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Abstract

Previous studies have shown variable relationships between dispersal rate and ecosystem functioning, but the reasons for
and mechanisms behind variable dispersal rate – functioning patterns are currently unknown. In this study we used six
bacterial lake water communities in a laboratory experiment in order to investigate how dispersal among communities
influences community productivity by evaluating three different mechanisms: 1) changes in taxonomic diversity, 2) changes
in phylogenetic diversity or 3) changes in the composition of functional traits. The experiment was conducted in two
phases; (A) a dialysis bag experiment where the dispersal rate among six communities was manipulated and the subsequent
change in bacterial diversity and growth rate was recorded, and (B) a regrowth experiment where we manipulated available
resources to study how well a taxon grows on certain organic carbon resources, i.e. their functional traits. From experiment
(B) we could thus estimate changes in functional traits in communities in experiment (A). Bacterial production was affected
by dispersal, but not consistently among lakes. Neither change in taxonomic or phylogenetic diversity with dispersal could
explain the observed dispersal – productivity relationships. Instead, changes in trait composition with dispersal, especially
the communities’ ability to use p-coumaric acid, an aromatic compound, could explain the observed dispersal – productivity
relationships. Changes in this trait caused by dispersal seemed especially important for bacterial productivity in waters with
a high aromaticity of the organic matter pool. We conclude that the effect of dispersal on bacterial communities can affect
ecosystem functioning in different ways, through changes in functional key-traits which are important for the local
environment.
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Introduction

For many types of communities there is a relationship between

diversity and ecosystem functioning, i.e. a change in biodiversity

may alter local ecosystem functioning [1,2]. One concern is that

habitat fragmentation affecting dispersal rates among communities

may impact community functioning since dispersal among

communities may change local community composition and

diversity, e.g., [3]. In artificial communities productivity and

diversity have been shown to peak at intermediate dispersal rates

[4,5], but other patterns have also been found [6]. The number of

studies investigating the role of dispersal among communities for

community functioning is, however, low and more experimental

work in different types of communities is needed for general

conclusions and in order to pinpoint the mechanisms behind such

relationships.

A hump shaped relationship between dispersal rate and

functioning has been explained by the complementarity effect,

i.e. that an initial increase in dispersal adds taxa and thereby

functions that contribute to community productivity, while at the

highest dispersal rates, richness decreases due to regional

homogenization and the consequent loss of functions causes a

decrease in productivity [4,5]. There are, thus, two assumptions to

be fulfilled for the hump-shaped relationship between dispersal

rate and functioning: 1) community richness is highest at

intermediate dispersal rate, according to a theoretical model [3]

and 2) function is positively monotonically related to richness.

Previous studies indeed showed experimentally that community

richness may follow dispersal rates in the expected way [4,5].

However, there are several scenarios for non-monotonic relation-

ships between richness and function which would lead to differing

effects of dispersal. If, for example, increased richness should lead

to increased function due to the complementarity effect not only

the number of taxa needs to increase but rather the number of

different functions, and a better measure of functional diversity

may therefore be phylogenetic diversity (PD), e.g., [7,8], since

distantly related taxa are more likely to possess different functions

[9]. However, PD can change independently of richness and vice

versa [10], and increased richness without increasing PD may even

result in reduced functioning due to increased antagonistic
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interactions [11], obscuring the relationship between richness and

function. Thus, if PD is more important than richness for function,

various outcomes of dispersal on functioning seem plausible.

Finally, instead of the diversity of functional traits, the presence or

abundance of some key functional traits may disproportionally

affect ecosystem functioning [1,12]. Different functional traits may

be added or diluted as a consequence of dispersal; however, there

is no obvious relationship between traits of importance for

community functioning and dispersal, which could result in

basically any relationship between dispersal rate and functioning.

Our aim was to study the effect of different dispersal rates on

productivity (our ecosystem function of interest) of bacterial

communities and to test alternative explanations for the patterns in

function. For that purpose, we used a microscale set-up with

natural bacterial lake water communities. The first hypothesis we

tested was that community richness is highest at intermediate

dispersal and that function (productivity) shows a hump-shaped

relationship to dispersal rate due to a positive monotonic

relationship between richness and function. Our second hypothesis

is that PD is more important for function than richness, and since

richness and PD are not necessarily related, relationships other

than hump-shaped are possible between dispersal rate and

function, but PD should always scale positively with productivity.

The third hypothesis was that the abundance of certain functional

key-traits is more important for community function than richness

and PD, and that changes in trait composition following a

dispersal event affect productivity. The functional trait chosen in

this study was the ability of the bacteria to grow on different

carbon substrates since that differs among bacteria [13,14] and

because carbon processing is central for the role of bacteria in

ecosystems, e.g., [15]. Since the chemical composition of the

organic matter pool in, for instance, lakes differs over space and

time [16,17], it is likely that the traits being of importance for

functioning differ among environments.

The microcosm experiment was conducted in the laboratory in

two parts using bacteria from six contrasting environments. In the

first part (A) we induced dispersal among communities by

pipetting. In the second part (B) we experimentally defined traits

for the taxa in those communities by exposing them to eight

different carbon substrates. Thereafter we analyzed the effect of

changed dispersal rate for community growth rate as well as

richness and PD in the communities in experiment (A). Finally, we

evaluated the role of richness, PD and trait composition for the

dispersal-function relationship found in experiment (A).

Materials and Methods

Ethics Statement
No permits were required to sample any of the lakes in this

study. The authors also confirm that the sampling did not affect

endangered or protected species.

Sampling and Water Chemistry
Water from six lakes in central Sweden (provinces of Uppland

and Västmanland) was sampled in March 2011. In order to ensure

the general validity of the results, lakes that differ more than one

order of magnitude in inorganic nutrient content, organic carbon

content and hydroxide ions (pH) were chosen. Non-purgeable

organic carbon (NPOC) was determined by measuring organic

carbon after acidification and with HCl (TOC-5000, Shimadzu,

Kyoto, Japan). Total nitrogen (TN) was measured spectrophoto-

metrically (Hitachi U-2000, Hitachi, Ltd., Tokyo, Japan) as nitrate

after oxidation at high temperature. Total phosphorus (TP) was

also measured spectrophotometrically after oxidative hydrolysis of

organically bound phosphorus. Absorbance was measured from

200 to 600 nm (1 nm intervals) using a Lambda 40 UV/VIS

Spectrometer (PerkinElmer, Inc., Waltham, MA, USA). SUVA

(specific UV absorbance) is the ratio of absorbance at 254 nm over

total organic carbon concentration. Cell abundances were

determined flow-cytometrically (CyFlow space, Partec GmbH,

Münster, Germany) [18]. In short, water samples were fixed with

filtered formaldehyde (3.7% final concentration) and stored at 4uC
for a maximum of two days. The cells were stained and

enumerated with SYTO 13 (Invitrogen, Life Technologies Ltd,

Paisley, UK). Physico-chemical characteristics and cell abundanc-

es are listed in Table S1.

Preparation of Medium and Experimental Set-up
All lake water was filtered through a 1 mm glass fiber filter

(Gelman A/E, Pall Life Sciences, Port Washington, NY, USA) to

remove organisms larger than bacteria. For the first experiment

(hereafter termed ‘dispersal experiment’), this water was used as

medium and inoculum. For the second experiment (hereafter

termed ‘resource addition experiment’), this water was used as an

inoculum whereas a second filtration through 0.2 mm filters

(SuporH-200 Membrane Disc Filters, 47 mm; Pall Corporation,

East Hills, NY, USA), two autoclaving steps and readjustment of

the pH were carried out to prepare the sterile medium for the

experiment.

Dispersal Experiment
The setup is similar to the one used by Lindström and Östman

[6]. From each lake one 10 L bucket was filled with the 1 mm-

filtered lake water. In each bucket thirteen 10 ml dialysis bags

were placed (Float-A-LyzerH G2, 50 000 Daltons, Spectrum

Europe B.V., Breda, The Netherlands), containing the natural

bacterial community from that lake (triplicates for each of the four

dispersal treatments) and one negative control (autoclaved MQ).

The water in the buckets was mixed by vigorous air bubbling. The

dialysis bags were pre-wetted in MQ water for two days before the

initiation of the experiment. Three times a day bacteria were

dispersed between the communities in different lake water but

within each dispersal rate treatment by pipetting. At each dispersal

event a metacommunity was constructed for each dispersal rate;

equal volumes were taken out from all dialysis bags within a

dispersal rate treatment (n = 18), mixed and kept in separate glass

bottles and thereafter pipetted back into the dialysis bags. The

different dispersal rate treatments were 0% (dispersal rate I), 10%

(0.33 ml per dispersal event; dispersal rate II), 49% (2 ml per

dispersal event; dispersal rate III), and 88% (5 ml per dispersal

event; dispersal rate IV) of standing stock per day. Dispersal rate I

received no dispersal during the course of the experiment, but was

opened and closed to mimic the handling of the other dispersal

treatments. The dialysis bags are easily opened and closed for the

dispersal events via a screw cap. The experiment was run for four

days at 15uC in darkness. This time period was constrained by the

lifespan of the dialysis bags but still allows for sufficient population

growth. At the end of the experiment samples were taken from

each dialysis bag for bacterial diversity, bacterial production,

abundance and absorbance. Absorbance in the original water and

in dispersal treatment I and IV was measured from 200 to 600 nm

(1 nm intervals). SUVA (Specific UV Absorbance) was determined

at 254 nm over the total organic carbon concentration [19].

Bacterial Production (BP)
The incorporation of 3H-labelled leucine into bacterial protein

was determined using the modified method from Smith and Azam

[20]. In short, triplicate samples and a blank (immediate addition
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of a final concentration of 5% TCA) were incubated in a final

concentration of 100 nM 3H-leucine for one hour. The incubation

was stopped by adding a final concentration of 5% TCA to the

samples. After washing with 5% TCA and 80% Ethanol, 0.5 ml of

the scintillation cocktail (Optiphase Hisafe 2, PerkinElmer, Inc.,

Waltham, MA, USA) were added and the samples were kept for at

least 24 hours before measurement of the incorporated 3H-leucine

(Packard Tri-Carb 2100TR Liquid Scintillation Analyzer, GMI,

Inc, Ramsey, MN, USA). Results are presented as disintegrations

per minute (dpm) divided by cell abundance as determined by flow

cytometry (Table S1).

Resource Addition Experiment
In order to investigate the bacterial resource use in the

communities, a second experiment using the same lake water as

for the dispersal experiment was set up. Volumes of 30 ml of the

1 mm-filtered water from each lake served as the inoculum which

was added to 270 ml of the sterile medium (including the

substrates) in order to allow re-growth of the bacterial community.

A control treatment (no substrate addition) and eight duplicate

carbon substrates additions resulted in 17 incubations per lake.

Incubations took place in the dark at 15uC until stationary growth

phase was reached (5 days). The substrates used in the experiment

were an amino acid (L-arginine), a carboxylic acid (Itaconic acid),

carbohydrates (D-cellobiose, N-acetyl-D-glucosamine), glycerol

(lipid-backbone), polymers (a-cyclodextrin, glycogen) and an

aromatic compound (p-coumaric acid). Thus the added resources

varied in their chemical complexity. The carbon concentration of

the added substrates was roughly 10% of the carbon content of the

original lake water. Nitrogen (as NaNO3) and phosphorus (as

Na2HPO3) were added to achieve Redfield ratios (106:16:1 C:N:P

atom ratio) of the additions. Bacterial abundance was determined

at the start of the incubation and every following day of the

experiment by flow cytometry (Table S1).

Bacterial Diversity
Cells from the samples in the dispersal experiment were

collected by centrifuging 3 ml of water at 17 0006G for 30

minutes in sterile eppendorff tubes. First 1.5 ml of sample was

centrifuged and the supernatant discarded, and thereafter an

additional 1.5 ml was added to the same tube and the procedure

repeated. The cells were stored at 280uC until further processing.

When bacterial growths curves reached the stationary phase (after

5 days) in the resource addition experiment, the incubation was

terminated by filtration of approximately 300 ml medium onto

0.2 mm filters (SuporH-200 Membrane Disc Filters, 47 mm; Pall

Corporation, East Hills, NY, USA). The filters were stored at

280uC until further processing.

For Lake 6 in the dispersal treatment, only DNA from dispersal

rate I could be extracted. Similarly, no amplifiable DNA could be

extracted from the negative controls (MQ water only) in the

dispersal experiment, indicating low occurrence of alien bacteria

from the handling of dialysis bags.

DNA from the harvested cells from both experiments was

extracted using the PowerSoilH DNA Isolation kit (MO BIO

Laboratories, Inc., Carlsbad, CA, USA) following the manufac-

turer’s instructions. DNA extracts were quality-checked on a 1%

agarose gel and stored at 280uC until further processing. The

bacterial hypervariable regions V3 and V4 of the 16S rRNA gene

were PCR amplified and 454 pyrosequenced using forward primer

341 (59- CCTACGGGNGGCWGCAG-39) and the individually

bar-coded reverse primer 805 (59- GACTACHVGGGTATC-

TAATCC-39) [21]. Each 20 mL PCR reaction contained 0.4 U

PhusionTM high-fidelity DNA polymerase (Finnzymes, Espoo,

Finland), 1X PhusionTM HF reaction buffer (Finnzymes), 200 mM

of each dNTP (Life Technologies Ltd, Paisley, UK), 250 nM of

each primer (Eurofins MWG, Ebersberg, Germany), 0.4 mg

mL21 BSA (New England Biolabs, Ipswich, UK) and 5–10 ng of

extracted nucleic acid. Thermocycling was conducted with an

initial denaturation step at 98uC for 30 sec, followed by 25 cycles

of denaturation at 98uC for 10 sec, annealing at 50uC for 30 sec

and extension at 72uC for 30 sec, and finalised with a 7-min

extension step at 72uC. Three to four technical replicates were run

per sample, pooled after PCR amplification and quality-checked

on a 1% agarose gel. Purification was carried out using the

AMPure XP purification kit (Beckman Coulter Inc., Brea, CA,

USA). Nucleic acid yields were then checked on a fluorescence

microplate reader (Ultra 384; Tecan Group Ltd., Männedorf,

Switzerland) applying the Quant-iT PicoGreen dsDNA quantifi-

cation kit (Invitrogen, Life Technologies Ltd, Paisley, UK). Finally,

PCR amplicons were combined equimolarly, i.e. in equal

proportions, to obtain a similar number of 454 pyrosequencing

reads per sample.

The amplicon pool was 454 pyrosequenced with the AB SOLiD

4TM System (Life Technologies Corporation, Carlsbad, CA, USA)

at the Uppsala Genome Center, Uppsala University (UGC;

Uppsala, Sweden; http://www.igp.uu.se/Serviceverksamhet/

Genomcenter/), using Titanium chemistry. Sequences were, prior

to analyses, quality-checked and truncated to 400 bases. Each data

set was individually processed with AmpliconNoise to reduce the

number of 454 sequencing and PCR artifacts, and PCR chimeras

[22]. 454 pyrosequencing reads have been deposited in the

National Center for Biotechnology Information Sequence Read

Archive (NCBI-SRA) under accession number SRP014765. After

processing the sequencing information using AmpliconNoise an

average of 4000 (1589–9161) reads per sample were obtained.

Differences in composition between communities (b-diversity)

were calculated as Morisita-Horn (MH) dissimilarity index that is

relatively insensitive to differences in number of sequences

between samples (vegan package in R 2.13, [23,24]). Non-metric

multi-dimensional scaling (nMDS) as well as SIMPER (SIMilar

PERcentage) analyses to identify OTUs mainly responsible for

changes in community composition were carried out in PAST

[25].

a-diversity (richness) was estimated as Chao1 [26] for opera-

tional taxonomic units (OTUs) defined by complete linkage

clustering at 97% sequence similarity. Although Chao1 is less

sensitive to differences in sample depth than many other a-

diversity estimates, it is important to compare different commu-

nities at the same sample depth [27]. Therefore we subsampled all

samples 1000 times to 1730 reads each using an in-house script in

MatLab (Matlab R2012b, MathWorks Inc., Natick, MA, USA)

and used the average Chao1 for each community as our estimate

of local richness. This excluded two samples (one parallel of

samples 1-III and 3-II each) with too few reads.

Because the number of unique sequences was many times larger

than the number of variable sites in the sequence we had to build

the phylogenetic tree for our measure of phylogenetic diversity

from a subsample of taxa. Because we are interested in

productivity it is likely the most common taxa that contribute

most to the productivity we built a tree for the most common taxa,

using sequences that had an average relative abundance $1%

across all samples (zero-densities included), or an average relative

abundance $3% in any triplicate of the same dispersal treatment

in any lake, ensuring taxa abundant in one lake or treatment was

also included. There were 41 taxa that fulfilled any of these

criteria, constituting 57% of all sequences in the dispersal

experiment, which had 291 variable sites in the sequenced 16S
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rRNA gene. We constructed phylogenetic trees with MrBayes 3.2

[28] using a generalized time reversible (GTR) evolutionary model

with gamma-distributed rate variation across variable sites. The

branch length prior was set to a uniform clock that had a better

likelihood than an unconstrained branch length prior (harmonic

means of likelihood 24738 and 24694, respectively). The

standard deviations of split frequencies after 100 000 generations

was 0.013 indicating that most nodes were well supported for these

41 taxa. We built one consensus tree from the last 100 sampled

posterior probability distributions. Because many of these taxa

were present in most communities there was little difference in PD

based on presence and absence. Instead we calculated phyloge-

netic diversity as mean pairwise phylogenetic distance (MPD)

between all individuals of these 41 taxa in each community from

the consensus tree in the ‘picante’-package for R [29]. We used z-

transformed values of MPD calculated from 1000 iterations of

each community. To calculate dispersion in MPD from the

phylogenetic uncertainty we calculated the z-transformed MPD

values for each community from each of the 100 individual trees

and calculated 95% confidence intervals. To study how trait values

(resource use, rij, see below) were distributed across the phyloge-

netic tree we calculated k-statistics [29] from the 100 single trees

using the ‘picante’-package for R [29]. Low k-values indicate that

traits are phylogenetically dispersed whereas higher values indicate

traits that are more phylogenetically clustered. P-values are

calculated through a randomization (here 1000 randomizations)

of the observed trait values. As we used a subsample of taxa in the

phylogeny we have to assume the changes in PD and k-values

among these 41 taxa are representative for the entire community,

which is motivated by the high coverage of sequences, in average

57% of all reads.

Resource Use
The resource use width of each taxon was defined based on the

changes in relative abundance of each taxon (i.e. each unique

sequence) in the eight carbon source additions relative to the

control (c) in the resource addition experiment. For each taxa i in

lake l we calculated the relative growth rate in the control as

ricl = ln(Nicl/Ni0l), where Nicl = % of taxa i in the control of lake l,

Ni0l = % of taxa i at start of experiment in lake l. Population

growth response of taxa i to resource addition j was calculated as

rijl–ricl, where rijl is the j resource specific relative growth rate of

taxa i in lake l, rijl = ln(Nijl/N0il)–ric l = ln(Nijl/N0il)2ln(Nicl/N0il) =

ln(Nijl/Nicl) where Nijl = % of taxa i in resource addition j in lake l.

As rijl cannot handle zero values of Nijl or Nicl we only calculated rijl

for Nijl and Nicl.0. rijl was first averaged replicates and then over

all lakes to calculate taxon specific (i) response to each resource (j)

addition, rij.

We matched the taxa from the resource experiment with the

taxa from the dispersal treatment, based on 100% agreement of

the 16S rRNA gene sequence. In total 831 taxa overlapped

between the two experiments (83% of all sequences in the dispersal

treatment and 79% of all the sequences in the resource

experiment). Thus, the taxonomical overlap between the two

experiments was high enough for the results from the resource

experiment to be relevant for the dispersal experiment. From these

831 taxa we calculated the community average ability to grow on

resource j for each community (C) in the dispersal treatment, RjC,

as the average growth rates (rij) across all 831 taxa weighted for

their relative abundance. Higher values indicate communities that

are, on average, growing better on a resource j. Thus, we assume

all taxa specific responses are additive and there are no interactive

(antagonistic, synergistic) effects between taxa.

Statistics
ANOVAs were run to test for the effect of lake identity and

dispersal treatments on bacterial production (bulk productivity/

numbers of bacterial cells), richness and MPD. To test for

associations between bacterial production and the continuous

explanatory variables richness and MPD we did ANCOVAs with

lake identity as a class variable and interactions between lake

identity and the respective covariates. To evaluate if the

importance of trait composition for productivity we transformed

the community specific RjC values for all eight resources into

principal components. These components were then tested

towards BP in ANCOVAs as above. The substrates correlated

with the components explaining significant variation in BP were

then tested separately using ANCOVA.

To study how community level traits depended on the aromatic

content of the water, the strength of the relationship between RjC

and BP, as determined by the t-value from regression analysis, was

correlated to SUVA (ratio of lake water absorbance at 254 nm

over total organic carbon concentration). Regression analyses were

also used to determine the strength of the relationship between

richness and BP as well as PD and BP.

All data are available electronically upon request.

Results

The composition of the bacterial communities became more

similar to each other with increasing dispersal (Fig. S1). The

original lake water bacterial community of lake 5 was most

dissimilar to all other lakes and showed the largest change in BCC

due to dispersal (MH disp I–IV [Morisita-Horn dissimilarity index

between dispersal rate I and IV] = 0.85) while Lake 3 showed the

smallest change in BCC due to dispersal (MH disp I–IV = 0.35).

Based on SIMPER analysis four OTUs contributed to more than

5% of the changes in community composition between dispersal

rate I and IV in all the lakes. Two of these OTUs were most

abundant (1.3–4.7% of all sequences) in the non-dispersed

communities of lake 3, while the other two OTUs were most

abundant (0.6–6.7% of all sequences) in the non-dispersed

communities of lake 2. The former two taxa were associated with

a high ability to grow on p-coumaric acid and glycerol while the

latter two did not show strong growth on any of the tested

resources.

Dispersal had different effects on bacterial production (BP)

depending on lake identity, indicated by an interaction between

lake identity and dispersal (F15,45 = 7.46, p,0.001), i.e. Lake 2 and

3 showed decreased BP with increasing dispersal (Fig. 1A) while in

the other lakes there was either a positive (Lake 1 and 6) or a close

to positive (but non-significant) relationship between dispersal and

BP (Lake 4 and 5, Fig. 1A). No lake showed a hump-shaped

relationship with dispersal.

Also bacterial richness (Chao1) showed a significant interaction

between dispersal and lake identity (F12,36 = 3.1, p = 0.004), but

local richness peaked at intermediate dispersal treatments in all

lakes, although this was not always significant (Fig. 1B). An

ANCOVA showed that, opposite to our expectations, richness was

negatively associated with BP (F1,47 = 5.2, t1,47 = 22.5, p = 0.02,

Fig. 2A). For Lake 6, only DNA from dispersal rate I could be

extracted and, hence, data associated with the bacterial commu-

nity are missing for dispersal rates II–IV.

The mean phylogenetic distance (MPD) of the consensus tree

also showed an interaction between dispersal and lake identity

(F12,36 = 7.5, p,0.001, Fig. 1C). There were different responses of

BP to MPD in the different lakes, as indicated by an interaction

term between lake and MPD on BP (F4,44 = 8.3, p,0.001). Even
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Figure 1. The influence of dispersal on community functioning (A), taxonomic (B) and phylogenetic diversity (C). Community
functioning is assessed as per cell bacterial production (A), local richness of the bacterial community estimated by Chao1 (B), and average
phylogenetic distance between bacteria in a community estimated as standardized effect size of MPD (C) for each lake (1–6) in relation to dispersal
rate (I–IV). Error bars are standard errors of within treatment replicates in (A and B), and standard deviations calculated from 100 single trees in (C). No
replicates were available for dispersal rate IV in lake 3 in (B). Lake 6 is missing in (B) and (C) because DNA could be extracted from dispersal rate I only.
Bars with different letters denote significant differences between dispersal treatments within one lake, assessed form Tukey’s post-hoc test in one-
way ANOVAs.
doi:10.1371/journal.pone.0080825.g001
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Figure 2. Associations between functioning and richness (A), and functioning and average phylogenetic distance (B). Community
functioning is assessed as per cell bacterial production, local richness of the bacterial community estimated by Chao1 (A), and average phylogenetic
distance between bacteria in a community estimated as standardized effect size of MPD (B).
doi:10.1371/journal.pone.0080825.g002
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when accounting for the phylogenetic uncertainty, the interaction

term between MPD and BP was evident, the 95% confidence of

the interaction term from the 100 single trees was F = 2.6–11.9

(p,0.05). MPD was weakly negatively associated with BP in three

lakes (1, 3, 5, i.e. lower BP when taxa were less related), positively

associated in only one (Lake 2) and not showing a clear trend in

another lake (Lake 4) (Fig. 2B).

The first and fourth PC axes of the trait matrix were associated

with BP (ANCOVA: PC 1: F1,47 = 15; PC 4: F1,47 = 12, p,0.001).

PC 1 was mainly associated with the communities’ ability to use

alpha-cyclodextrin (r = 0.71), glycerol (r = 0.72) and p-coumaric

acid (r = 0.83) well. The fourth PC was associated with commu-

nities’ ability to use L-arginine (r = 20.36). Of these four resource

traits, variation in the communities’ ability to grow on p-coumaric

acid best explained variation in BP (ANCOVA: F1,44 = 23,

p,0.001; interaction term with lake identity: F4,44 = 4.6,

p = 0.003, all three other resources traits with p.0.2). Hence,

BP was generally strongest associated with the communities’

average ability to grow on p-coumaric acid (RjC, see Methods), but

the strength differed among lakes, and was even negative in lake 2

(Fig. 3).

Since the importance of the functional traits for BP differed

among lakes and thereby should depend on the local environment

we tested if the potential ability of a community to grow on an

aromatic compound (p-coumaric acid) differed in importance for

BP with differing amount of aromatic compounds in the organic

matter pool. To do so, we used SUVA, specific UV absorbance,

which is the ratio of absorbance at 254 nm over total organic

carbon concentration, and which indicates the proportion of

aromatic compounds in the water [19]. SUVA was positively

related to the t-value from the within lake regressions between RjC

of p-coumaric acid and BP (r2 = 0.91, p = 0.03, Fig. 4). Thus, in

lakes with a high SUVA value, the trait of growth on an aromatic

compound was of great positive importance for bacterial

production, while it was of less importance, and even negative,

in lakes of low SUVA. The taxonomic specific ability to grow on p-

coumaric acid was not clustered in the phylogeny (average

k = 0.018, p.0.5). Neither was the ability to grow on any other

of the carbon substrate in the experiment (average k,0.027,

p.0.25 for all).

Discussion

Our main finding is that the patterns of the relationship between

dispersal and productivity differed among lakes, despite the fact

that there was hump-shaped relationship between dispersal rate

and richness in all lakes. Community trait composition best

explained the patterns in productivity, with an especially strong

role of the ability to use p-coumaric acid (an aromatic compound).

In contrast, neither increased richness nor phylogenetic diversity

(PD) was associated with higher productivity. Since community

trait composition cannot be easily predicted from dispersal rates,

variable dispersal-productivity relationships are to be expected.

Further, our results indicate that the local environment is

imperative for the effect the traits of the immigrating cells have

on ecosystem functioning. The dispersal-productivity pattern is,

thus, context-dependent.

In the lakes with a positive trend between dispersal rate and

productivity (Lake 1 and Lake 5) the increase in productivity

coincided with a change in community composition greatly due to

an increase in abundance of two betaproteobacteria, one of them

performing well on p-coumaric acid. Hence, the import of this

taxon due to dispersal seems to have contributed to the increasing

productivity with increasing dispersal in these lakes. This taxon

Figure 3. Association between functioning and the average
ability of the community to grow on p-coumaric acid.
Community functioning is assessed as per cell bacterial production.
doi:10.1371/journal.pone.0080825.g003
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was, according to sequence match in the ribosomal data base

project (RDP), a betaproteobacterium with closest matches

(similarity score 1) to an uncultivated Limnohabitans (from Lake

Gossenköllersee AJ290026). It originated from Lake 3 in which

dispersal instead decreased its relative abundance when other taxa

(not associated with growing well on any of the tested resources)

were introduced. As a consequence of the decrease of the

seemingly locally well-adapted taxon the community’s ability to

use p-coumaric acid decreased, and consequently productivity

decreased (Fig. 3) with increasing dispersal in this lake (Fig. 1A).

In general the more aromatic the organic matter pool in the

water the larger the positive effect of the community’s ability to use

p-coumaric acid on productivity, i.e. the effect was greatest in the

lakes which had the highest TOC concentrations and also the

highest SUVA values. In the other lakes the before-mentioned

taxon growing well on p-coumaric acid also increased in

abundance with increasing dispersal and was disproportionally

important for the change in BCC. However, these lakes were poor

in aromatic compounds, and the trait to grow well these

compounds appeared to be of less importance for functioning

here.

While we only have data from five lakes, the general outcome of

this study is nonetheless that there seems to be a link between local

environmental properties and how ecosystem functions respond to

variation in species composition due to trait-related changes at the

community level. In our study the ability to use an aromatic

compound seemed important in environments where aromatic

compounds made up a great part of the organic matter pool. In

general the organic matter pool in nature is poorly characterized,

but the development of new methods has opened up for new

possibilities [30,31] and future studies may show which other

bacterial traits are of importance for productivity in different types

of environments. In lakes of lower SUVA, such as Lake 2, it can be

suspected that growth on less complex organic molecules would be

a more important trait, although this trait could not be identified

here. The lakes sampled in our study showed SUVA values

ranging from 1.22 to 3.48 and, thus, fall well within but do not

span the range of SUVA observed in freshwater systems (e.g., 0.6–

5.1 and 0.2–6.5 as observed by [19] and [32], respectively). Thus,

one approach to identify more functional traits in future studies

may be to include environments from any of the extremes in the

natural range of SUVA.

Among the 41 most abundant taxa for which we constructed the

phylogenetic tree, the efficiency to grow on a certain resource was

not phylogenetically clustered. A recent study suggests that

although bacterial traits are in general phylogenetically clustered

[33], the ability to process different carbon sources, which have

relatively simple genetic mechanisms, are phylogenetically dis-

persed compared to more complex traits such as photosynthesis

and denitrification. The results may change using a larger

phylogenetic tree, but we can conclude that among the most

common, and hence functional important, taxa in this study,

functional groups as defined by carbon processing ability cannot

be easily defined based on the 16S rRNA phylogeny.

The advantage of using a bacterial model community is that

more or less intact communities can be brought into the lab and

easily manipulated over short temporal and spatial scales. It is

important to note that results from a sequence match analysis in

the Ribosomal Data Base project (RDP) showed that the taxa

identified were closely related to some typical freshwater bacteria

(results not shown), suggesting that the results obtained here are

not artificial due to lab conditions, but represent processes that

occur in nature. A disadvantage of using aquatic bacteria as model

systems is, however, that the organisms are travelling with their

media. Hence, a dispersal event is prone to change local

environmental conditions, which also may influence bacterial

function. To circumvent this problem we conducted the experi-

ment in dialysis bags which act as a barrier for bacterial cells but

allow diffusion of water and nutrients, thereby keeping the

environment in the bags as close as possible to the original

conditions (i.e. those in the buckets). However, a change of water

chemistry due to the pipetting effort cannot be fully excluded. We

observed that the differences in absorbance between the water in

the dialysis bags from different lakes decreased at high dispersal

compared to in the water in the buckets. However, we did not find

that the change in cell-specific production and the change in

absorbance in the bags receiving the highest dispersal (averaged

over 200–600 nm) were correlated (r2 = 0.02) and we conclude

that the observed patterns in production were due to the actual

dispersal of cells and not due to changes in the local habitat

conditions in the dialysis bags.

Conclusions
Our experimental study showed that in bacterial communities,

changes in trait composition following dispersal rather than

changes in diversity per se have significant but varying conse-

quences for dispersal-productivity relationships. The effect of

dispersal on function is context dependent, i.e. relies on how the

trait composition changes in which kind of environment.

Community trait levels are attributes not easily predicted from

dispersal rate, local richness or phylogenetic diversity within the

community. Consequently, effects of changed dispersal rates for

community functioning are not easy to predict.

Supporting Information

Figure S1 Results from a non-metric multi-dimensional
scaling (nMDS) analysis. Depicted is the change in bacterial

community composition with increasing dispersal (ori: original

lake water community, I–IV: dispersal rate I–V) in Lake 1–6. Note

that for Lake 4 the original lake water community is missing and

that for Lake 6 only dispersal rate I could be analyzed.

(TIF)

Table S1 Physico-chemical and biological characteris-
tics of the study systems. TP: total phosphorus, TN: total

nitrogen, TOC: total organic carbon, SUVA: specific UV

absorbance (254 nm).

(DOCX)

Figure 4. Association between SUVA and the relationship
between functioning and the growth on p-coumaric acid. SUVA
is the specific UV absorbance at 254 nm. Community functioning is
assessed as per cell bacterial production.
doi:10.1371/journal.pone.0080825.g004
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