPH
oxidase subunits, as gp91phox and p22phox [9,10].

Recent experimental and clinical evidence has suggested
that statins (i.e., 3-hydroxy-3-methylglutaryl coenzyme A
(HMG-CoA) reductase inhibitors) have cholesterol-independent
(“pleiotropic”) effects. Statins are extremely safe but can
produce myalgia and rarely rhabdomyolysis [11]. Additionally,
the risk of the development of diabetes in patients with
impaired fasting glucose, metabolic syndrome or severe
obesity was reported by some statin therapy studies [12,13].
However, these side effects do not exceed the benefits
promoted by the hypercholesterolemia therapy [14,15]. More
importantly, even postmenopausal patients show a significant
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reduction of atherosclerosis after being treated with statins
[16,17].

Like estrogen, statins exert vasoprotective effects that are
independent of their lipid-lowering action [18–20]. The results
from human and animals studies have helped to understand
the mechanisms of action for statins in the cardiovascular
system and have relevant clinical implications [20–24] related
to variations in the lipid profile [25] and the effect on the vessel
wall [26,27]. Statins can improve endothelial function through
attenuating vascular and myocardial remodeling and by
inhibiting oxidation in vascular tissue and anti-inflammatory
mechanisms [14,27–29]. In ovariectomized rats with
endothelial dysfunction and atherosclerotic process, a
combined treatment with statins and raloxifene, a selective
estrogen receptor modulator, might play a potential preventive
role in the early stages of atherosclerosis development
decreasing the levels of inflammatory markers [30]. These
actions reinforce the concept that a significant part of the
cardiovascular actions of these drugs is exerted at the vascular
level [31].

Although statins are able to reduce the risk of coronary
events and mortality in patients with coronary artery disease
[14,19], studying the action of these drugs on endothelial
function in models of estrogen deficiency is necessary. Despite
previous reports, there are limited data comparing the effects of
statins and estrogen on the cardiovascular system, and no
studies have addressed the actions of statins on vascular
responses to acetylcholine (ACh) in resistance vessels. From a
theoretical point of view, if statins could improve endothelial
dysfunction similar to estrogen, atorvastatin therapy should
improve the vascular dysfunction observed in an animal model
of estrogen deficiency. Regarding to this statin, recent studies
demonstrate the benefit of low- dose atorvastatin in the
prevention of cardiovascular disease in the absence of
dyslipidemia [32,33]. Moreover, the longer half-life of
atorvastatin could contribute to a higher efficacy in reduction of
cholesterol levels [34].

Therefore, we performed this study to evaluate the effects of
atorvastatin on vascular reactivity in mesenteric beds from
ovariectomized female rats and the involvement of NO, EDHF
and NADPH oxidase in these mesenteric resistance arteries.

Material and Methods

Ethics Statement
All of the procedures were conducted in accordance with the

biomedical research guidelines for the care and use of
laboratory animals, as stated by the Brazilian College of Animal
Experimentation (COBEA). The experimental protocol was
approved by the Ethics Committee in Animal Experimentation
of the Federal University of Espirito Santo under the number
069/2011.

Animals
The experiments were performed using eight weeks-old

female Wistar rats weighting 180 to 200 g. Throughout the
experiment, the animals were housed in groups in a
temperature- (22 °C) and humidity- (50%) controlled room with

a 12-h (light) – 12-h (dark) cycle. Standard rat chow and tap
water were available ad libitum. Four groups were studied (N =
6 animals per group): sham-operated females (SHAM);
ovariectomized females (OVX); ovariectomized females treated
with 17β-estradiol (EST: 0.5 µg/kg/day; Sigma Chemical Co.,
St. Louis, MO, USA) or ovariectomized females treated with
atorvastatin (ATO: 20 mg/kg/day).

Ovariectomy and Treatments
Bilateral ovariectomy was performed in female rats under

ketamine (70 mg/kg) and xylazine (10 mg/kg) anesthesia by
intraperitoneal injection (i.p). The females were subjected to a
muscular incision to open the peritoneal cavity for posterior
connection of the uterine tubules and removal of the ovaries.
Then, the peritoneal cavity was sutured and cleaned. The
female sham group only underwent an incision. Next, the
animals were allowed to recover. Twenty-one days after
surgery, the ovariectomized female rats were subcutaneously
given 17β-estradiol diluted in peanut oil (EST group) or
atorvastatin through gavage (ATO group). The sham and
ovariectomized (OVX) groups received only the vehicle. Those
treatments lasted 14 days. As previously described [35], the
effects of ovariectomy and estrogen treatment were confirmed
by measuring the body and uterine weights at the time of the
experiment.

Estrous cycle phase determination
Daily vaginal smears were taken from each female sham rat

as previously described [36] to confirm that their estrous cycles
were proceeding normally [(i) estrus, (ii) metaestrus, (iii)
diestrus, and (iv) proestrus]. The vaginal epithelial cells were
examined via a microscope for at least 7 consecutive days
before the experiment. The swabs were performed between
8:00 and 10:00 A.M. to maintain consistency. The females with
a normal estrous cycle were killed during the proestrus phase.

Cholesterol measurement
Blood samples were collected on the day of the vascular

reactivity experiments by aortic puncture, after the cannulation
of the superior mesenteric artery. All of the samples were
centrifuged (1500 g for 10 minutes), and serum was stored at
−20 °C. The LDL- and total- serum cholesterol were measured
using automated equipment (COBAS 6000 Analyzer, Roche
Diagnostics, SA).

Vascular reactivity in the mesenteric vascular bed
After the treatment period, the rat mesenteric vascular bed

(MVB) was isolated according to McGregor [37]. Briefly, the
rats were anesthetized with ketamine and xylazine (70 and 10
mg/kg, i.p., respectively) and the superior mesenteric artery,
with its branches, was isolated and perfused in vitro with
oxygenated (95% O2- 5% CO2) Krebs-Henseleit solution (130
mM NaCl, 4.7 mM KCl, 1.6 mM CaCl2.2H2O, 1.17 mM
MgSO4.6H2O, 1.18 mM NaHCO3, 1.6 mM KH2PO4, 14.9 mM
EDTA, and 11.1 mM glucose, pH 7.4) at a constant flow rate of
4 ml/min and maintained at 37 °C. The MVB were excised from
the intestinal wall, placed in a chamber, and the preparations
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were allowed to stabilize for 30 min before the beginning of the
experiments. Changes in the perfusion pressure, which reflect
peripheral resistance, were measured with a pressure
transducer, (Spectramed P23XL) connected to an acquisition
system (MP100A, BIOPAC System, Inc., Santa Barbara, USA),
and were calculated as percentage of reduction in the
perfusion pressure after noradrenaline (NE)-induced
contraction. After a stabilization period, noradrenaline (0.1 to
0.3 mM) was added to the perfusion fluid to increase the tone
by approximately 90-120 mmHg. Once a stable tone was
established, concentration-response curves to acetylcholine
(ACh; 1.68 x 10-12 to 1.68 x 10-3 M) were determined in the
MVB. The ACh curves were performed initially in each MVB
without any inhibitors. To evaluate the effect of NO availability
on vascular reactivity, the preparations were treated with the
nonspecific NOS inhibitor NG-nitro-L-arginine methyl ester (L-
NAME, 100 mM) and the inducible NO synthase (iNOS)
inhibitor aminoguanidine (AG,100 mM) [8]. The participation of
EDHF in modulating endothelial function was assessed by
constructing concentration-response curves to ACh in
presence of L-NAME plus the cyclooxygenase (COX) inhibitor
indomethacin (INDO, 2.8 µM) [38], to exclude the involvement
of prostanoids and NO. All of these drugs were added to the
bath 30 min before performing the ACh concentration-response
curves.

Western blot analysis
Mesenteric arteries were carefully dissected free of

surrounding adipose tissue for a full MVB representation. The
samples were homogenized and centrifuged at 3000 g for 15
minutes (4°C). Protein concentrations were determined using
the method of Lowry [39–43]. The protein lysates [50 μg for
eNOS, iNOS, NADPH oxidase (gp91phox) and 80 μg for
COX-2], were separated by 7.5% and 10% SDS-PAGE,
respectively. The proteins were transferred to polyvinylidene
difluoride (PVDF) membranes that were incubated with mouse
monoclonal antibodies for endothelial nitric oxide synthase
(eNOS, 1:2500, BD Transduction Laboratories, Lexington, KY,
USA), inducible nitric oxide synthase (iNOS, 1:2000, BD
Transduction Laboratories, Lexington, KY, USA), NADPH
oxidase (gp91phox, 1:2000, BD Transduction Laboratories,
Lexington, KY, USA) or β-actin (1:1500, Santa Cruz
Biotechnology, Inc, Santa Cruz, CA, USA) or rabbit polyclonal
antibody for cyclooxygenase 2 (COX-2, 1:200, Santa Cruz
Biotechnology, Inc, Santa Cruz, CA, USA). After washing, the
membranes were incubated with alkaline phosphatase
conjugated anti-mouse IgG (1:3000, Abcan Inc, MA, USA),
except for COX-2, which the incubation was with anti-rabbit IgG
antibody (1:7000, Santa Cruz Biotechnology, Inc, CA, USA).
The bands were visualized using an NBT/BCIP system
(Invitrogen Corporation, CA, USA) and quantified using the
ImageJ software. The results were calculated by the ratio of the
density of specific bands to the corresponding β-actin. The data
are from six independent experiments and are expressed as
the percentage of arbitrary units in relation to the SHAM group.

Determination of vascular ROS formation
The redox-sensitive fluorescent dye dihydroethidine (DHE)

was used to evaluate the in situ formation of reactive oxygen
species (ROS), following a previously described method [44].
Mesenteric arterial rings (3 to 4 mm in length) were embedded
in the OCT compound (Tissue-Tek) and frozen at -80°C.
Transverse sections (8 µm) obtained using a cryostat were
incubated at 37 °C for 30 min with phosphate buffer. Fresh
phosphate buffer containing hydroethidine (2 µM) was topically
applied to each tissue section, and the slices were incubated in
a light-protected humidified chamber at 37 °C for 30 min to
determine in situ ROS formation. The negative control sections
received the same volume of phosphate buffer without
hydroethidine. Images were obtained using an optical
microscope (DM 2500, Leica Microsystems, Germany)
equipped with a camera using a 40x objective. Fluorescence
intensity in each section was expressed as the percentage of
arbitrary fluorescence units (AFU) in relation to the SHAM
group. Quantification of the staining was performed using the
Image ProPlus v.6 software.

Statistical analysis
The data are reported as the means ± S.E.M. The Prism 5

software (Graph Pad Software, San Diego, CA, USA) was used
for the statistical analysis. For analyses percentage of
reduction in the perfusion pressure responses in the MVB,
basal pressure perfusion (P1) was elevated (P2) by addition of
NE in the perfusion fluid. Thereby, in each dose of ACh, this
elevated pressure was momentarily reduced (P3) in certain
degree. Thus, the reduction in the perfusion pressure (%) was
calculated by the reduction in the perfusion pressure induced
by ACh divided by the elevation evocated by NE, according to
the formula: reduction in the perfusion pressure (%) = 100[(P2-
P3)/(P2-P1)]. For each concentration-response curve, the
maximal response (Emax) and -log concentration of the drug
required to produce 50% of the maximum response (pD2) were
calculated using non-linear regression analysis. To compare
the effects of some drugs on the vasodilatory responses to
ACh, some of the results were expressed as differences in the
area under the concentration-response curves (dAUC) for the
control and experimental groups. These values indicate
whether the magnitude of the effect differed among the groups.
For protein expression, the data were expressed as the ratio
between signals on the blot corresponding to the protein of
interest and β-actin. The differences were analyzed using one
or two-way ANOVA followed by a Tukey test. A difference of
P<0.05 was considered to be statistically significant.

Results

The effects of ovariectomy and treatments on body
weight, uterine weight and serum cholesterol

Table 1 shows the body weight (BW), uterine weight and
ratio of uterine weight to tibia length in the SHAM, OVX, EST
and ATO groups. Ovariectomy led to a higher BW compared to
the SHAM group. Treatment with 17β-estradiol reversed the
ovariectomy-induced increase in BW (P<0.05); however,
atorvastatin did not alter the BW in the OVX group. Conversely,
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ovariectomy produced a significant decrease in the uterine
weight and the ratio of uterine weight to tibia length compared
to the SHAM animals. ATO did not modify this parameter. The
uterine weight to tibia length ratio returned to normal values
after 17β-estradiol treatment. Ovariectomy neither the
treatments used in the present study were able to alter the
LDL- and total- serum cholesterol (Table 1).

Effect of atorvastatin treatment on vascular reactivity
In all experiments using a constant flow rate on a perfused

mesenteric vascular bed, we did not observe a change in basal
perfusion pressure (mmHg) among the groups (SHAM: 41±1;
OVX: 40±1; EST: 40±1; ATO: 39±1; mmHg), neither in the
perfusion pressure after the increase of the vascular tone with
noradrenaline (SHAM: 144±4; OVX: 143±5; EST: 143±4; ATO:

Table 1. Effect of ovariectomy and/or treatments on body
weight, uterine weight and cholesterol levels.

 Groups (n=12 per group)

 SHAM OVX EST ATO
Initial body weight (g) 198.8±3.3 199.6±4.2 203.9±2.5 196.9±4.4

Final body weight (g) 233.4±3.7 268.4±7.3** 244.0±5.0 258.6±6.2*

Uterine weight (g) 0.51±0.03 0.09±0.01** 0.44±0.02 0.10±0.01**

Uterine weight/tibia length
(mg/cm)

138.3±14.2 24.6±0.8** 114.1±4.8 26.5±1.6**

Cholesterol (mg/dL) 73.4±3.6 75.66±5.9 81.31±3.4 76.88±6.5

LDL (mg/dL) 14.20±3.46 14.94±1.59 22.67±2.91 18.61±2.87

The results are the means ± S.E.M. Parameters measured in the control SHAM,
ovariectomized (OVX) and ovariectomized treated with 17β-estradiol (EST) or
Atorvastatin (ATO) group. Statistical significance is indicated by **p<0.01 and
*p<0.05 vs. the SHAM group (one-way ANOVA followed by Tukey’s test).
doi: 10.1371/journal.pone.0080892.t001

141±5; mmHg). Acetylcholine induces relaxation in the MVB in
a dose-dependent manner (Figure 1 A). In the OVX rats, the
endothelium-dependent relaxation after noradrenaline-induced
constriction was reduced compared to the SHAM group, while
this decreased response was restored in the MVBs from the
ATO- or EST-treated ovariectomized rats. There were no
changes in pD2 values among groups for each drug studied
(Table 2).

Effect of NOS antagonism on endothelium-dependent
relaxation

Nitric oxide modulation of ACh-induced relaxation was
evaluated using AG and L-NAME incubation. The MVB
preparations treated with these inhibitors showed similar
perfusion pressure values (AG: SHAM: 141±4; OVX: 141±7;
EST: 140±6; ATO: 143±4; mmHg / L-NAME: SHAM: 143±4;
OVX: 152±6; EST: 146±4; ATO: 158±7; mmHg) among the
groups. In the OVX rats, ACh relaxation was significantly
attenuated by AG, but AG did not modify the response in MVBs
from the SHAM group. Treatment with ATO or EST prevented
the endothelial alterations observed in the OVX group, as
shown by the dAUC values (SHAM: 14.8±5.5; OVX: 42.4±6.8*;
EST: 13.8±4.7; ATO: 24.3±2.9; *P<0.05; % dAUC) (Figure 1 B,
Table 2).

L-NAME potentiated the reduction in the vasorelaxation
response induced by ACh in all of the groups, but these effects
were greater in the OVX group than in the SHAM, ATO, or EST
rats, as shown by the dAUC values (Figure 1 C), suggesting a
significant influence of NO on the dysfunction observed in the
OVX rats. Additionally, neither L-NAME nor AG altered the pD2

values after ACh-induced relaxation in the MVBs in any of the
groups (Table 2).

Figure 1.  Effect of atorvastatin treatment on endothelium-dependent relaxation caused by acetylcholine in ovariectomized
rats.  The mesenteric vascular beds (MVBs) from control (SHAM), ovariectomized (OVX) and ovariectomized treated with 17β-
estradiol (EST) or atorvastatin (ATO) groups were contracted with noradrenaline (NE) in the absence (A) or presence of
aminoguanidine (B) or NG-nitro-L-arginine methyl ester (L-NAME) (C). The inset shows differences in the area under the
concentration-response curves (dAUC%). The responses are expressed as the percentage of reduction in the perfusion pressure
relative to the contractions induced by NE. Each point represents the mean of 6 experiments ± S.E.M. **P<0.01 and *P<0.05 vs. the
SHAM group by two-way ANOVA followed by Tukey’s test.
doi: 10.1371/journal.pone.0080892.g001
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Effect of EDHF and COX inhibition on endothelium-
dependent relaxation

The association between L-NAME and INDO was used to
investigate the role of EDHF on the decreased response to Ach
in the OVX rats. There were not significant differences in the
perfusion pressures amongst the four groups after the
treatment of the MVB with L-NAME and INDO (SHAM: 147±3;
OVX: 138±8; EST: 142±4; ATO: 145±5; mmHg). When applied
concomitantly, these drugs failed to further increase ACh-
induced relaxation and Emax compared to the response to L-
NAME in all of the groups (Figure 2 A, Table 2). In addition, the
AUC values, which showed the magnitude of EDHF
participation in relaxation, were also similar among all of the
groups (SHAM: 34.1±12.3; OVX: 43.5±6.0; EST: 38.2±9.6;
ATO: 27.8±6.6; %AUC, Figure 2 A, inset), indicating that
neither estrogen deficiency nor the treatments affected EDHF.

The putative role of prostanoids was assessed by the dAUC
(%) values in the presence of L-NAME and after inhibition with
both L-NAME and INDO, which showed no differences among
the groups (Figure 2 B). In addition, no incremental change in
Emax or pD2 of the concentration-response curves occurred in
the presence of L-NAME plus INDO compared to L-NAME
alone (Table 2). These results indicate the non-expressive
participation of prostanoids in the vasodilatory response to
acetylcholine in the MVBs from the studied groups.

Effect of atorvastatin on reactive oxygen species
production

To evaluate tissue ROS production, DHE staining was
performed in the mesenteric arteries. At baseline, DHE red
fluorescence analysis revealed an increased production of
superoxide anion from the mesenteric vessels in the OVX rats
compared to the SHAM rats. Treatment with ATO or EST for 2
weeks corrected the enhanced ROS production in the
mesenteric arteries from the OVX rats (Figure 3).

Western blot analysis of eNOS, iNOS, COX-2 and
NADPH oxidase

Ovariectomy reduced eNOS and increased iNOS protein
expression in the mesenteric branches (Figure 4); in addition,
gp91phox protein expression, a subunit of the NADPH oxidase
complex, was increased in the OVX group. The ovariectomized

rats treated with ATO or EST showed similar protein
expression as the SHAM animals. There was no change in
COX-2 protein expression among the groups (Figure 4).

Discussion

The present study indicates that the treatment with
atorvastatin is sufficient to reverse the endothelial dysfunction
observed in female rats with estrogen deficiency. Importantly,
our experiments also demonstrated that functional changes in
the MVBs were associated with molecular adaptations.
Namely, our major novel finding is demonstrating that
increased ROS production, NADPH oxidase and iNOS
overexpression and reduced eNOS expression in OVX
mesenteric vessels, which can lead to reduced NO availability,
were restored by atorvastatin and estrogen replacement.

The decrease in the relaxation response after acetylcholine
administration to MVBs from ovariectomized rats is most likely
due to increased negative endothelial modulation [9,20,43,45],
which is highlighted by the increase in oxidative stress and
reduction in endothelial relaxation factors observed in estrogen
deficiency. In fact, previous reports have suggested that
ovariectomy might contribute to impaired endothelial function
by reducing EDHF [6,8,46] and NO [47,48] and increasing
vasoconstricting prostanoids [7,49] and ROS [9,50,51] in
different conductance or resistance vessels.

There is particular interest in the endothelial NO system and
endogenous estrogen deprivation, in light of the relevant
functional role of endothelial NO on regulating vascular tone
[7,52]. However, most studies have focused on analyzing a
single aspect of the system and have not examined an entire
vascular bed, as in our study. Thus, estrogenic derivatives
have been reported to increase [53–55] or not affect [56,57]
NO vascular modulation. Regarding our results from the MVBs,
we reported that, similar to estrogen treatment, atorvastatin
was able to normalize endothelial function and restore NO
availability in the OVX rats, as documented by aminoguanidine
and L-NAME inhibition of iNOS and NOS ACh-induced
relaxation, respectively. In addition, we observed that the
magnitude of the effect of L-NAME (%dAUC) was lower in the
OVX rats, suggest that reduced NO bioavailability is possibly

Table 2. Maximum response (Emax) and sensitivity (pD2) of the concentration-response curves to acetylcholine in the MVBs.

 Control AG L-NAME L-NAME + INDO

 Emax pD2 Emax pD2 Emax pD2 Emax pD2

SHAM 79.9±3.1 6.01±0.3 76.7±3.8 5.52±0.2 31.6±6.5 5.04±0.3 46.9±8.5 5.55±0.9

OVX 65.7±3.4*# 5.46±0.2 48.1±5.3**## 5.61±0.1 23.8±6.8 4.74±0.3 43.4±6.4 4.94±0.4

EST 82.2±2.8 5.59±0.2 77.6±3.3 5.66±0.1 33.9±4.6 5.31±0.3 39.9±6.8 4.93±0.5

ATO 87.6±0.3 5.83±0.3 85.0±3.8 5.23±0.1 35.2±5.8 5.23±0.2 35.5±6.4 4.74±0.1

The results are the means ± S.E.M. of 6 experiments. Parameters measured in the control SHAM, ovariectomized (OVX) and ovariectomized treated with 17β-estradiol
(EST) or atorvastatin (ATO) groups. Emax, maximal response (expressed as the percentage of the maximum relaxation induced by acetylcholine); pD2, -log one-half Emax;
AG, aminoguanidine; L-NAME, NG-nitro-L-arginine methyl ester; INDO, indomethacin. Statistical significance is indicated by **p<0.01 and * p<0.05 vs. the SHAM group;
##p<0.01 and #p<0.05 vs. the ATO and EST groups (one-way ANOVA followed by Tukey’s test).
doi: 10.1371/journal.pone.0080892.t002
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Figure 2.  Effect of atorvastatin treatment on EDHF- and prostanoid-mediated relaxation in the MVBs.  MVBs from the control
(SHAM), ovariectomized (OVX) and ovariectomized treated with 17β-estradiol (EST) or atorvastatin (ATO) groups were contracted
with noradrenaline (NE) in presence of NG-nitro-L-arginine methyl ester (L-NAME) plus indomethacin. The inset shows the area
under the concentration-response curves (AUC%) after this double blockade, which represents the magnitude of EDHF-mediated
relaxation (A). The role of prostanoids in MVB relaxation is represented by the difference in the area under the curve (dAUC%)
between the groups in the presence of L-NAME and after inhibition with L-NAME plus indomethacin (B). The responses are
expressed as the percentage of reduction in the perfusion pressure relative to the contractions induced by NE. Each point
represents the mean of 6 experiments ± S.E.M.
doi: 10.1371/journal.pone.0080892.g002
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Figure 3.  Atorvastatin treatment improves oxidative stress in the mesenteric arteries from ovariectomized
rats.  Representative DHE staining in mesenteric arteries from the control (SHAM) (A), ovariectomized (OVX) (B) and
ovariectomized treated with 17β-estradiol (EST) (C) or atorvastatin (ATO) (D) groups (upper panel). The fluorescent intensity was
quantified based on the red signal (magnification x40, lower panel). Each column represents the mean of 6 experiments ± S.E.M.,
and the results are expressed as the percentage of the SHAM group. *P<0.05 vs. the SHAM group by one-way ANOVA followed by
Tukey’s test.
doi: 10.1371/journal.pone.0080892.g003
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the major determinant of endothelial vascular alterations in the
OVX rats.

The expression of iNOS has been documented in vascular
endothelial and smooth muscle cells after either inflammatory
or cytokine stimulation [58–60], in female rats with estrogen
deficiency state [8,61]. Our study indicates a higher putative
participation of NO from iNOS in the relaxation responses to
ACh in the OVXs. However, the contribution of iNOS was not
able to compensate the NO- deficiency observed in the OVXs
once they presented reduced relaxation responses to ACh.

In conjunction with our functional data, the DHE analysis
revealed that the enhanced production of ROS in the OVX rats
was dramatically reduced by atorvastatin. Consistent with
these results, we found that statin treatment reduced NADPH
oxidase and iNOS expression in the mesenteric vessels.

Moreover, ATO-treated OVX rats had normalization of eNOS
expression, similar to the estrogen-treated rats. Taken
together, these results showed that atorvastatin was able to
reverse endothelial dysfunction in resistance vessels from OVX
rats by restoring NO availability, preventing oxidative stress
and normalizing the expression of important signaling
pathways enzymes.

The present study agree with and extend previous evidence
supporting statins’ effects on modulating oxidative stress
[18,26,27,31,62]. Previous studies have demonstrated that
statins enhance eNOS phosphorylation to increase the level of
activated eNOS in aortic rings from male SHR [63], increase
NO in VSMCs [14], and might inhibit iNOS expression and
induction in blood vessels [14,64,65], independent of this
drug’s effect on cholesterol. Moreover, statins have been

Figure 4.  Effect of atorvastatin treatment on the expression of signaling pathway proteins.  Western blot analysis of eNOS,
iNOS, COX-2 and NADPH oxidase (gp91phox) in the mesenteric vascular beds from the control (SHAM), ovariectomized (OVX)
and ovariectomized treated with 17β-estradiol (EST) or atorvastatin (ATO) groups (upper panels, representative blots). The column
graphs refer to the densitometric analysis of the bands normalized to total β-actin expression. Each column represents the mean of
6 experiments ± S.E.M., and the results are expressed as the percentage of the SHAM group. **P<0.01 and *P<0.05 vs. the SHAM
group by one-way ANOVA followed by Tukey’s test.
doi: 10.1371/journal.pone.0080892.g004
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reported to be able to inhibit the activation and translocation of
Rac 1 from the cytosol to the cell membrane, which is critically
involved in the activation of the NADPH complex [26,31,66].
Furthermore, others studies have indicated that the antioxidant
effects of these drugs extend beyond reduced NADPH oxidase
activity in VSMCs and affect Nox1 and p22phox [14]. Statins
have also been shown to act on radical scavenging enzymes,
enhancing Cu/Zn-SOD and EC-SOD expression in the
mesenteric arteries of Ang II-treated rats [22] and increase
HO-1 and catalase activities in human osteoblastic cells [67].

Several reports have also suggested that ROS production
during estrogen deprivation may lead to the development of
endothelial dysfunction [68–70], especially those ROS derived
from NADPH oxidase, which is the main source of superoxide
anion in the vascular system [71]. Our findings indicate that the
ability of atorvastatin in restoring the expression of NADPH
oxidase, similar to estrogen, is the most likely mechanism by
which this drug was able to reduce the vascular oxidative
stress in the OVX rats. Our results are consistent with those
obtained in other studies, which demonstrated the potential
antioxidant effect of atorvastatin in vascular segments, such as
the aorta and mesenteric arteries from male normotensive and
hypertensive rats [22,26,27]. However, statins seem to have an
antioxidant effect not just in the cardiovascular system because
statins have been shown to reduce oxidative stress in plasma
from male Wistar rats [22] and to attenuate ROS-induced
osteoporosis in ovariectomized female Sprague-Dawley rats
that received simvastatin for 8 weeks [67].

Despite these findings, the involvement of other vasoactive
substances that counteract the vasodilatory effect of ACh
cannot be ruled out. Our study examines the impact of
atorvastatin on endothelial dysfunction in ovariectomized rats
and its effect on the NO pathway and intravascular oxidative
stress, without modulating EDHF and prostanoid function and
COX-2 vascular expression. The inhibitory effect of L-NAME on
ACh-induced relaxation was not modified by COX blockade,
based on pharmacological analysis using indomethacin. The

double blockade (L-NAME plus INDO) revealed that EDHF was
not altered by estrogen deficiency or atorvastatin treatment in
the MVBs, as also shown by the %dAUC values, suggesting
that NO might be reduced in the OVX rats independent of
EDHF, which has been reported by others [72]. Furthermore,
we demonstrated that vasodilatory prostanoids, such as
prostacyclin, play a negligible role in the agonist-induced,
endothelium-dependent relaxation in female rat MVBs
regardless of the estrogen status, according to a study by Liu
et al. [73]. In addition, atorvastatin has been reported not to
influence the prostanoid pathway (COX-2 expression) in small
mesenteric arteries from normotensive male rats [27].

In conclusion, our results indicate that endothelial
dysfunction secondary to estrogen deficiency in ovariectomized
rats was normalized by atorvastatin through NO-mediated
mechanisms and reduced oxidative stress. This experimental
evidence partially explains the atheroprotective properties of
statins independent of their effects on cholesterol and provides
insight into the development of new therapeutic strategies to
treat menopausal endothelial dysfunction. Large clinical trials
are necessary to confirm if these beneficial effects are
maintained in a long period.
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