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Abstract

The harbour seal population in Orkney, off the north coast of Scotland, has reduced by 65% between 2001 and 2010. The
cause(s) of this decline are unknown but must affect the demographic parameters of the population. Here, satellite
telemetry data were used to test the hypothesis that increased pup mortality could be a primary driver of the decline in
Orkney. Pup mortality and tag failure parameters were estimated from the duration of operation of satellite tags deployed
on harbour seal pups from the Orkney population (n = 24) and from another population on the west coast of Scotland
(n = 24) where abundance was stable. Survival probabilities from both populations were best represented by a common
gamma distribution and were not different from one another, suggesting that increased pup mortality is unlikely to be the
primary agent in the Orkney population decline. The estimated probability of surviving to 6 months was 0.390 (95% CI 0.297
– 0.648) and tag failure was represented by a Gaussian distribution, with estimated mean 270 (95% CI = 198 – 288) and s.d.
21 (95% CI = 1 – 66) days. These results suggest that adult survival is the most likely proximate cause of the decline. They
also demonstrate a novel technique for attaining age-specific mortality rates from telemetry data.
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Introduction

The monitoring of species abundance and distribution,

supported by knowledge of population dynamics, provides

information critical to wildlife conservation and management. It

is also becoming a legislative requirement (e.g. UK Wildlife and

Countryside Act 1981, EU Habitats Directive, USA Endangered

Species Act 1973, Marine Mammal Act 1972, Canadian

Environmental Assessment Act 1992 [1]) and long-term popula-

tion monitoring efforts have been established for several species to

detect changes in their status [2]. As long-lived top predators with

typically wide geographical dispersal, marine mammals are often

proposed as important indicators of the state of relatively

inaccessible marine ecosystems [3,4]. Perhaps unsurprisingly, it is

populations in rapid and/or sustained decline that are of greatest

interest because these patterns may be a harbinger of large-scale

shifts in marine conditions. However, understanding the proxi-

mate and ultimate drivers for population decline has proven

challenging for wild populations [5–7].

Harbour seals (Phoca vitulina vitulina) have been abundant in the

north of Scotland, which contained nearly 20% of all European

harbour seals in the late 20th century [8]. These populations

escaped the worst of the epidemics of Phocine Distemper Virus

that caused mass mortalities in most other European populations

in 1998 and 2002 [9]. Until recently, harbour seals in Orkney off

the north coast of Scotland accounted for nearly half of all British

harbour seals. However, aerial surveys detected rapid declines in

the Orkney population, as well as in other populations in the

northern isles and on the east coast of Scotland, since the late

1990s [10]. Related research has demonstrated that the proportion

of animals hauled out, and available to be counted, in Orkney

during the aerial survey period is both high and similar to those

reported from other areas [11], confirming that the reductions in

the counts indicate real declines in abundance rather than changes

in seal behaviour. The mean annual rate of decline for Orkney

harbour seals has been established at 13% per annum (95% CI:

10.8 – 14.8) over the period 2001–2010 [11].

There are several potential explanations for the declines. Food

shortage, inter-specific competition, disease, predation, pollution,

deliberate killing or other anthropogenic factors could all impact

on harbour seal population abundance [6,12,13]. These might

affect a combination of emigration, adult mortality, juvenile

mortality, and fecundity. Emigration from the Orkney region, or a

reduction in immigration to it, seems an unlikely explanation for

the decline since harbour seals generally show high site fidelity

[14,15] and none of the neighbouring populations show any signs

of having absorbed the large numbers of animals involved

[16].This leaves adult and/or juvenile mortality, and fecundity

as potential proximate causes of the decline.

Assessing these parameters in wild populations is difficult and

often costly [17]. Due to a lack of information on the age structure

of populations, mortality rates often are modeled as being constant

across several age-classes, although this assumption is widely

accepted to be unrealistic [5]. Many empirically derived mam-

malian survivorship curves show three major components: an

early, juvenile phase where initial mortality is high but survival

increases with age; an ongoing, or constant, risk of mortality

during maturity; and a later phase of increasing mortality risk due
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to senescence [5,7,17,18]. At present, there are insufficient data

available to reliably estimate adult survival and fecundity rates for

harbour seals in the UK. The present study investigates pup

mortality rates in the first months of life using satellite telemetry.

Harbour seal pups are born in early summer in the UK and

weaned after approximately 1 month [6,19]. The pups are born

below the high water mark on intertidal rocks and sand banks and

are capable of swimming and diving shortly after birth, although

their swimming abilities continue to develop throughout lactation

and post-weaning [20–22]. Because of this precociousness, it is

challenging to determine neonatal mortality rates for harbour

seals. As with many other species, the younger age-classes tend to

be at a higher risk of predation and disease than older animals

[12]. After weaning, harbour seal pup mortality increases over the

winter months and is related to the autumn body mass. Pups that

are larger in the autumn are more likely to survive through their

first year than are smaller pups [23]. Any form of food limitation,

in terms of quality, quantity or accessibility throughout lactation

and the post-weaning period may have profound effects on pup

survival rates directly by affecting pup condition or indirectly by

affecting maternal condition and hence provisioning during the

lactation period [24,25]. Given the potential susceptibility of

harbour seal pups to multiple mortality risks, we reasoned that

high mortality rates in this age-class could be a major contributor

to the decline of harbour seals in Orkney.

This study utilises information obtained via satellite telemetry to

compare harbour seal pup mortality rates between two popula-

tions with contrasting population trends: the Orkney population,

which is in decline and another population on the west coast of

Scotland at Lismore, which has remained stable over the last ten

years [10]. While restricted to the early post-weaning period, the

results of this study demonstrate that such data provide useful

insights into age-structured population dynamics of harbour seals.

Methods

Ethics statement
In the United Kingdom, all harbour seals are protected under

the Conservation of Seals Act (1970) and the Marine (Scotland)

Act (2010). Accordingly, all seal pup capture and handling

procedures were performed under the terms of the UK Home

Office licence (60/3303) granted to the Sea Mammal Research

Unit (University of St Andrews) and in strict compliance with the

Animals (Scientific Procedures) Act 1986. Access to the field sites

was permitted by the public access rights in Scotland (Land

Reform (Scotland) act of 2003); accordingly, no specific permis-

sions were required to access these locations.

Capture and tagging
Small, location-only ARGOS satellite transmitters (SPOT tags,

Wildlife Computers, Redmond, WA, USA, weight = 50 g) were

deployed on 50 female harbour seal pups: 25 between the 23rd –

26th of June 2007 around Lismore (56.476uN, 5.516uW) and 25

between 2nd – 6th of July 2007 in Orkney (59.2uN, 2.6uW). The

seals were captured on land and manually restrained while the

satellite transmitters were glued to the fur in the mid-dorsal region

using quick-setting epoxy. Only very young female pups were

tagged. The presence or absence of umbilicus remnants was

recorded to provide a general estimate of the time since birth. The

length, weight and axial girth of each individual were recorded.

Tagging was performed as quickly as possible to minimise

disturbance to the animals and disruption of the maternal bond.

Data analysis
Once deployed, there are three processes that lead to telemetry

systems ceasing to produce useful information: the tag can fail

because of mechanical faults such as battery or aerial failure,

leading to signal loss; the tag can detach; or the animal can die

[26]. In the latter two cases, the tag may continue to transmit,

though the pattern of transmissions and movement is unlikely to

mimic that of a living seal. The location data was examined by one

of the authors (D. Thompson) to determine the last date of

transmission by each tag while it was attached to a living seal. This

subjective decision was based on the pattern of movement of the

tags over the last 5 to 10 days during which transmissions were

received by the ARGOS. Table 1 contains the date of tag

attachment and date of last ‘live’ transmission, along with

morphometric data, for each individual.

All statistical analyses were performed in R [27]; the data

(Appendix S1) used and R files (Appendix S2) of the analyses can

be found in the Supplementary Information. The distribution of

the overall tag duration (i.e. last ‘live’ transmission date – tag

attachment date) was compared between the two populations

using Mann-Whitney U tests. The Kolmogorov-Smirnov test first

was used to check the assumption that the two samples came from

similar distributions. As the distributions looked similar, the p-

value was re-estimated by comparison to a null distribution

generated by permuting individuals between groups. The sensi-

tivity of the Mann-Whitney U test was investigated by adding a

constant to all the dates from Lismore and retesting. The window

of values of this constant for which the results of the Mann-

Whitney U test were non-significant at the 5% level was identified.

Ultimately, we were interested in assessing the probability that

an individual pup would survive to a given time, and if the

parameters of pup survival differed between a population in rapid

decline and a stable one. However, the likelihood of the observed

telemetry data had two major components: the probability of tag

survival and the probability of animal survival. ‘System failure’ –

or a loss of useful information from the tags – occurred whenever

either of these components failed. The SPOT tags were expected

to exhaust their batteries in late February, based on their

configuration and an assumed pattern of diving and hauling out.

Mechanical faults, such as detachment from the animal, failure of

software or electronic components and damage to the antenna,

can also end tags’ operation [26]. When tag failure occurs prior to

animal death, the data are considered to be ‘right-censored’ [7].

Importantly, in the present study right-censorship could not be

determined because pup death was never observed directly: it

could have occurred at any time after the date of the last ‘live’

transmission. Additionally, pups were tagged as young as possible

and always prior to weaning but the exact number of days since

their birth was unknown, giving ‘left-truncated’ data. We assumed

that survival time and censoring time were independent, random

variables. A model describing the probability that the last ‘live’

transmission, from a pup born on day b and tagged on day d,

occurs on day x (where x.d.b) was defined as:

p(xjb,d)~(p(pup dies at time ~x{bjpup alive at time~d{b) �

p(tag fails at timewx{d))z( p(tag fails at time~x{d)�

p(pup dies at timewx{bjpup alive at time~d{b))

ð1Þ

Habour Seal Pup Mortality
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Giving:

p(xjb,d)~

p(pup dies at time ~x{b) � p(tag fails at timewx{b)

zp(tag fails at time~x{d) � p(pup dies at timewx{d)

p(pup dies at timewd{b)

ð2Þ

Each term in this equation can be evaluated for any set of x, b, d

and parameters for the distributions of animal and tag lifetimes.

The lifetime of tags was assumed to be normally distributed with a

high mean. Neither the mean nor the variance of tag survival was

known a priori. We used three different distributions to model the

lifetime of seals (Figure 1).

1. The simplest model used assumed that pups had a constant

risk of mortality, giving rise to an exponential distribution of seal

lifetimes;

2. A gamma distribution of life expectancies, which equates to

an increasing risk of mortality with age;

3. A lognormal distribution, which provides a risk of mortality

that increases to a peak, then declines.

The gamma and lognormal distributions are especially plausible

in the present case; it is conceivable that harbour seal pup

mortality involves trade-offs between the declining benefit of

maternal provisioning with age and the increasing energetic

demands of thermoregulation – giving rise to an increasing risk of

mortality with age, and the increasing robustness of the animals as

they grow larger and better able to forage independently – giving

rise to a decreasing risk of mortality with age.

Twelve models were fitted to the data by maximum likelihood,

with each possible pairing of the three distributions in each region.

When the two regions followed the same distribution, models were

fitted both with separate and shared distribution parameters. Two

sets of these twelve models were tested. One set assumed that all

animals were born on a common, but unknown, date to be

estimated from the data; and a second set assumed a separate birth

date estimated from the data for each region. Parameter

optimization was performed using the ‘optim’ function in R based

on the Nelder & Mead [28] method. The birth date parameter was

constrained within the models such that pups could not have been

born before June 1st or after June 23nd. Using the range of

neonatal weights and rates of mass gain reported in [6,19],

estimates of pup birth dates were back-calculated from their mass

at tagging and tag date. The earliest birth date obtained in this

manner was June 4th, so June 1st was chosen as a conservative

lower bound for both populations. The upper bound of June 23nd

was specified because this was the earliest tagging date. Because of

the small sample sizes and relatively high numbers of parameters

in the models, we used corrected Akaike information criterion

(AICc) [29] for model comparison. The best approximating model

was identified as the one with the lowest AICc (AICcmin), and

Akaike weights (wi) were used as estimates of the probability that

Table 1. Phoca vitulina.

Region Tag date Last live
Mass
(kg)

Length
(cm)

Girth
(cm) Umbilicus

Orkney 03-Jul-07 21-Nov-07 22.6 92 67 0

Orkney 03-Jul-07 05-Nov-07 17.4 83 68 0

Orkney 03-Jul-07 26-Sep-07 11.2 82 50 1

Orkney 06-Jul-07 01-Jan-08 21 93 72 0

Orkney 04-Jul-07 10-Mar-08 20.7 93 67 NA

Orkney 04-Jul-07 06-Aug-07 18 88 68 0

Orkney 04-Jul-07 30-Nov-07 18.2 76 64 0

Orkney 04-Jul-07 01-Dec-07 25.4 89 77 NA

Orkney 04-Jul-07 20-Oct-07 15.6 82 58 0

Orkney 03-Jul-07 11-Apr-08 21 90 73 0

Orkney 02-Jul-07 02-Oct-07 18.6 86 66 0

Orkney 03-Jul-07 27-Aug-07 16.4 80 64 0

Orkney 05-Jul-07 11-Nov-07 19.4 88 68 0

Orkney 06-Jul-07 24-Jul-07 14.2 89 54 0

Orkney 05-Jul-07 21-Dec-07 18.2 87 65 0

Orkney 06-Jul-07 27-Aug-07 21.4 96 66 0

Orkney 04-Jul-07 NA 17.7 85 68 0

Orkney 04-Jul-07 11-Apr-08 20 88 68 0

Orkney 06-Jul-07 22-Jul-07 16.2 85 62 0

Orkney 03-Jul-07 08-Oct-07 12.4 83 57 1

Orkney 06-Jul-07 14-Sep-07 15.8 89 62 0

Orkney 03-Jul-07 16-Sep-07 19.2 85 66 0

Orkney 04-Jul-07 13-Apr-08 23 85 66 0

Orkney 04-Jul-07 29-Feb-08 15 79 60 0

Orkney 04-Jul-07 02-Mar-08 23.6 92 69 0

Lismore 24-Jun-07 28-Jul-07 9.6 70.2 46 1

Lismore 24-Jun-07 04-Jan-08 11.4 84 53 1

Lismore 24-Jun-07 06-Feb-08 13.4 83 51 0

Lismore 25-Jun-07 11-Feb-08 13.2 84 54 1

Lismore 23-Jun-07 16-Jan-08 10.2 80 51 1

Lismore 26-Jun-07 13-Apr-08 11.7 77 53 0

Lismore 23-Jun-07 22-Jan-08 11.2 84 51 0

Lismore 24-Jun-07 19-Nov-07 13.2 79 62 0

Lismore 25-Jun-07 03-Aug-07 12.2 80 54 0

Lismore 24-Jun-07 08-Mar-08 12.4 82 55 0

Lismore 25-Jun-07 25-Nov-07 9.7 82 47 1

Lismore 23-Jun-07 12-Mar-08 10.2 76 50 1

Lismore 24-Jun-07 05-Aug-07 10.2 79 49 0

Lismore 25-Jun-07 01-Oct-07 10.7 75 45 1

Lismore 25-Jun-07 13-Oct-07 10.2 80 50 1

Lismore 25-Jun-07 16-Dec-07 11.2 80 54 1

Lismore 25-Jun-07 25-Feb-08 13.2 84 55.5 1

Lismore 26-Jun-07 08-Jan-08 10.4 75 50 1

Lismore 26-Jun-07 28-Oct-07 11.2 86 51 1

Lismore 26-Jun-07 03-Dec-07 11.6 81 56 0

Lismore 26-Jun-07 15-Nov-07 13.2 77 54 0

Lismore 26-Jun-07 29-Dec-07 13.6 84 49 1

Lismore 26-Jun-07 26-Aug-07 10.7 75 52 0

Lismore 27-Jun-07 NA 12.2 82 57 1

Table 1. Cont.

Region Tag date Last live
Mass
(kg)

Length
(cm)

Girth
(cm) Umbilicus

Lismore 26-Jun-07 15-Dec-07 11 81 52 1

Details of harbour seal pups tagged on the north (Orkney) and west (Lismore)
coasts of Scotland.
doi:10.1371/journal.pone.0080727.t001

Habour Seal Pup Mortality
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each model was correct. These are based on the difference

between model i’s AICc score, AICci, and that for the best model

(Eqn 3,4) [30].

Di~AICci{AICcmin ð3Þ

wi~
exp ({

1

2
Di)

PR

j~1

exp ({
1

2
Dj)

ð4Þ

The best model was refitted to 500 bootstrap re-samples drawn

from the data to calculate 95% confidence intervals of parameter

estimates. In addition, to explore the potential range in survival

probabilities between the two populations, we fitted each of the

models where the two populations had separate distributions (18

out of 24 models) to 500 bootstrap re-samples drawn from the

data. These parameter estimates were then used to calculate

survival trajectories for each population and the ratio of the

probability of survival to 6 months in Orkney to Lismore. 95%

confidence intervals on this ratio, weighted by model AICc

weights, were then used to provide a range of the potential

difference in survival probability between the populations.

Results

Transmissions were received from 48 out of 50 tags (24 from

each location). All tags were operational before deployment, pups

were observed swimming with their mothers after tagging, and the

48 tags produced locations soon after tagging. Therefore, the most

likely reason for the two failures was considered to be attachment

failure and these two individuals were excluded from data analysis.

Tag durations ranged from 16 to 284 days (mean = 138.5;

bootstrap 95% confidence interval on mean 104.8 – 173.2) in

Orkney and 34 to 292 days (mean = 165.4; bootstrap 95%

confidence interval on mean 136.1 – 194.9) in Lismore

(Figure 2). The distribution of tag durations was similar between

the two populations (Kolmogorov-Smirnov test; p = 0.26) and

there were no significant differences in the mean number of

transmission days (Mann-Whitney U-test; p = 0.19), however this

test had limited power. Significant differences in mean tag

duration were only obtained when 56 days were added to the

Lismore tag durations.

The model with the lowest AICc value and highest Akaike

weight assumed both populations followed a common gamma

distribution and shared a single birth date estimated from the data

(gamma; Single; w = 38%; Table 2). The empirical support for this

model was 5.5 times stronger than the best model which estimated

separate distribution parameters for each population (lognormal-

gamma; Single) but only 1.6 times stronger than the model which

assumed both populations followed a common lognormal distri-

bution. Most model weights (68%) were on models with shared

distribution parameters for pup survival and 57% also had a

common birth date parameter, suggesting that both pup birth date

and the probability of pup survival were similar in the Orkney and

Lismore populations. The model which best approximated the

data returned a gamma distribution for pup mortality with rate

0.015 (95% CI 0.005 – 0.022) and shape 2.57 (95% CI 1.42 –

3.72) parameters, and tag survival parameters m= 270 (95% CI

Figure 2. Habour seal pup tag durations. Pups were tagged on the
west coast of Scotland at Lismore (red) in late June and in the Orkney
Islands (blue) in early July. The date of last transmission from a live
animal was determined by examining the pattern of movement from
location data.
doi:10.1371/journal.pone.0080727.g002

Figure 1. Harbour seal pup mortality and hazard rates. (A) The
probability density function of mortality events (f(t)) and (B) the hazard
rate (h(t)) plotted against age for exponential (dotted lines), gamma
(solid lines) and lognormal (broken lines) distributions. Each curve
shown uses the parameters that best fit the tagging data and
demonstrates the different characteristic shapes of the functions. The
exponential distribution gives a constant hazard rate; the gamma
distribution shows an increasing hazard rate over time, and the
lognormal hazard rate increases to a peak then declines.
doi:10.1371/journal.pone.0080727.g001

Habour Seal Pup Mortality
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197 – 287) days and s= 21 (95% CI 1 – 67) days (Table 3). The

estimate of the birth date (assumed to be constant for all

individuals) was 20 June, 2007 (95% CI 14 June – 23 June). Pup

and tag survival curves are plotted in Figure 3. Pup survival

probability from this model was high (approximately 0.90), for the

first ,50 days, then declined at a roughly constant rate. Pup

survival to six months was 0.390 (95% CI 0.297 – 0.648) from this

model. Tag survival was high and constant until around day 250

when tag failure probability increased rapidly (Figure 3).

Models (n = 18) where two separate distributions were included

for Orkney and Lismore represented 32% of total model AIC

weights. To explore the potential uncertainty in survival proba-

bilities between the two populations, we calculated the model

averaged ratio of probability of survival to 6 months (S(t = 180

days)), weighted by the AICc weights [30], from 500 bootstrapped

estimates of distribution parameters. A ratio of 1 indicates that

there is no difference in S(t = 180 days) between Orkney and

Lismore; ratios ranged from 0.63 – 1.55 (95% CI).

In models where the two populations shared distribution

parameters – such as the model of best fit – the above method

assumes that observations are independent from one another;

however, this assumption may be unrealistic and in such cases,

there is a risk of model overfitting. To explore this possibility, we

simulated 100 random survival probability trajectories for 24 pups

generated using the distribution parameters for pup mortality and

tag failure from the best-fitting model (gamma; Common). The

observed pattern of mortality for both Orkney and Lismore pups

fell within the spread of the simulated trajectories, suggesting that

the fitted model had adequate predictive performance (Figure 4).

Figure 3. Survival of harbour seal pups and tags. Open squares
are the dates of last ‘live’ transmission from tags attached to harbour
seal pups at Lismore and solid circles are those deployed at Orkney.
Solid lines are the estimates of pup (blue; assumed to have been born
on the 20th June) and tag (green; assumed to have been attached on
23rd June) survival from the best of the fitted models, which had a
common gamma distribution for survival for both Orkney and Lismore
and a common birth date. Shaded regions show 95% confidence limits
generated from 500 bootstrap re-samples of the data.
doi:10.1371/journal.pone.0080727.g003

Table 2. Corrected Akaike Information Criterion and weights for the candidate models.

AICc DAICca wb

Orkney Lismore Singlec Separatec Single Separate Single Separate Total

gamma 556.99 560.05 0.00 3.06 0.31 0.07 0.38

lognormal 557.94 561.19 0.95 4.20 0.19 0.04 0.23

lognormal gamma 560.39 563.07 3.40 6.08 0.06 0.01 0.07

exponential 560.63 563.12 3.63 6.13 0.05 0.01 0.07

exponential gamma 560.71 563.45 3.72 6.46 0.05 0.01 0.06

gamma gamma 561.12 563.93 4.13 6.94 0.04 0.01 0.05

exponential exponential 561.27 563.89 4.28 6.90 0.04 0.01 0.05

lognormal exponential 562.34 564.70 5.35 7.71 0.02 0.01 0.03

exponential lognormal 562.62 565.35 5.63 8.36 0.02 0.00 0.02

gamma lognormal 563.23 565.57 6.24 8.58 0.01 0.00 0.02

lognormal lognormal 563.24 564.94 6.25 7.95 0.01 0.01 0.02

gamma exponential 566.89 565.95 9.90 8.96 0.00 0.00 0.01

athe difference between AICci and AICcmin. See Eqn (3) in text.
bAkaike weights. See Eqn (4) in text for calculation.
cSingle = single birth date parameter estimated for both populations; Separate = separate birth date parameter estimated for each population
doi:10.1371/journal.pone.0080727.t002

Table 3. Parameter estimates for the best model.

Process Parameter Mean estimate 95% CI

Birth date 20 June 14 June – 23 June

Pup survival rate 0.015 0.005 – 0.022

shape 2.570 1.42 – 3.72

Tag survival mean 270 197 – 287

SD 21 1 – 67

The confidence intervals are generated from 500 bootstrap re-samples of the
data.
doi:10.1371/journal.pone.0080727.t003

Habour Seal Pup Mortality
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Discussion

The aim of the present analysis was to determine whether the

rapid decline in the number of harbour seals in Orkney could be

due to an increase in pup mortality. This is the first study of its

kind to use satellite transmitters deployed on a pre-weaned

pinniped to estimate pup survival. We present two clear pieces of

evidence that additional mortality among young pups is not the

primary factor driving the population decline in Orkney: we show

that the mortality schedule in Orkney was broadly similar to that

in another population where growth was stable, and that at least

29% of harbour seal pups could be expected to survive their first

six months.

Pup survival and population decline
The validity of our results relied in large part on the validity of

the assumptions underlying the statistical approach. Specifically,

we assumed that:

1. Individuals sampled were representative of the population;

2. In models with shared distribution parameters (6 out of 24

models), ‘system failure’ events were independent from one

another;

3. The process of tagging did not affect individual survival.

Harbour seal pups caught for tag deployment were targeted on

the basis of sex. Sex-specific differences in pup mortality rate have

been reported for other phocid species [24,31] and it is possible

that there are differences in male pup survival between Orkney

and Lismore. The present study focused on female harbour seal

pups because we were most interested in those parameters likely to

have the greatest influence on the rate of population decrease. By

focusing our sampling on this subset of the population, we increase

the robustness of our inferences about female harbour seal pup

mortality. As is often the case for free-ranging wild animals,

assumption (2) potentially was not met; here because of regional

clustering in the data. Pups from a particular colony could be

exposed to similar mortality agents [32]. As presented in the

results, there is a danger of model overfitting in such cases;

however, repeated simulations of new data using the parameters

from the best fitting model produce repeatable and typical patterns

of mortality, suggesting model overfitting was not a concern.

There was no way to assess directly whether or not assumption (3)

was met. However, all tags transmitted for at least 34 days from

the date of tagging in Lismore and 16 days from the date of

tagging in Orkney. Assuming that pups were born around the 20th

of June, the youngest pup stopped transmitting at 32 days old

which was likely to be some time after weaning (approximately 24–

28 days after birth [6,19]). Small pups would not survive for more

than a few days without suckling so this was compelling evidence

that the tagging did not unduly affect the mother pup bond in any

instance.

Both the lognormal and gamma distributions for pup mortality

were preferred to a simple exponential, with the gamma returning

the best fitting model. This is consistent with pups experiencing

lower mortality during the early post weaning period, when they

may have some energetic buffer from recent maternal investment.

Mortality rate then increases through the year as pups forage

independently, encounter their first winter and must cope with the

increased energetic demands of thermoregulation [23]. Early

winter may also be a time of increased competition with newly

weaned grey seal pups.

Post-weaning pup mortality and survival to year one can be

extremely variable in phocid seals as they adapt to their

environment and develop the physiological and behavioural

requirements for diving and foraging. In an increasing population

of northern elephant seals, the probability of surviving to year one

was 0.36868.5 (n = 8,362) [33] and 0.45960.091 (n = 3,606) in a

declining population of female southern elephant seals on

Macquarie Island [31] Hall et al. [24] found large differences

between survival probabilities for male and female grey seal pups

off the east coast of Scotland. Annual survival rate for females was

0.61760.155 (n = 108), but dropped to 0.19360.084 (n = 96) for

males. For harbour seals on the Swedish west coast, Harding et al.

[23] found that pup survival was highly dependent on their

autumn mass, with individual survival probabilities ranging from

0.4 for small pups to over 0.9 for large pups. The best model in our

analysis estimated female pup survival probability to be 0.390

(95% CI 0.297 – 0.648) to six months, and did not distinguish a

separate rate for each population, despite the fact that the

population at Lismore has been stable over the past decade while

the Orkney population continues to decline. This value is low, but

falls within the range reported in the literature for both increasing

and decreasing populations of phocid seals. Importantly, our

model is a composite of survival and censoring processes; it is

possible that early failure of telemetry devices was attributed to

early pup death, lowering the estimated pup survival probabilities.

Additionally, the ratio test indicated that survival probabilities

potentially could be different between the two populations (95%

CI on the ratio of Orkney:Lismore survival to six months was 0.65

– 1.55). If the true ratio was near the lower end of this interval,

increased pup mortality in the Orkney population could be a

contributory factor in its decline.

The most recent estimate of the population decline at Orkney is

13% per annum (95% CI 10.8 – 14.8) [11]. Our results suggest

that approximately 40% of pups survived to 6 months and the

model predicted lower survival for pups over the winter to day

300. This pattern is consistent across both populations but our

data provided limited scope for assessing pup survival to year one.

Predicted survival to 300 days was 0.12 (95% CI 0.064 – 0.42).

Even if there was a complete failure in juvenile recruitment at

Orkney, an 11% per annum decline could only be produced if adult

Figure 4. Survival trajectories of simulated tagged pups. Each
line connects the last ‘live’ transmission day for a set of 24 simulated
tagged harbour seal pups (100 simulations). Pup mortalities were drawn
from a gamma distribution. Animals were considered to be tagged at
birth and tag failure to be normally distributed. All parameter values
were taken from Table 2. The Orkney (solid circles) and Lismore (open
squares) data also are shown.
doi:10.1371/journal.pone.0080727.g004
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survival was below 89%. If all females reproduce annually from

age 4 onwards [34], half of pups are female and 42% of these

survive their first year, then a simple deterministic model that

results in exponential growth or decline requires annual survival,

beyond the first year, to be 0.82 to give an 11% per annum rate of

decline. Presently, there are no age-structured models of harbour

seal population dynamics in the UK. Nor are there estimates of

adult survival rates for either the Orkney or Lismore populations.

Mackey et al. [35] estimated a 0.97 (95% CI 0.92 – 0.99) survival

probability for adult harbour seals in the Cromarty Firth, in north-

east Scotland, from photo identification mark-recapture of live

animals. The authors note that their estimate is high compared to

others reported in the literature [34], but corresponds well to a

similar study in a nearby population which found female survival

to be 0.95 (95% CI 0.91 – 0.97; Line Cordes pers comm.). Further

study is required on the Orkney population to ascertain whether

adult survival could be low enough to account for the reduction in

harbour seal numbers. Aside from an increase in adult mortality, a

substantial reduction in female reproductive rates could be driving

the decline. At present, there is no information available on

fecundity for either population, though the availability of pups for

tagging in this study does indicate that there cannot have been

total reproductive failure at Orkney.

Birth date
The values estimated for the birth dates (Table 3) need to be

treated with caution as they act as an offset to the start of

mortality. However, the estimate of the birth date assumed to be

constant for all individuals (20th June, 2007) is plausible. Reported

neonate birth weights at other harbour seal colonies in the North

Atlantic range from ,8 to11kg [6,34]. Lismore pups had a mean

weight at capture of 11.5kg. This and the fact that many of these

pups still had visible remnants of the umbilicus suggests these pups

were only a few days old when tagged between the 23rd and 26th of

June, 2007. Orkney pups were around 60% heavier (18.5kg) at

their capture 10–12 days later. This represents an approximate

growth rate of 0.58 to 0.7 kg*d21 similar to estimates from Sable

Island and the Gulf of St Lawrence [6,19], suggesting that the

Orkney pups were indeed older and likely to have been born at a

similar time to the Lismore pups. The rejection of separate birth

dates for the two regions may be more meaningful than the

absolute date estimated from the model, especially considering

that the Akaike weights of models having a common birth date

totaled 0.8. Because we had no information on the age of

individuals at tagging, nor on typical neonatal survival rates for

these populations, it is perhaps unsurprising that the models

converged on a common birth date. Little information was present

with which to determine differences in birth dates between the two

populations or indeed between individuals.

Survival from telemetry data
Obtaining estimates of pup survival from satellite telemetry data

presented a challenge because of the uncertainty in differentiating

between animal mortality and tag failure. Marine mammal deaths

usually only are observed if the animal is washed ashore or if it is

killed intentionally – neither of which provide unbiased data on

natural mortality. Pup death was not observed directly in the

present study. Instead, we used the tagging date and the last date of

transmission from a moving tag to model the distribution of pup

mortality and tag failure. The epoxy attachment method used in

2007 was highly effective for adults and meant it was much more

likely that tag batteries or aerials would fail before accidental

detachment occurred. Importantly, the attachment procedures

were identical for both populations and the probability of tag failure

should be the same. The rapid decline in tag survival after ,8

months (Figure 3) is consistent with this assumption, but the wide

range in 95% confidence intervals for tag failure demonstrate the

uncertainty surrounding this parameter after ,5 months (150 days).

The problem of tag failure in telemetry studies, leading to ‘right-

censored data’, is not new. Some methods circumvent the problem

by empirical estimation of tag failure probabilities [36], while

others propose statistical methods to incorporate these data into

survival probability estimates [7]. However, many approaches

either omit right-censored individuals from the analysis, or make

strong assumptions about them which can limit the scope of

inference on age-specific survival [37]. Bayesian approaches to

modelling survival data such as BaSTA (Bayesian Survival

Trajectory Analysis) can account for both left-truncated and

right-censored individuals in a Bayesian hierarchical framework

[37,38], and maximum likelihood. While such models are

appealing for decomposing lifetime mortality schedules, the

present data spanned only a fraction of harbour seal life history

and represented survivorship for the first hazard only, plus tag

failure – or tag senescence. Importantly, our dataset did not

include any animals of known age-at-death and all individuals in

the study had to be considered right-censored and left-truncated.

Animal age at entry to the study was unknown and animal death

was never directly observed and could only be inferred from the

pattern of movement in tag transmissions. Because we expected

tag senescence to occur at some point during the study period, and

to censor pup survival after a reasonable amount of time, we

modelled separate parameters for tag failure, assuming a normal

distribution and high mean of tag durations. As far as the authors

are aware, there are no empirical data on the likely distribution of

tag failure probabilities. While tags can fail for a variety of reasons,

we reasoned that the most likely cause of tag failure in the present

study was battery exhaustion which was expected to occur around

February. A Gaussian distribution was therefore used to represent

tag failure. While traditional approaches to modelling survival

from capture-recapture/recovery data could have been applied in

the present study, they would require additional assumptions

about consistency in the sightability of the animals over a period

when their behaviour develops and changes substantially.

Conclusions and implications
We conclude that an increase in pup mortality is not the

primary driver of the decline seen in abundance of Orkney

harbour seals over the past decade, although it could be a

contributory factor. The present study is limited in scope to a

single year and to comparison with only one other stable

population. In reality, population demographic parameters can

change significantly between years, and between populations. The

low study power constrains the inferences that can be made about

pup survival probabilities but the long-term mark-recapture

studies necessary for detailed examination of population dynamics

[6,23] simply are not feasible. In their absence, we have shown

that an estimate of pup survival can be obtained from ‘short-term’

telemetry data at relatively low disturbance cost to the focal

populations. The important conclusion that pup survival in a

rapidly declining population is similar to that of a stable

population will help to focus hypotheses about the drivers of the

decline. The concurrent declines evident in some other British

populations [10] indicate that the problem is not confined to

Orkney and may implicate regional-scale impacts on UK harbour

seals. The OSPAR international convention (www.ospar.org)

includes among its measures of Ecological Quality a requirement

that North Sea harbour seal populations should not decline by

more than a total of 10% over a five-year period [4]. This
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requirement clearly has not been met for Orkney and manage-

ment action is necessary and requires further investigation of the

proximate, and ultimate, causes for population decline. We suggest

that such work would best concentrate at examining effects on the

survival of adult harbour seals.
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