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Abstract

Dark energy accounts for most of the matter-energy content of our universe, yet current theories of its origin rely on radical
physical assumptions such as the holographic principle or controversial anthropic arguments. We give a better motivated
explanation for dark energy, claiming that it arises from a small negative scalar-curvature present even in empty spacetime.
The vacuum has this curvature because spacetime is fundamentally discrete and there are more ways for a discrete
geometry to have negative curvature than positive. We explicitly compute this effect using a variant of the well known
dynamical-triangulations (DT) model for quantum gravity. Our model predicts a time-varying non-zero cosmological
constant with a current value, L&10{123 in natural units, in agreement with observation. This calculation is made possible
by a novel characterization of the possible DT action values combined with numerical evidence concerning their
degeneracies.
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Introduction

Multiple independent sets of empirical data [1–4] indicate that

about 70% of the matter and energy in our universe comes from a

mysterious repulsive gravitational effect known as ‘‘dark energy’’.

Understanding the origin of this energy is one of the most

important problems in physics. Our only current theories involve

speculative physical assumptions or finely tuned parameters. One

popular assumption is the holographic principle: the idea that

the degrees of freedom in a region of space are encoded on the

region’s boundary [5–14]. Other explanations assume the

existence of exotic matter fields or modify the Lagrangian defining

general relativity. One recent theory [15] even hypothesizes a

connection between dark matter and dark energy. See [16,17] for

reviews of various explanations of dark energy.

Our work provides a simpler, better motivated model for dark

energy set within the well-known dynamical triangulations (DT)

approach to quantum gravity. This model assumes no holographic

principle, uses no additional matter fields or finely tuned

parameters, and does not modify general relativity beyond the

geometric discretization inherent in dynamical-triangulations

spacetimes. In our model, a positive vacuum energy of the correct

observed magnitude spontaneously arises from the entropic bias

toward negative curvature states inherent in DT geometries. Note

that treating gravity as an emergent mean-field phenomenon

driven by entropic forces is a popular research perspective at the

moment [18–24].

A reasonable prediction for dark-energy within a quantum-

gravity theory is only significant if the theory approximates general

relativity well at large distances. Why should we believe this about

a theory that uses DT spacetime states? The progenitor of the DT

theory, called the Regge calculus, has been used successfully in

numerical general-relativity and quantum gravity for nearly five

decades [25–31]. The DT model itself [32–36] and its descendent,

causal dynamical triangulations (CDT) [32,34,35,37–40] have been

studied for nearly two decades. The numerous successes achieved

by these theories give confidence that our model can describe

general relativity at length-scales much larger than Planck’s length.

The model presented in this paper uses the same discretization

of geometry and the same action as the DT theory. However, it is

not identical to DT because it puts restrictions on the set of

triangulations which contribute to the partition function. These

kind of restrictions are also what distinguish DT from CDT

although our restrictions are distinct from those in CDT. Note that

it is not our purpose to advocate ‘‘triangulations’’ as the ultimate

structure of spacetime. Indeed, in our calculation the discrete

nature of geometry may be removed at the end without altering

the predicted vacuum energy. We suspect that the effect described

in this paper is actually a generic feature of any quantum-gravity

theory which predicts a discrete spacetime geometry and which

has general relativity as its large-distance limit.

Background Material

General relativity can be written in the Lagrangian formalism

using the Einstein-Hilbert action, which in natural units is

AEH (gmn) ~

ð
M

1

16p
R{2Lð ÞzLm

� � ffiffiffiffiffiffiffiffi
{g
p

dnx: ð1Þ

Here M is a closed n-manifold, gmn a Lorentzian metric, R scalar-

curvature, L the cosmological constant, Lm the Lagrangian for

matter and
ffiffiffiffiffiffiffiffi
{g
p

d4x the standard volume element. See Table 1

for a list of commonly used symbols. Note, both R and Lm depend

on gmn while L does not. Also note that R is the only term in this

action with a physically distinguished zero value. In quantum field

theory on a fixed background geometry, an arbitrary constant can
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be added to Lm without changing the observed physics, allowing

one to simply set L to zero. Thus, it is reasonable to argue, as we

do in this paper, that the observed non-zero value of L arises from

quantum effects related to the scalar-curvature field R.

Hilbert and Einstein showed that the critical points gmn of this

action satisfy the equations of motion

Rmn {
1

2
Rgmn z Lgmn ~ 8pTmn: ð2Þ

These are, of course, the field equations for general relativity.

Here, Rmn is the Ricci curvature tensor and Tmn the stress-energy

tensor for matter. In this work we restrict attention to the Einstein-

Hilbert action for the vacuum with zero cosmological constant

Avac
EH (gmn) ~

1

16p

ð
M

R
ffiffiffiffiffiffiffiffi
{g
p

dnx: ð3Þ

The critical points of Avac
EH are metrics which satisfy the vacuum

field equations. These metrics are Ricci flat everywhere (Rmn ~ 0 at

every point) and therefore also scalar flat everywhere (R ~ 0 at

every point.) Thus these metrics have action exactly zero. Finally,

in dimensions less than four, the Ricci tensor determines the full

curvature tensor Rmncl, so critical points of Avac
EH in these

dimensions must actually be flat everywhere (Rmncl ~ 0 at each

point.).

In his influential 1961 paper [25] Regge proposed a discretized

version of Avac
EH which applies to triangulated piecewise-linear (PL)

manifolds. A triangulation T of a closed n-manifold M is a

combinatorial n-manifold homeomorphic to M given as an

abstract simplicial complex. Assigning a length ‘i to each edge

in T uniquely defines a piecewise-linear metric on T provided

these lengths satisfy some natural compatibility conditions. If we

let Nk(T) denote the number of k-simplices in T , the Regge
action is given by

AR(T ,‘1, . . . ,‘N1(T)) ~
1

16p

X
tn{2[T

2p{h(tn{2)
� �

Vol(tn{2): ð4Þ

In this equation, the sum runs over all codimension-2 simplices of

T (called hinges), h(tn{2) is the total dihedral angle around the

hinge tn{2, and Vol(tn{2) is that hinge’s volume. It is easy to

insert a cosmological constant into this action, although here we

do not. The possibility of incorporating matter fields into AR is a

currently active topic of research. See [41–43].

Note that AR has a nice geometric interpretation. The

summand in this action is the angle defect in a small triangle

enclosing and perpendicular to the hinge tn{2[T , weighted by the

volume of that hinge. Given the close relationship in classical non-

euclidean geometry between angle defect and curvature, it is

natural to interpret AR as a discrete measure of total curvature.

Because of the success of the Regge action in describing general

relativity, we will interpret AR as a discrete measure corresponding

to the Einstein-Hilbert action, and thus to total scalar-
curvature. Interpreting AR as a total curvature is also supported

by the fact that, like point-wise curvature bounds in Riemannian

geometry, bounds on the angle-defect for all hinges have profound

topological consequences for M. See [44–47] for examples.

The Dynamical-Triangulation Action
Suppose we fix the abstract simplicial complex T and consider

AR as a function of the edge-lengths ‘1, . . . ‘N1(T) only. There is a

large body of numerical evidence [26–29] that the critical points of

this action define PL-metrics which behave like solutions gmn to the

vacuum field equations, at least at length scales much larger than

the maximum edge-length. See [36] for a overview of this work,

known as the Regge calculus. In this paper, however, we will require

all edges to have a single fixed length ‘ so that the action is

determined only by the structure of T as an abstract simplicial

complex, i.e. only on the way the simplices in T are attached

together. This form of the Regge action has been studied

extensively as part of the dynamical triangulations (DT) approach to

quantum gravity. We write this action as

ADT (T ,‘) ~AR(T ,‘, . . . ,‘)

~
Vn{2(‘)

16p

X
tn{2[T

2p{hndeg(tn{2)
� � ð5Þ

Table 1. Meaning of Commonly Used Symbols.

Symbol Meaning

M closed n-manifold

T triangulation of a closed n-manifold

‘ edge length of all edges in T

T (M) set of all triangulations of M

T K (M) set of all triangulations of M with K n-simplices

Ni(T) number of i-simplices in a triangulation T

m(T) average hinge-degree of a triangulation T

m�n ‘‘flat’’ hinge-degree, m�n~
2p
hn

, m�3&5:1 (irrational)

hn dihedral angle in a regular n-simplex, hn~ cos{1 (1=n)

L cosmological constant

gmn Lorentzian metric

R scalar curvature of gmn

AEH (gmn) Einstein-Hilbert action

Avac
EH (gmn) vacuum Einstein-Hilbert action with L~0

AR(T ,‘1, . . . ) Regge action

ADT (T ,‘) dynamical triangulations (DT) action

Ak a DT-action in the N-action model

dA minimum separation between actions, see equation (14)

E(T) mean DT-action per volume for triangulation T

E(m) mean DT-action per volume at mean hinge-degree m

Ek a mean DT-action in the N-action model

Sk spacetime entropy in nats at mean-action Ek

(Emin,Emax) interval over which mean-actions are regularly spaced

dE minimum separation between mean-actions, see equation (13)

Vk(‘) volume of k-simplex, all edge-lengths ‘, Vk(‘) ~
ffiffiffiffiffiffiffi
kz1
p

k!
ffiffiffiffi
2k
p ‘k

V spacetime volume V~Nn(T)Vn(‘)

Sk k-dimensional sphere

In this table we list some of the commonly used symbols in this paper and their
meanings.
doi:10.1371/journal.pone.0080826.t001
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where Vk(‘) ~
ffiffiffiffiffiffiffi
kz1
p

k!
ffiffiffiffi
2k
p ‘k is the volume of a k-simplex with all edges

of length ‘, hn ~ cos{1 ( 1
n

) is the dihedral angle in such a

simplex, and deg(t), called the degree of t, is the number of n-

simplices in T with t as a face. Usually, we will suppress the

dependence on ‘ and write simply ADT (T).

Now for some terminology and preliminary results. Let T (M)
denote the set of all triangulations of a fixed closed n-manifold M.

We will write T K (M) for the set of all triangulations of M
containing exactly K n-simplices, and T K ,A(M) for those with K
n-simplices and DT-action A. Since there are only finitely many

ways to attach together the faces of a finite collection of n-

simplices, T K (M) and T K ,A(M) are finite sets. We define

S(K ,A) ~ ln T K ,A(M)j j to be the spacetime entropy of M
for K n-simplices and action A. We will also need notation for the

average hinge degree of a triangulation T,

m(T) ~
1

Nn{2(T)

X
tn{2[T

deg(tn{2): ð6Þ

By double-counting arguments we may alternately write this as

m(T) ~
nz1

2

� �
Nn(T)

Nn{2(T)
~ n

Nn{1(T)

Nn{2(T)
: ð7Þ

Proof. Suppose we examine each (n{2)-simplex t in T and

place a mark on each n-simplex with t as a face. Clearly we have

placed
P

t deg(t) marks. On the other hand, each n-simplex has

nz1
2

� �
codimension-2 faces, so the number of marks is also

nz1
2

� �
Nn(T). Dividing through by Nn{2(T) gives the first

equality. Next, suppose we examine each (n{1)-simplex s in T
and place a mark on each of the two n-simplices incident at s. We

have obviously placed 2Nn{1(T) marks. However, each n-simplex

has nz1 codimension-1 faces, so the number of marks is also

(nz1)Nn(T) and we have 2Nn{1~(nz1)Nn. Plugging into the

previous equality and simplifying finishes the proof.

The first part of equation (7) lets us nicely express ADT (T) as a

function of the number of n-simplices in T and its average hinge-

degree. We get

ADT (T ,‘)~
Vn{2(‘)

8

nz1
2

� �
Nn(T)

1

m(T)
{

1

m�n

� �
ð8Þ

where m�n~
2p

hn

is called the flat hinge-degree. Why do we call

m�n the flat hinge-degree? It is the number of regular n-simplices

needed around a hinge to provide a total dihedral angle of exactly

2p, the expected quantity in a flat space. Note that, except in

dimension two (where m�2~6) the quantity m�n is not an integer.

Proof of Equation (8). We begin with the DT action (5) and

distribute the sum into the summand to obtain

ADT (T ,‘)~
Vn{2(‘)

16p
2pNn{2(T){hn

X
tn{2[T

deg(tn{2)

0
@

1
A: ð9Þ

By equation (7) we can replace Nn{2(T) with
nz1

2

� �
Nn(T)

m(T)
and

the summation by
nz1

2

� �
Nn(T) to get

AR(T ,‘)~
Vn{2(‘)

16p
2p

nz1
� �

2

Nn(T)

m(T)
{hn

nz1

2

� �
Nn(T)

� �
:ð10Þ

Finally, moving a factor of 2p
nz1

2

� �
Nn(T) to the front finishes

the derivation.

Mean Action Per Volume
The primary observable quantity of concern in this work is the

mean action per volume, i.e. the average Lagrangian density

over the manifold:

E(T ,‘)~
ADT (T ,‘)

V (T ,‘)
ð11Þ

where V (T ,‘)~Vn(‘)Nn(T) is the PL-volume of T . We use the

symbol E to remind us that this is a physically well-defined global

observable with dimensions of energy per volume. Equation (8)

gives a lovely formula for the mean action,

E(T ,‘)~Cn‘
{2 1

m(T)
{

1

m�n

� �
ð12Þ

where Cn~
1

8

nz1
2

� �
Vn{2(1)

Vn(1)
depends only on the dimension n.

This tells us that for a fixed dimension and edge-length the mean-

action depends only on the average hinge-degree m. For notational

convenience we will usually suppress the n and ‘ dependence and

simply write E(m) or E(T).

Finally, note that for a fixed number of n-simplices Nn we can

use equations (7) and (12) to find the minimum possible separation

between mean-actions. This corresponds to changing the number

of hinges by one, resulting in a change to E of

dE~Dn
: 1

‘2Nn

~Fn
: ‘

n{2

V
ð13Þ

where Dn~
1

8

Vn{2(1)

Vn(1)
and Fn~

1

8
Vn{2(1) depend only on the

dimension n and V~NnVn(‘) is the total spacetime volume. The

minimum possible separation between actions is then given by

dA~VdE~Fn‘
n{2: ð14Þ

Action Spectrum in Dimension Three

From this point forward, we will restrict attention to dimension

three. What can we say about the possible values of E on T K (M)
when n~3? This is a formidable problem, since even for a small

number of tetrahedra K the set T K (M) is quite large and

complicated. We begin with an elementary result: for any

triangulation T of a closed 3-manifold M we have
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N0~N3
6

m
{1

� �
and N1~N3

6

m
ð15Þ

where Ni~Ni(T) and m~m(T). This means that for a fixed

number of 3-simplices, the effect of increasing m (or equivalently,

decreasing E) is to decrease both the number of vertices N0 and

the number of edges N1 in the triangulation.

Proof of Equation (15). We begin with a well-known topological

fact: every closed 3-manifold has Euler characteristic zero. That is,

for any triangulation T of a closed 3-manifold M we have

N0(T){N1(T)zN2(T){N3(T)~0. Now, we use equation (7) to

replace N2(T) by 2N3(T) to get

N0(T){N1(T)zN3(T)~0: ð16Þ

Using equation (7) again to replace N1(T) by
6N3(T)

m(T)
and then

rearranging gives

N0(T)~N3(T)
6

m(T)
{1

� �
ð17Þ

as desired. Finally, we plug this N0(T) back into equation (16) and

simplify to obtain

N1(T)~N3(T)
6

m(T)
ð18Þ

completing the proof.

Equation (15) tells us that to understand the possible values for

E we must understand the possible combinations of N0 and N1

that can occur in a triangulation of a given closed 3-manifold. A

1970 paper [48] by Walkup tells us all we need to know.

Theorem (Walkup). For every closed 3-manifold M there is a smallest

integer c�(M) so that any two positive integers N0 and N1 which satisfy

N0

2

� �
§N1§4N0zc�(M) ð19Þ

are given by N1~N1(T) and N2~N2(T) for some T[T (M). The

quantity c�(M) is a topological invariant which satisfies

c�(M)§{10 for all closed 3-manifolds M.

Note that c�(M) is known for many manifolds M, see [49],

although we will not need this information.

Walkup’s Theorem, together with equation (15) and some

algebra suffice to prove the central mathematical result in this

paper:

Theorem. Let M be a closed 3-manifold and N3w0 a fixed number of

tetrahedra. Then, there are mean actions

Emax~E
9

2
: N3

N3{
1
2

c�(M)

 !
ð20Þ

and

Emin~E 6:
N3

N3z
1
2

3z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z8N3

p� �
 !

ð21Þ

so that if N1w0 is an integer for which E~E 6N3=N1ð Þ lies in the

interval Emin,Emaxð Þ then E~E(T) for some triangulation T of M
with N3 tetrahedra and N1 edges. These E are regularly spaced

over the entire interval Emin,Emaxð Þ, each separated from the next

by

dE~
3ffiffiffi
8
p : 1

‘2N3
~

1

8
: ‘

V
ð22Þ

where V~N3V3(‘). This is the smallest possible separation given

fixed N3, so these E are all possible mean-actions on Emin,Emaxð Þ.
Note that in most applications, the number of tetrahedra N3 will

be large and the energy densities given in the theorem will be

approximately

Emin&E(6)&{0:19‘{2 and Emax&E
9

2

� �
&0:17‘{2: ð23Þ

Also note that when edges are Planck’s length (‘~1 in our units)

the magnitude of these energy densities is enormous, about 10111

Joules per cubic meter.

Proof of Main Theorem. Let M be a closed 3-manifold. We start by

showing that if two given integers N1w0 and N3w0 satisfy

N3z
1

2
3z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z8N3

p	 

ƒN1ƒ

1

3
4N3{c�(M)ð Þ ð24Þ

then there is some triangulation T of M with N1~N1(T) and

N3~N3(T). We define N0 : ~N1{N3. Note that N0w0 by the

first inequality in (24). A bit of algebra applied to the second

inequality in (24) implies

N1§4N0zc�(M): ð25Þ

Now, consider the upward opening parabola f (m)~
m

2

� �
{

m{N3 which has largest root m0~
1
2

3z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z8N3

p� �
. The first

inequality in (24) implies N1{N3§
1
2

3z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z8N3

p� �
which is just

N0§m0. Since m0 is the largest root of an upward opening

parabola, we conclude f (N0)§0. By our definition of f and N0,

this tells us

N0

2

� �
§N1: ð26Þ

By Walkup’s theorem, inequalities (25) and (26) imply that some

triangulation T[T (M) has N0~N0(T) and N1~N1(T). Finally,

by equation (15), we know N3(T)~N1(T){N0(T)~N3 as

desired.

Next, we divide the inequality (24) by 6N3 and take reciprocals

to get

6N3

1
3

4N3{c�(M)ð Þ
ƒmƒ

6N3

N3z
1
2

3z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9z8N3

p� � : ð27Þ

where m~6N3=N1. Thus, if N3 is fixed and N1 is an integer for

which m~6N3=N1 lies in this interval, then m~m(T) for some

Dark Energy from Discrete Spacetime
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triangulation T with N3 tetrahedra. By equation (12) the change in

mean-action for each increment of N1 is as claimed in equation

(22), completing the proof.

The N-Action Model

The model used in this paper is designed to be dominated by

states near a particular chosen target value E� for the mean-

action. For a fixed number of tetrahedra N3 let E0 be the closest

attainable mean-action to E�. For each N3, our model admits

triangulations with mean-action E0 along with those having one of

the N mean-action values on either side of E0. In this paper our

target mean-action will be E�~0 since the Einstein-Hilbert action

for the vacuum in classical general-relativity is zero. Recall that,

unlike actions in quantum field theory, the values of the Einstein-

Hilbert and Regge actions are well-defined physical observables.

This makes such a targeting strategy physically reasonable.

Why not simply start with a model containing only those

triangulation T for which E(T)~0? It turns out that there are no

such triangulations. That is, for any triangulation T of a closed 3-

manifold M we have E(T)=0, or equivalently m(T)=m�3. This

follows from the irrationality of m�3 and equation (12). We know m�3
is irrational due to work [50] by Conway, Radin and Sadun on

what are called called geodetic angles. Note that these angles are

actually interesting mathematical objects on their own and are

central to the solution to Hilbert’s third problem on the scissor-

congruence of polyhedra.

So, let E{N , . . . ,EN be the mean-actions in the model and

A{N , . . . ,AN the corresponding total actions. Our main theorem

implies that for any N and spacetime volume V there is an ‘ small

enough so that all of the 2Nz1 mean-action values Ek lie within

the range (Emin,Emax) where attainable action-values are regularly

spaced. For such ‘ our model has partition function

Z~
XN

k~{N

eSkzi(A0zk:dA) ð28Þ

where Sk~S(N3,Ak) is spacetime entropy at action Ak. The

expected action for this model is then

SAT~
1

Z

XN

k~{N

(A0zk:dA)eSkzi(A0zk:dA): ð29Þ

A Euclidean version SAT Euc of this expected value can be found

by applying the standard Wick rotation i .{1 to the expression

above.

It is currently impossible to write SAT or SAT Euc as exact

closed form expressions since the entropies Sk are beyond our

ability to compute. However, if we replace Sk with its first order

approximation Sk~S0zk:g for g a constant, then a closed-form

expression can be found. We used the computer-algebra package

Mathematica to show

SAT~A0{
dA

egzidA{1
z

dA
e(2Nz1)(gzidA){1

zNdA coth½(2Nz1)(gzidA)�:
ð30Þ

A closed form expression for SAT Euc can obtained as before by

replacing i with {1 in the equation above.

Choosing N
How are we to choose N? In an ideal world, we would have in

hand a fully formed DT-style theory of quantum gravity coupled

to matter, which provably reduced to general-relativity at large

distances. From this theory we could derive an appropriate N by

computing how far a typical spacetime was from the classical

action. We believe such a theory will eventually emerge, but it is

not yet available. However, we have set up enough machinery to

reasonably guess what such a theory would tell us about N .

Suppose we fix a total spacetime volume V and consider the N-

action theory targeting mean-action zero. What happens as we let

the edge-length ‘ approach zero? Because the separation between

actions dA~ 1
8
‘ goes to zero and A0j jvdA, if N is left fixed as

‘?0 then even the most extreme action values in the theory,

A0+NdA, would converge to zero. Since we wish to investigate

quantum gravity, this is unacceptable and we are forced to choose

an N which diverges as ‘?0. Now, suppose we make the affine

entropy approximation Sk~S0zk:g. Equation (30) implies that if

g=0 then for large enough N and small enough dA the expected

action is dominated by the final hyperbolic cotangent term and we

have SAT&sgn(g):NdA. This tells us that under these conditions,

the model is completely dominated by entropy. The oscillating

complex phase eiA which suppresses the contribution of states far

from A~0 is swamped by the entropy term involving g.

Thus, since dA is proportional to ‘, it is natural to choose the

dimensionless N to be proportional to V1=3=‘. For such a choice

we can take the ‘?0 limit and the theory gives a finite non-zero

value for the expected action. Therefore, we choose to use

N~
V

1
3

‘
ð31Þ

mean-action values on either side of E0. Notice that by the

approximations (23) even though N diverges as ‘?0, all actions in

the model eventually lie within the ‘‘regularly spaced’’ range

(Emin,Emax) for small enough ‘. Also note that as ‘?0 all the mean

edge-degrees corresponding to these Ei converge to the flat mean

edge-degree m�3.

Finally, for any fixed g=0 we can use equation (30) to compute

the ‘?0 limit, obtaining

lim
‘?0

SAT~ lim
‘?0

SAT Euc ~sgn(g):
1

8
V

1
3: ð32Þ

For g~0 we get a purely imaginary standard expectation

lim‘?0 SAT~i 1{
1

8
V

1
3 cot

1

8
V

1
3

� �� �
and a Euclidean expecta-

tion given by lim‘?0 SAT Euc~1{
1

8
V

1
3 coth

1

8
V

1
3

� �
:

Evidence for the Entropies Sk

The calculation of the expected action as ‘?0 given by

equation (32) depends on two assumptions about the entropies Sk.

First, for the states contributing to the model, spacetime entropy

must be an approximately linear function of mean-action, i.e.

Sk&S0zk:g, at least for large enough N3. Second, this g must not

approach zero as N3??. In this section, we present evidence

from Monte-Carlo simulations and small-N3 enumerations that

strongly supports these assumptions.
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Monte-Carlo Sampling Results
To measure the dependence of entropy on mean-action we use

a Metropolis-Hastings algorithm to take samples T from T (M)
near a given number of tetrahedra and mean-action. The

algorithm wanders among the elements of T (M) by using the

well-known Pachner moves to change from one triangulation to

another, repeatedly choosing a random move and executing it

with probability e{DU where U is some non-negative objective

function. Metropolis proved that if we wait long enough between

samples, then each sample T occurs with probability e{U(T).

Here, we use a quadratic objective function

U(T)~a(E(T){E{)2zb N3(T){N
{
3

	 
2

ð33Þ

with aw0 and bw0 fixed constants. This form for U keeps the

sampled triangulations near a target mean-action E{ and number

of tetrahedra N
{
3 .

If there were equally many triangulations at each E and N3 then

our sampled pairs (E,N3) would form a Gaussian distribution

centered at the target point (E{,N
{
3 ). If our samples have a

Gaussian distribution but with mean (�EE,N3) significantly displaced

from the target, this indicates a linear dependence of spacetime

entropy on E and N3 with the magnitude of the dependence

proportional to the size of this displacement. Since it is obvious

that spacetime entropy is strongly dependent on N3 and because

the relative deviation from the mean for N3 is at most &1% in our

data, we focus solely on deviation in mean-action �EE{E{. From

this we can estimate the change entropy (per mean-action step) g,

in nats, using

g&2a E{E{� �
dE: ð34Þ

The sampling trials conducted for this paper use the 3-sphere

M~S3 with target mean-action zero (E{~0) and various targets

for the number of tetrahedra 500ƒN
{
3 ƒ7000. In all cases, we

take a~3:5|106 and b~1:0|10{2. In order to ensure

independent samples, the algorithm attempts Pachner moves until

&10 accepted moves per tetrahedron have occurred. We checked

that this wait time was sufficient using standard correlation tests.

For these parameters, each sample was uncorrelated from the

next. We also checked that the sampled N3 and E were

independent. As desired, samples are approximately normally

distributed with sample mean �EE somewhat displaced from the

target E{~0. This indicates that entropy is approximately a linear

function of mean-action near E~0, as was assumed in the

previous section. See Figure 1 for a histogram of mean-actions for

2700 samples at N
{
3 ~1701. For each such distribution, we use

equation (34) to infer the approximate change in entropy g
between mean-actions. These g are comfortably negative and do

not appear to approach zero as N
{
3 gets larger, validating our

second assumption. See Figure 2. Copies of the code used for

triangulation sampling are available on request.

Triangulation Census Data
In addition to Monte-Carlo sampling evidence, one can also

see a bias towards negative action states in computer-generated

censuses of 3-manifolds triangulations. In particular, recent

Figure 1. Monte-Carlo sampling of triangulations of S3 near mean-action zero. We plot the distribution of mean actions E at ‘~1 for 2700
sampled triangulations of the 3-sphere S3 . Samples were obtained from a Metropolis-Hastings algorithm using Pachner moves and a quadratic

objective function a(E{E{)2zb(N3{N
{
3 )2 targeting E{~0 and N

{
3 ~1701 with a~3:5|106 and b~1:0|10{2 . Waiting times were chosen so that

&10 accepted moves per tetrahedra occurred between successive samples. Observed means were N3~1770 with standard deviation s~7:0 and
�EE~{6:3|10{4 with standard deviation s~3:7|10{4 . Note that ‘ and E are given in Planck units, Lp and Ep=L3

p respectively.

doi:10.1371/journal.pone.0080826.g001
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advances in enumeration algorithms have allowed for the

creation of an explicit list of all triangulations of any closed 3-

manifold using at most 11 tetrahedra. See [51,52]. Unfortu-

nately, the definition of a ‘‘triangulation’’ used in these censuses

is slightly more general than ours. They define a triangulation

of a closed 3-manifold M as a space homeomorphic to M

obtained by identifying the faces of some finite set of

tetrahedra. We believe this to be a largely technical distinction,

and we expect this data to provide a good guide to the general

features of our set of triangulations T (M). See Figure 3 for a

Figure 2. Entropy remains a decreasing function of mean-action as the number of tetrahedra grows. We plot the change in spacetime
entropy, g in bits, due to each minimal increase dE in mean-action for the 3-sphere S3 near E~0, versus mean number of tetrahedra N3 . Values were
inferred from the bias seen in Monte-Carlo samples of triangulations near E~0. See Figure 1. All data points except the last two were computed from
2700 samples. At the two largest �NN3 values, we used 2394 and 1108 samples respectively. Error bars indicate 95% confidence intervals.
doi:10.1371/journal.pone.0080826.g002

Figure 3. Entropy versus mean-action from triangulation census data. We plot spacetime entropy S in bits for the three-sphere S3 at various
numbers of tetrahedra N3 , versus mean action E at ‘~1. Data come from a complete census [51,52] of the &47 million triangulations of S3 with at
most 9 tetrahedra. Note that ‘ and E are given in Planck units, Lp and Ep=L3

p respectively.

doi:10.1371/journal.pone.0080826.g003
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graph of spacetime entropy versus mean-action for the 3-sphere

S3 and 5ƒN3ƒ9. We observe two trends in the data. First, as

we expect, the number of triangulations increases as the

number of 3-simplices grows. However we also see the same

effect as observed in the Monte-Carlo sampling experiments:

the number of triangulations at a given action is a decreasing

function of action.

The Origin of Dark Energy

Taking gv0 and dividing through by V in equation (32) gives

lim
‘?0

SET~ lim
‘?0

SET Euc ~{
1

8
V

{2
3: ð35Þ

Let us briefly discuss the physical meaning of SET. Our goal

was to construct a theory dominated by states close to the classical

value of the mean-action, E~0. We did this by ‘‘slicing’’ the

partition function according to action-value, retaining only states

whose actions lie within a certain distance of zero. If the volume of

spacetime is large compared to Planck’s volume then we come

very close to accomplishing our goal. That is, for V&1 we do

indeed obtain SET&0 in the ‘?0 limit. However, there is a small

perturbation away from zero because of the relative entropy of

action values. Notice that since action values are global

observables, this effect is independent of the local details of the

‘‘metric’’, i.e. the local structure of the triangulation. This leads us

to expect that, for a typical triangulation at a given ‘, the average

action will appear very uniform at length-scales much larger than

‘. Finally, recall that everything in the Einstein-Hilbert action

except the cosmological constant L depends on the metric gmn.

Thus, the basic structure of AEH almost demands we interpret our

non-zero SET as an emergent cosmological constant given by

L~{
1

2
SET~

1

16
V

{2
3: ð36Þ

We now turn to the question of applying this result to our own

universe. This is a somewhat speculative endeavor since our world

appears to be both 4-dimensional and infinite in extent. However,

as an entropic effect connected with the pattern of attachment

between simplices, we expect the perturbation away from E~0
identified in this paper to occur quite generally. So, what V is

appropriate for assessing the magnitude of this effect in our

particular universe? Considerations of causality give us a

reasonable answer: take the volume of space which has had time

to causally communicate with our point of observation. That is, we

ought to use something like the current Hubble volume H{3
0 where

H0 is the Hubble constant. Plugging in H0&1:2|10{61 in Planck

units gives

L&10{123 ð37Þ

which is in general agreement with observation.

At this point, we feel obliged to briefly discuss the term

‘‘numerology’’. It has long been known that the observed

cosmological constant was approximately H2
0 . This and many

other unexplained approximate numerical relationships between

cosmological parameters are often called large number coincidences.

Thinking of them as having explanatory power on their own is

surely deserving of the label ‘‘numerology’’. However, this epithet

should not be applied to a physically well-motivated theory which

predicts ab-initio such a numerical relationship, as our model does.

Discussion

Our derivation of L has some interesting features. Using the

Hubble parameter to define our characteristic volume V means

that the model actually predicts a time-varying cosmological

constant

L(t)&
1

16
H(t)2 ð38Þ

where H(t) is the Hubble parameter at proper time t. That is,

we predict that L scales like the area of the cosmic horizon.

Amazingly, although we made no holographic assumption, this is

the same behavior that emerges from holographic dark energy (HDE)

theories [5,6,10,12,13]. In fact, our model shares several other key

features with these approaches, including the presence of two ‘‘cut-

offs’’ in the theory which are removed in a coordinated fashion.

HDE models typically contain both a UV and IR field cut-off

which are removed in a way that saturates entropy in the

Bekenstein bound. In our theory, the cut-offs ‘ and N are chosen

to keep the entropic perturbation on SET bounded as ‘?0. While

HDE theories are very different in detail from our model, the

broad similarities are quite striking. Perhaps both approaches are

pointing to the same underlying physical issues. We hope that the

relative simplicity of our model can help elucidate these issues.

We should also mention another explanation for L which shares

some features with our approach. In [53] it is argued that the true

ground-state vacuum has L~0 but that we observe Lw0 because

the universe has not yet had time to decay into this ground state.

The author considers a model in which the true ground state is

given by the superposition of two degenerate Lw0 states, one of

which describes the universe’s present-day vacuum. Since the

decay probability in a given volume and time period is related to

the energy density L, the requirement that no such decay has yet

happened in the Hubble volume provides an estimate for L which

agrees with observation. This argument leads, as does our model,

to a connection between the Hubble parameter and L. Also note

that both models contain states at or near L~0 which are

suppressed compared to the Lw0 states.

Finally, we note that in the very early universe our model

predicts large L and hence rapid expansion. This raises the

tantalizing possibility that big-bang inflation and dark-energy are

manifestations of a common effect, though it is likely that a more

sophisticated choice for the characteristic volume V would be

needed. See [54] for consideration of this idea in the HDE context.

Acknowledgments

The author would like to thank Cheryl Koester, C. Scott Wylie, Vadas

Gintautas, Joe MacNeil, and Larry Viehland for their support and valuable

advice. Also, many thanks to Henry Segerman for providing the

triangulation census data used in this work and to Leah Langer for

assisting in the collection and verification of triangulation sampling data.

Author Contributions

Conceived and designed the experiments: ADT. Performed the experi-

ments: ADT. Analyzed the data: ADT. Wrote the paper: ADT.

Dark Energy from Discrete Spacetime

PLOS ONE | www.plosone.org 8 December 2013 | Volume 8 | Issue 12 | e80826



References

1. Allen SW, Schmidt RW, Ebeling H, Fabian AC, Van Speybroeck L (2004)
Constraints on dark energy from chandra observations of the largest relaxed

galaxy clusters. Monthly Notices of the Royal Astronomical Society 353: 457–
467.

2. Tegmark M, Strauss MA, Blanton MR, Abazajian K, Dodelson S, et al. (2004)
Cosmological parameters from sdss and wmap. Phys Rev D 69: 103501.

3. Kowalski M, Rubin D, Aldering G, Agostinho RJ, Amadon A, et al. (2008)

Improved cosmological constraints from new, old, and combined supernova
data sets. The Astrophysical Journal 686: 749.

4. Larson D, Dunkley J, Hinshaw G, Komatsu E, Nolta MR, et al. (2011) Seven-
year wilkinson microwave anisotropy probe (wmap) observations: Power spectra

and wmap-derived parameters. The Astrophysical Journal Supplement Series

192: 16.
5. Cohen AG, Kaplan DB, Nelson AE (1999) Effective field theory, black holes,

and the cosmological constant. Physical Review Letters 82: 4971–4974.
6. Horvat R (2004) Holography and a variable cosmological constant. Phys Rev D

70: 087301.

7. Hsu S (2004) Entropy bounds and dark energy. Physics Letters B 594: 13–16.
8. Huang Q, Li M (2004) The holographic dark energy in a non-flat universe.

Journal of Cosmology and Astroparticle Physics 2004: 013.
9. Li M (2004) A model of holographic dark energy. Physics Letters B 603: 1–5.

10. Li M, Wang Y (2010) Quantum uv/ir relations and holographic dark energy
from entropic force. Physics Letters B 687: 243–247.

11. Caravelli F, Modesto L (2011) Holographic effective actions from black holes.

PhysLett B702: 307–311.
12. Easson DA, Frampton PH, Smoot GF (2011) Entropic accelerating universe.

Physics Letters B 696: 273–277.
13. Castorina P (2012) Holographic bound in quantum field energy density and

cosmological constant. http://arxivorg/abs/12073478.

14. Jamil M, Saridakis EN, Setare MR (2009) Holographic dark energy with varying
gravitational constant. Physics Letters B 679: 172–176.

15. Ma T, Wang S (2012) Gravitational field equations and theory of dark matter
and dark energy. arXiv preprint arXiv:12065078.

16. Amendola L, Tsujikawa S (2010) Dark energy: theory and observations.
Cambridge University Press.

17. Bamba K, Capozziello S, Nojiri S, Odintsov S (2012) Dark energy cosmology:

the equivalent description via different theoretical models and cosmography
tests. Astrophysics and Space Science 342: 155–228.

18. Hu BL (2009) Emergent/quantum gravity: macro/micro structures of space-
time. Journal of Physics: Conference Series 174: 012015.

19. Steinacker H (2009) Emergent gravity and noncommutative branes from

yangmills matrix models. Nuclear Physics B 810: 1–39.
20. Cai R, Cao L, Ohta N (2010) Friedmann equations from entropic force.

Available: http://arxivorg/abs/10013470.
21. Gao C (2010) Modified entropic force. Phys Rev D 81: 087306.

22. Nicolini P (2010) Entropic force, noncommutative gravity, and ungravity. Phys
Rev D 82: 044030.

23. Modesto L, Randono A (2010) Entropic Corrections to Newton’s Law.

24. Verlinde E (2011) On the origin of gravity and the laws of newton. Journal of
High Energy Physics 2011: 1–27.

25. Regge T (1961) General relativity without coordinates. Il Nuovo Cimento
(1955–1965) 19: 558–571.

26. Roek M, Williams RM (1981) Quantum regge calculus. Physics Letters B 104:

31–37.
27. Hamber HW (1994) Invariant correlations in simplicial gravity. Phys Rev D 50:

3932–3941.
28. Hamber H, Williams R (1995) Newtonian potential in quantum regge gravity.

Nucl Phys B 435: 361–398.

29. Beirl W, Hauke A, Homolka P, Markum H, Riedler J (1997) Correlation

functions in lattice formulations of quantum gravity. Nucl Phys B (Proc Suppl)

53: 735–738.

30. Gentle AP (2002) Regge calculus: A unique tool for numerical relativity. General

Relativity and Gravitation 34: 1701–1718.

31. Gentle AP (2012) A cosmological solution of regge calculus. Available: http://

arxivorg/abs/12081502.

32. Agishtein M, Migdal A (1992) Simulations of four-dimensional simplicial

quantum gravity as dynamical triangulation. Mod Phys Lett A 7: 1039–1061.

33. Ambjørn J (1995) Quantum gravity represented as dynamical triangulations.

Class Quantum Grav 12: 2079–2134.

34. Ambjørn J, Burda Z, Jurkiewicz J, Kristjansen C (1992) Quantum gravity

represented as dynamical triangulations. Acta Phys Pol B 23: 991–1030.

35. Catterall S, Kogut J, Renken R (1994) Phase structure of four-dimensional

simplicial quantum gravity. Phys Lett B 328: 277–283.

36. Loll R (1998) Discrete approaches to quantum gravity in four dimensions. Living

Reviews in Relativity 1.

37. Ambjørn J, Jurkiewicz J, Loll R (2004) Emergence of a 4d world from causal

quantum gravity. Phys Rev Lett 93: 131301.

38. Benedetti D, Henson J (2009) Spectral geometry as a probe of quantum

spacetime. Phys Rev D 80: 124036.

39. Ambjrn J, Grlich A, Jurkiewicz J, Loll R, Gizbert-Studnicki J, et al. (2011) The

semiclassical limit of causal dynamical triangulations. Nuclear Physics B 849:

144–165.

40. Ambjorn J, Jurkiewicz J, Loll R (2010) Causal dynamical triangulations and the

quest for quantum gravity. Available: http://arxivorg/abs/10040352/.

41. Khatsymovsky V (2001) Continuous matter fields in regge calculus. Physics

Letters B 504: 356–358.

42. McDonald JR (2009) Simplical Matter in Discrete and Quantum Spacetimes.

Ph.D. thesis, Florida Atlantic University.

43. Khavkine I, Loll R, Reska P (2010) Coupling a point-like mass to quantum

gravity with causal dynamical triangulations. Classical and Quantum Gravity 27:

185025.

44. Stone DA (1973) Sectional curvature in piecewise linear manifolds. Bulletin of

the American Mathematical Society 79: 1060–1063.

45. Trout AD (2010) Positively curved combinatorial 3-manifolds. Electronic

Journal of Combinatorics 17.

46. Deza M, Detour M, Shrogrin M (2004) On simplicial and cubical complexes

with small valence. Israel Journal of Mathematics : 109–124.

47. Elder M, McCammond J, Meier J (2003) Combinatorial conditions that imply

word-hyperbolicity for 3-manifolds. Topology 42(6): 1241–1259.

48. Walkup DW (1970) The lower bound conjecture for 3- and 4-manifolds. Acta

Mathematica 125: 75–107.

49. Lutz FH, Sulanke T, Swartz E (2009) f-vectors of 3-manifolds. the electronic

journal of combina- torics 16: R13.

50. Conway JH, Radin C, Sadun L (1999) On angles whose squared trigonometric

functions are rational. Discrete and Computational Geometry 22: 321–332.

51. Burton BA (2004) Efficient enumeration of 3-manifold triangulations. The

Australian Mathematical Society Gazette 31: 111–117.

52. Burton BA (2011) Detecting genus in vertex links for the fast enumeration of 3-

manifold trian- gulations. In: ISSAC 2011: Proceedings of the 36th International

Symposium on Symbolic and Algebraic Computation. 59–66.

53. Yokoyama J (2002) Cosmological constant from degenerate vacua. Phys Rev

Lett 88: 151302.

54. Easson DA, Frampton PH, Smoot GF (2012) Entropic inflation. International

Journal of Modern Physics A 27: 1250066.

Dark Energy from Discrete Spacetime

PLOS ONE | www.plosone.org 9 December 2013 | Volume 8 | Issue 12 | e80826


