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Abstract

Day-to-day variability in performance is a common experience. We investigated its neural correlate by studying
learning behavior of monkeys in a two-alternative forced choice task, the two-armed bandit task. We found
substantial session-to-session variability in the monkeys’ learning behavior. Recording the activity of single dorsal
putamen neurons we uncovered a dual function of this structure. It has been previously shown that a population of
neurons in the DLP exhibits firing activity sensitive to the reward value of chosen actions. Here, we identify putative
medium spiny neurons in the dorsal putamen that are cue-selective and whose activity builds up with learning.
Remarkably we show that session-to-session changes in the size of this population and in the intensity with which
this population encodes cue-selectivity is correlated with session-to-session changes in the ability to learn the task.
Moreover, at the population level, dorsal putamen activity in the very beginning of the session is correlated with the
performance at the end of the session, thus predicting whether the monkey will have a "good" or "bad" learning day.
These results provide important insights on the neural basis of inter-temporal performance variability.
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Introduction

According to the widely-held “hot hand” belief, athletes have
periods in which their performance is significantly better than
could be expected on the basis of their past record and periods
in which their performance is significantly worse (persistence in
failure). Similarly, it is widely believed that our every-day
performance fluctuates between days, a phenomenon often
referred to as “good days” and “bad days” in popular
terminology. Whether or not “good days” and “bad days” exist
in professional sports is a hotly debated subject [1-3]. It is also
well known that abnormal fluctuations in performance in
cognitive tasks is an early symptom of cognitive impairment in
neurodegenerative disorders [4,5] and is also linked to
psychiatric conditions such as impulsivity and pathological
gambling [6,7]. In this study we used a two alternative forced
choice task, the two armed-bandit task [8-12], to characterize
fluctuations in two monkeys’ ability to learn the mapping

between cues and probabilistic reward outcomes. To identify
neural correlates of these fluctuations, we recorded from
multiple neurons the sensorimotor and motor planning areas of
the striatum (in dorsal putamen) of monkeys while they
performed the task. The posterior dorsal putamen (dorsolateral
striatum in rodents) is essential for efficiently solving repetitive
goal-directed tasks [13]. In particular, it has been shown to be
critical to the formation of habits after extensive exposures to
cues in rodents [15,16], non-human primates [14] and humans
[17]. Model-free reinforcement learning, the dominant
computational theory of instrumental learning, asserts that
habits are controlled by rigid cached mappings between cues
and responses that are shaped by the history of rewards
(action values) associated with each response [18]. This theory
is supported by a bulk of studies that have identified neural
correlates of action values in various regions of the striatum
during learning [19-21]. However it is not clear if putamen
contributes to habits via action values only. Here we examine
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the spiking activity of neurons classified as striatal projection
neurons and show that learning is associated with changes in
the response pattern of this population of neurons: (1) inline
with previous studies, we identify a subpopulation of striatal
projection neurons that directly encodes preference for cues ;
(2) the size of this subpopulation and the preference encoding
magnitude are correlated with the ability of the monkey to learn
the task ; 3) remarkably, putamen’s population activity in the
first three trials of the block predicts monkeys’ ability to learn
the task.

Materials and Methods

Animal and surgery
Data were obtained from two female macaque monkeys

(Macaca mulata) weighing 2.5 and 4 kg. All experiments were
performed during daylight hours. Although food was available
ad libitum, the monkeys were kept under water restriction to
increase their motivation during the learning task and recording
sessions. A veterinarian skilled in the healthcare and
maintenance of non-human primates supervised all aspects of
animal care. Surgical and experimental procedures were
performed in accordance with the Council Directive of 24
November 1986 (86/609/EEC) of the European Community
and the National Institute of Health Guide for the Care and Use
of Laboratory Animals.

Behavioral Task
The task was monitored using Labview (National

Instruments, Austin, TX). Monkeys were trained to move a
custom made manipulandum in a horizontal plane (26 X 26 cm)
with their right hand. This manipulandum moved a cursor on a
computer screen placed 50 cm in front of the animal’s face.
The monkeys initiated a trial by keeping the cursor inside a
central green circle for a random period (1-1.5s, Figure 1). Two
different targets (cues) were simultaneously displayed on the
screen in two of the four possible directions relative to the
center (0, 90, 180, and 270°) and the monkeys were free to
select any direction of movement. The cues appeared
randomly in any of four directions. The cues were chosen
randomly for each session from a databank of 100 pictures and
remained unchanged throughout the entire session. To induce
a situation in which there was always a “better” choice, a single
trial could not include two identical cues or two cues in the
same location. Each cue was associated with a reward
probability (provided that it was a motor successful trial) that
remained constant throughout the session. We used 3 different
pairs of reward probabilities for the two targets: (0.9 vs.0.6),
(0.75 vs. 0.25) and (0.67 vs. 0.33). The target type and the
reward schedule varied from session to session. After a
random period (1–1.5 s), the disappearance of the black
central circle indicated a “Go” signal, and the monkey initiated
a movement toward one of the two targets. The cursor had to
be maintained on the target for a random period in the range of
0.5–1 s, before being moved back to the central circle. To
complete the trial, the monkey had to maintain the cursor inside
the central circle for a minimum random duration (0.8–1.2 s).
Disappearance of the central circle indicated to the animal that

it had succeeded. If the animal completed the trial in due time
and accurately enough, the reward was delivered (0.3 ml of
fruit juice) according to the probability associated with the
selected target. The trials were separated by 2–2.5 s inter-trial
intervals (ITIs), during which the screen was black. In the case
of an error, the trial was aborted, followed by an ITI. Once their
motor success rate (i.e. the ratio of trial in which the animals
completed the task without error) stabilized at 0.95 for a series
of 200 trials, a recording chamber was implanted on the skull of
each animal. The surgical procedure for attaching the recording
chamber has been extensively described in a previous
publication [22].

Recording and data acquisition
A total of 61 behavioral sessions were recorded and

analyzed in the behavioral part of our study. Within these
sessions, 23 sessions (12 and 11 in monkey 1 and 2,
respectively) were undertaken with multi-unit
electrophysiological recordings. We recorded single unit activity
of 192 left dorsal putamen neurons (78 and 114 in monkey 1
and 2, respectively). The procedures for multi-unit
electrophysiological recordings, neural population sorting, and
data acquisition have been described in a previous publication
[20]. During the lowering of the electrode, the first neurons
observed had a low tonic firing rate typical of cells in the
putamen (0.5–5 spikes/s). We recorded extracellular spike
activity of presumed projection neurons (medium spiny neurons
(MSNs)), which showed very little spontaneous activity [23],
although no such activity was detected with putative
interneurons (tonically active (TANs) and fast spiking
interneurons (FSIs)), which showed irregular tonic discharge
[24]. We used 4 glass-coated Tungsten microelectrodes
(0.5MOhm at 1kHz) lowered with a computer driven positioning
system (Electrode Positioning System; Alpha Omega
Engineering, Nazareth, Israel) until the typical signal of striatal
neurons was detected. Signal was amplified with a gain of 103

and filtered with a bandpass of 300 Hz to 6 kHz (Multi-Channel
Processor; Alpha Omega Engineering). The electrical activity
was sorted and classified on-line when the spike-to-noise ratio
was approximately>3. Single unit sorting and classification
were performed using a template-matching algorithm (Multi-
Spike Detector; Alpha Omega Engineering). Data were stored
by means of an analog-to-digital converter at 12 kHz
(AlphaMap; Alpha Omega Engineering). After spike sorting, we
averaged spike waveforms for each neuron by using the spikes
collected during three minutes of each recordings and labelled
neurons as putative MSNs, putative TANs or putative FSIs
according to three features of the shape of the average
waveforms: the length of the initial deflection, the length of the
valley, and the sum of these two parameters [25]. Neurons
were sorted as FSIs if their spikes displayed short total
waveforms with negative initial deflections and neurons were
sorted as TANs when their average spike presented long
waveforms with positive initial deflection. The neurons that
presented intermediate waveforms with negative initial
deflections were sorted as MSNs. We also examined the firing
rate and the coefficient of variation (CV=std/mean) of the
interspike intervals collected for each neuron as two additional
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criteria for the classification. MSNs displayed low firing rates
and variable coefficient of variations of the ISI ranging from 1 to
14 while TANs and FSIs typically displayed high firing rates
and consistent coefficient of variations of the ISI. This study
focuses only on MSNs for which the size of the data set was
sufficiently large.

Behavioral data analyses
The analyses were performed with custom-made Matlab

(MathWorks, Natick, MA) programs and NeuroExplorer (Nex
Technologies, Littleton, MA). The results are expressed in the
form of mean ± SEM. For behavioral data analyses, only
successful motor trials were kept. All other trials were
considered as error trials and were discarded from the
databank used for successive analyses. Learning curves were
constructed by averaging choices over sessions: for each
session, we constructed a binary vector representing the
successive choices of targets such that 1 corresponds to trials

in which the target associated with the higher-probability of
reward was chosen and 0 otherwise. Learning curves were
smoothed with a Savitzky-Golay filter [26] with a window length
of 11 trials. This filter was used because it removes high
frequency noise from the data while preserving the main peaks.

Session type was determined by the value of the preference
in the session, where the preference in a session is defined as
the fraction of the last 50 trials in which the most rewarding cue
was chosen. Sessions for which the preference was equal to or
larger than 0.7 were defined as melioration sessions; sessions
in which the preference was equal to or less than 0.3 were
defined as minimizing sessions; All other sessions were
defined as no-learning sessions. These thresholds were set
because the probability of a no-learning session, assuming that
choices are fair Bernoulli trials, is 99%.

In order to study direction selectivity, we constructed a
Direction Selectivity Index (DSI):

Figure 1.  The task.  In each trial, two cues were displayed simultaneously in two out of four randomly chosen possible positions on
the screen. The monkey signaled its choice by moving the cursor to one of the cues and was rewarded by 300 μl of fruit juice with a
predefined fixed probability that depended on the choice. We used 3 different pairs of reward probabilities for the two cues: (0.9 vs.
0.6), (0.75 vs. 0.25) and (0.67 vs. 0.33). Top right shows example combinations of displayed cues during different sessions.
doi: 10.1371/journal.pone.0080683.g001
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DSI=
max QD −min QD

max QD
(1)

where QD corresponds to the number of times that a
particular direction D (0, 90, 180 or 270°) was chosen in the
last 50 trials of the session. The higher the value of DSI, the
stronger is the direction preference. The significance threshold,
0.68 was set such that the probability that a random selection
of directions will result in direction preference is 5%.

Neural data analyses
The analyses were performed with custom-made Matlab

(MathWorks, Natick, MA) programs and NeuroExplorer (Nex
Technologies, Littleton, MA). Trials were sorted according to
chosen cue and neural activity was analyzed during the period
surrounding the onset of the cues. We defined the window of 1
second that precedes cues onset the “early decision period”
and the window of 1 second that follows cues onset the “late
decision period”. We reasoned that cues must be evaluated
during the two periods adjacent to cues onset and defined the
sum of these periods as the “decision period”. We further
assumed that neurons implicated in the decision process must
be active during the “late decision period” because it
immediately precedes choices and thus restricted our analyses
to the 113 neurons that displayed discarge rates higher than
0.5 spike/second after cues onset [19][1]. As a result we
analysed 51 neurons from 11 melioration sessions, 24 neurons
from 5 no-learning sessions showing no direction preference,
21 neurons from 4 no-learning sessions showing direction
preference (called direction preference sessions). We
discarded sessions that show minimization because samples
were low (1 neurons from 1 minimization session showing no
direction preference and 16 neurons from 2 minimization
sessions showing direction preference). Average neural
responses to task events were obtained using a Savitzky-Golay
filter with a window length of 60 ms since this filter maintained
average peak profile. The average neural activity registered
during the “decision period” was compared between the
chosen cue conditions for every neuron with a Wilcoxon signed
rank test. Significance threshold was set at 5%.

Neurons were then classified according to the dynamic
properties of their response to the cues, conditioned on the
choice of the animal. If no significant difference between the
responses to the two cues was observed in the first 15 trials in
which each cue was chosen but was observed in the last 15
trials the neuron was classified as Learning Cue Preferences
(or L-neuron), reflecting the fact that preferences for the
chosen cue emerged over time. If the firing rate in the first 15
trials was significantly different between cues but this
significant difference disappeared in the last 15 trials, then the
neuron was classified as Forgetting Cue Preferences (or F-
neuron). If the firing rate in the first 15 trials was significantly
different between cues, and this significant difference persisted
throughout the entire duration of the recording (i.e., significant
difference in the last 15 trials), the neuron was classified as
responding to Initial Preference (hence referred to as IP-
neuron). All other neurons, in which response was higher than

0.5 spikes/second during the “late decision period”, were
considered as non-specific responding neurons (R-neurons).

To investigate the information encoded by the Learner
neurons we performed a linear regression between the
difference of firing activity between cues recorded for each L-
neuron and their corresponding session preference. The
difference of firing activity was calculated from the 15 last trials
in which each cue was chosen.

To investigate the role played by dorsal putamen population
activity we performed a linear regression between the firing
activities recorded for all active MSNs (n=88) averaged over
the 3 first trials and their corresponding session preference.
The 3 first trials are the earlier period that significantly
predicted preferences (Pearson correlation, R=0.21, p<0.05).
Regressions between firing activities in the first (or two firsts)
trial(s) and session preferences were not significant (Pearson
correlation, R=0.18, p=0.08 and R=0.17, p=0.10 respectively).
Firing activity was then averaged over successive bins of 10
dorsal putamen neurons arranged in ascending order of firing
activity (the last bin was only 8 neurons). The collected values
were plotted with the average preferences created during the
sessions in which the group of 10 neurons included in a bin
was recorded.

To ensure that comparisons of discharge activities between
behavioral profiles were not confounded by direction
preference, sessions in which monkeys showed both
melioration, minimization or no-learning with direction
preference were removed from the analyses.

Theoretical reconstruction of recording sites aligned
with putamen’s somatotopic maps

We reconstructed the recording sites on histological maps of
the striatum ranging from -2 mm to +2 mm from the anterior
commissure (AC). Recordings were pooled together for both
monkeys on a template atlas of the macaque brain [27]. The
somatotopic maps of the striatum described by Takada et al.
[28], were drawn, overlaid then scaled to our maps of the
striatum after alignment to the anterior commissure and scaled.
We then drew the functional territories on the maps.

Results

Two rhesus monkeys were trained to make repeated choices
in a custom version of the two-armed bandit task [8-10,29], in
which the locations of two cues were randomly assigned
among four directions (Figure 1, for detail, see method
section). Each cue was associated with a reward probability
that remained constant throughout the session but varied
between sessions. We used 3 different schedules of reward
probabilities for the two cues: (0.9 vs. 0.6, 0.75 vs. 0.25 and
0.67 vs. 0.33).

Monkeys’ learning curve
Learning behavior is typically quantified by computing the

learning curve, the fraction of trials in which the most rewarding
cue was chosen as a function of time, averaged over several
sessions. The learning curve, averaged over all sessions and
both monkeys, depicted in Figure 2A (dashed grey line),

Population Response of DLP Predicts Learning

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e80683



demonstrates that within several tens of trials, subjects formed
a preference in favor of the most rewarding cue such that on
average, the monkeys chose the most rewarding cue in 68% of
the last 50 trials, which is significantly more than would be
expected by chance (Figure 2A, Mann-Whitney U test, p=10-6).

Substantial variability between sessions
The average learning curve presented in Figure 2A (grey

line) is similar to previously described learning curves [30-33].
However, it conceals the monkeys’ behavior in individual
sessions. A more careful analysis revealed substantial
variability between sessions. To quantify this variability, we

considered, for each session, the fraction of trials in which the
most rewarding cue was chosen in the last 50 trials of the
session. We denote this fraction as the monkey’s preference in
that session. The distribution of monkeys’ preferences,
depicted in Figure 2B, is wide, ranging from 10% to 100%. In
51% (31/61) of the sessions, the monkeys’ preference was
significantly larger than chance (red in Figure 2B),
demonstrating that the monkey shifted its preference in the
direction of the most rewarding cue. We denote these sessions
as melioration sessions. In 55% (17/31) of the melioration
sessions, melioration cue was chosen almost exclusively (in
more than 90% of the trials). In the remaining 45% (14/31) of
the melioration sessions, melioration cue was chosen between

Figure 2.  Learning behavior.  (A) Average learning curves in all sessions (n=61, gray), melioration sessions (n=31, red), no-
learning sessions (n=24, green) and minimizing sessions (n=6, blue). (B) Distribution of preferences, average choices in the last 50
trials of the session, for melioration, no-learning and minimizing sessions. (C) Distribution of direction selectivity indices (DSIs) for
the different sessions. Black vertical solid line marks direction preference threshold. (D) Pie-chart representing the ratio of sessions
showing direction preference (hatched) for each behavioral profile. Colors in B-D are as in A.
doi: 10.1371/journal.pone.0080683.g002
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70 and 90% of the trials. In 39% (24/61) of the sessions, the
monkeys showed no cue-related preferences (green). We
denote these sessions as no-learning sessions. Surprisingly, in
10% (6/61) of the sessions the monkey showed a marked
preference towards the less rewarding alternative (blue). We
denote these sessions as minimizing sessions. The three
patterns are also evident when plotting the learning curves
separately for the three groups of sessions (Figure 2A, red,
green and blue lines). Moreover, all three types of behavior
were observed in both animals (Figure S1A) and for all reward
schedules (Figure S1B), such that average preference was
statistically similar between reward schedules (F(2, 58) = 1.02,
p = 0.36, one-way ANOVA) and the proportions of each profile
was also similar across reward schedules (p = 0.32, 2-tail
Fisher’s exact test) demonstrating that this variability in
learning is not the outcome of differences between the two
monkeys or the differences in the reward schedule.

Directional preference
In the reward schedules used, the locations of the cues on

the screen were random and therefore the probability of reward
was independent of location. Yet surprisingly, we found that in
many sessions, monkeys developed a direction preference. To
quantify this preference, we constructed a direction selectivity
index (DSI) for each behavioral session (see Equation 1 in the
Methods and Materials). We found that in 58% (14/24) of the
no-learning sessions, in which there was no cue-related
learning, monkeys developed a preference towards one of the
directions (Figure 2C, light colors). A smaller percentage of
direction selectivity, 13% (5/37) was observed in the sessions
in which monkeys developed cue-related preferences
(melioration and minimization; Figure 2D). The difference in the
fraction of direction selective sessions between the learning
and no-learning sessions can be attributed to the
independence of the direction of a cue and its identity. If the
monkey chooses one of the cues exclusively then as a result of
independence of reward and location in the reward schedule,
no direction preference is possible. Thus, the stronger the cue
preference, the weaker is the maximally possible DSI.

Variability in dorsal putamen subpopulations correlates
with fluctuations in learning

The neural basis of learning behavior has been a subject of
intense research in the last decade. Of particular interest to us
is the involvement of the dorsal putamen, a major input nucleus
of the basal ganglia. It has been previously shown that after
learning, the firing rate of approximately 10% of striatum
neurons is sensitive to the action values of the chosen cues
[19,20,34-36], suggesting that the dorsal putamen plays an
important role in the learning and the execution of the task.

We recorded 192 neurons in the dorsal putamen (Figure 3)
of the two monkeys performing the task and focused our
analyses on the 113 neurons (58.9%) that were significantly
more active (firing rate >0.5 spikes/secondes) during the
decision period. We sorted active neurons according to three
cell types: the projection neurons (medium spiny neurons
(MSNs), n=88), and the interneurons (tonically active neurons
(TANs), n=12, and fast spiking interneurons (FSIs), n=13)

(Figure 3). The population of Putative MSNs produced spike
waveforms typically longer than FSIs but shorter than TANs
(Figure 3C), displayed low firing rates (Figure 3D, E) and
tended to fire more phasically (wide range of ISI, Figure 3F).
Because of the small size of the dataset collected for putative
TANs and FSIs, we restricted our analyses to putative MSNs.

Putative MSNs were then sorted according to their
differential responses to the choices performed by the animal
during an early and late decision period (windows of 1s before
and 1s after cues onset respectively) and how this differential
response evolves during the session (Figure 4A-D). Population
data are summarized in Figure 4E. Among putative MSNs, we
classified 1 neuron (1% of the active MSNs) as responding to
initial preference (IP neurons, Figure 4C&E). Another subset of
14 neurons (16% of the active MSNs) progressively fired
differently in trials in which the different cues were chosen,
suggesting that these neurons responded to preference for the
chosen cue and the change in their behavior during the session
reflects the learning of the values. We thus refer to these
neurons as learning Cue Preference (L-neurons, Figure
4A&E). Another 11 neurons (13% of the active MSNs) showed
the opposite pattern, discriminating between cues early in the
session but progressively loosing their selectivity, suggesting
that they forget Cue Preference (F-neurons, Figure 4B&E). The
remaining 62 neurons (70% of the active MSNs) could not be
discriminated according to the above-defined criterions (R-
neurons, Figure 4D&E).

If the dorsal putamen plays an important role in learning
preferences for the cues and in utilizing these preferences in
the process of decision-making then variability in the
distribution of the different classes of neurons may result in
variability in the ability to learn. For example learning may
require that a high number of active MSNs learn Cue
Preference. The prediction of this hypothesis is that a higher
fraction of L-neuron/active neuron will be observed in
melioration sessions than in other behavioral profiles. To test
this hypothesis, we compared the fraction of IP, L, F and R-
neurons between melioration (red in Figure 2B) and no-
learning sessions (green in Figure 2B) and found no difference
between melioration and no-learning in the fraction of IP
neurons (0/40 vs. 0/18, p=1, two-tailed Fisher exact test, Figure
5A), or F neurons (7/40 vs. 1/18, p=0.41, two-tailed Fisher
exact test, Figure 5A). By contrast, the fraction of L and R-
neurons differed significantly between the two groups. While L-
neurons composed 30% of the active MSNs during melioration
sessions (12/40), no L-neuron were found (0/18) during no-
learning sessions (p=0.01, two-tailed Fisher exact test, Figure
5A). The proportion of R-neurons changed in the opposite
direction. The fraction of R-neurons was lower (50%, 20/40)
during melioration than during no-learning sessions (94%,
17/18; p<0.01, two-tailed Fisher exact test). Similar results
were obtained when comparing melioration and direction
preference sessions. Only 6% of active MSNs (against 30%
during melioration, p=0.04, two-tailed Fisher exact test) were L-
neurons while 83% (against 50% during melioration, p=0.02,
two-tailed Fisher exact test) were R-neurons when monkeys
showed direction preference. Finally the fraction of R and L-
neurons should not change for comparisons that do not involve
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learning. Accordingly, comparing No-learning and direction
preference, we found no significant difference between IP-
neurons (0/18 vs. 0/18, p=1, two-tailed Fisher exact test), L-
neurons (0/18 vs. 1/18, p=0.99, two-tailed Fisher exact test), F-

neurons (1/18 vs. 2/18, p=0.99, two-tailed Fisher exact test) or
R-neurons (17/18 vs. 15/18, p=0.6, two-tailed Fisher exact test,
Figure 5A). Thus learning correlates with balance of L/R-

Figure 3.  Characterization of cell subtypes.  (A) Filtered signal obtained from extracellular recording of a dorsal putamen neuron
amplified with a gain of 103 (bandpass filter 300 Hz-6 KHz). (B) The parameters of mean waveforms for each neuron were plotted
against each other, revealing three clusters. After spike sorting, the width of each phase of each spike was calculated. Spikes were
then clustered using three parameters related to the length of the waveform: the length of the total negative deflections (Peak
length), the length of the valley, and the sum of these two parameters (Total length). (C) Distribution of the waveform’s total length
for the each type of neurons; color codes are as above. (D) Distribution of the firing rate of the neurons; color codes are as above.
E, Population firing rate for the three cell subtypes. The firing rate of the interneurons was significantly higher than that of the MSNs.
F, Distribution of the coefficient of variation (CV) of the interspike intervals of the three types of neuron. The interspike intervals of
the presumed MSNs tend to be more variable than that of the presumed interneuron types.
doi: 10.1371/journal.pone.0080683.g003
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neurons and changes in this balance is correlated with
maladaptive behaviors.

The intensity of encoding of cue-preference by L-
neurons predicts fluctuations in learning

Learning could also change with the intensity with which
neurons encode Cues Preference such that behavioral
preference increase as L-neurons fire more for one cue than
for the other. We tested this hypothesis by regressing the
differential firing activities of L-neurons between cues with
preference. The 15 first trials in which the most or least
rewarding cue was chosen were separated and firing activities
were substracted. Then differences in activities between cues
were regressed with corresponding preferences. We found that
the differential activities of L-neurons between cues were
strongly predictive of monkeys’ ability to learn (Spearman
correlation, p=0.005, R=0.69, Figure 5B) suggesting that
learning also correlates with the intensity with which L-neurons
encode cue-preference.

However, despite the fact that a subset of the neurons
encoded cue-preference (L-neurons), and that the intensity
with which L-neurons encode cue-preference strongly
predicted learning we found no statistical difference between
the population activity in trials in which the most rewarding cue
was chosen and trials in which the less rewarding alternative
was chosen (p=0.1, Wilcoxon signed rank test). This is

probably due to the fact that the contribution of L-neuron to the
average activity was averaged out because of the variability in
the responses of the various sub-populations.

Dorsal putamen neural population activity predicts
fluctuations in learning

Surprisingly, the population average activity was correlated
with the ability to learn: dorsal putamen neurons were twice
more active during sessions in which monkeys developed a
significant preference towards melioration alternative,
compared with the other two patterns of behavior (p<0.001,
Wilcoxon rank sum test; Figure 5C).

Moreover, the difference between melioration and non-
learning trials is already significant at the very beginning of the
block: population averaged firing activity during the first 3 trials
was significantly correlated with the primates performances
during the last 50 trials of the sessions (R=0.21, p<0.05, Figure
5D), demonstrating that the activity in the dorsal putamen in the
very early trials predicts the ability of the animal to learn to
prefer the most rewarding cue. This result suggests that dorsal
putamen may contribute to learning at three different levels.
While a specific dorsal putamen’s neuronal subpopulation
enables the representation of cue preferences and the intensity
with which it is encoded, dorsal putamen’s overall population is
directly related to the subject’s ability to create a preference for
the most rewarding cue and therefore increase reward rate.

Figure 4.  Neural activity at Single cell level.  Perievent rasters and perievent histograms for an example (A) L-Neuron, B) F-
Neuron, C) IP-Neuron and D) R-Neuron. The perievent rasters and perievent histograms are aligned either at the start of the trials
or at cue onset, separately for trials in which most rewarding (dark blue) and less rewarding (light blue) cue was chosen. (B)
Stacked bar charts of the distribution of the recorded neurons.
doi: 10.1371/journal.pone.0080683.g004
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Neural responses were not somatotopically organized
We then asked if L-neurons were located in specific regions

of the putamen. Figure 6 show that all recordings were situated
in the regions of the rostral and caudal sensorimotor areas of
the putamen (anterior and posterior to the anterior commissure
(AC) respectively [37]) in the zone of convergence of orofacial,
forelimb and hindlimb regions of MI and SMA in the central
zone of the dorsomedial-to-ventrolateral portion of the putamen
and in the central zone of the dorsomedial-to-ventrolateral

portion of the putamen which receives projections essentially
from CMAr in rostral part, but also from pre-SMA and SMA at
the location of the anterior commissure [28,37,38]. Those
projections are segregated [28,37,38]. We didn’t record from
limbic territories (ventral putamen), associative territories
(essentially caudate and very rostral putamen at about +3mm
from AC) or from areas receiving projections from dorsal
anterior cingulate cortex (dACC, limbic areas) nor dorsolateral
prefrontal cortex (dLPFC, associative areas [39]) that is more
rostral[40]. Finally, the neural subtypes identified (L, IP, F and

Figure 5.  Neural activity at single cell and populations level.  (A) Stacked bar chart of the distribution of the recorded neurons
sorted according to behavioral profiles except minimization for which the dataset was too small (n=11 neurons). (B) The preferences
calculated for the 9 sessions during which L-Neurons were recorded are plotted against the differential activity of the L-Neurons
(n=14 neurons) for the two cues. Differential activity was calculated from the last 15 choices of each cue (15 trials for the best cue
and 15 trials for the worst cue). (C) Population firing activity for each of the behavioral profiles except for minimization (mean±s.e.m;
Wilcoxon rank sum test): melioration sessions (red, 11 sessions, 40 neurons); no-learning sessions (green; 5 sessions, 18 neurons);
direction preference sessions (purple; 4 sessions, 18 neurons). For melioration, minimization and no-learning conditions, sessions
with direction preference were discarded and direction preference condition corresponds to no-learning sessions in which monkeys
showed preference for a direction (D) Average firing activity during decision period averaged over the 3 first trials as a function of
preference (performance on the last 50 trials). Line is the least square error linear fit. Horizontal error bars indicate the SEM
calculated over the 10 neurons contained in a bin (8 neurons in the last bin); Vertical error bars indicate the SEM calculated over the
sessions that correspond to the neurons included in a bin.
doi: 10.1371/journal.pone.0080683.g005
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R-neurons) do not seem to respect any particular organization
within the set of sensorimotor areas of the putamen.

Discussion

In this paper we demonstrated substantial variability in
operant learning. While in some sessions the monkeys learned
to prefer the most rewarding cue, in other sessions they failed
to learn, often forming irrelevant or detrimental preferences. At
the neuronal level, this variability in behavior is correlated with
variability in the distribution and intensity of cue-selective
responses of individual neurons. In particular, the ability to
learn is correlated with the existence of a large enough
subpopulation of dorsal putamen neurons that acquire a
preference for one of the two cues. At the population level, the
firing rate of dorsal putamen neurons at the very beginning of
the session is correlated with choice preference at the end of
the session. These results reveal independent neural
correlates for the acquisition of preferences.

Previous studies have already shown that in two-armed
bandit reward schedule tasks, subjects develop a preference
towards the most rewarding cue yet fail to choose that
alternative exclusively even after a long period of time [8-12]. It
has been suggested that this failure to maximize reflects
continuous exploration [18,41,42] which is consistent with the
behavior we observed (gray curve in Figure 2A), However the
individual session analysis reveals that the averaged learning
curve (dashed grey line) is not representative and does not
reflect the behavior of the monkeys in the individual sessions.
In a substantial fraction of the trials, the monkeys formed a
strong preference and chose one of the alternatives almost
exclusively, whereas in others no preference was formed,
irrelevant directional preference or even preference towards
the less rewarding alternative was formed (Figure 2A, B).

The differences between the individual learning curves and
the averaged learning curve bears similarities with a study by
Gallistel and his colleagues showing that the gradual increase
in performance observed in each individual subject may be an
artifact of group averaging [43]. Thus, our results reinforce the

Figure 6.  Reconstruction of the recording sites.  The dots show the estimate locations of the electrodes tip during recording
sessions (scale in mm). The recording sites of monkey 1 and 2 have been pooled. The colored areas correspond to the
sensorimotor territories of the putamen identified in Takada et al[28]. CMAd: dorsal cingulated motor area, CMAr: rostral cingulated
motor area, pre-SMA: pre-supplementary motor area, M1: primary motor cortex, SMA: supplementary motor area.
doi: 10.1371/journal.pone.0080683.g006
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concept that methods based on a session-by-session analysis
provide new insights into the understanding of behavior. The
novelty of the behavioral results presented in this study relies
on the fact that we show that variability is within subjects and
not only between subjects.

In the second part of the study we investigated the neural
basis of these behaviors. We focused our attention on the
dorsal putamen, which has previously been suggested to play
an important role in decision making and learning. We found
that 16% of active dorsal putamen neurons, supposedly MSNs,
learn to encode preference for cues (L-neurons; Figure 4E).
This finding can be related with previous studies that
demonstrated that the firing rate of a small fraction (10 to 20%)
of dorsal putamen neurons is selective to the chosen cue
[19,20,34-36]. Interestingly, we found several links between the
fraction of L-neurons and the ability to learn to meliorate. We
hypothesize that these links may reflect processes involving
competition between prior preferences for cues and acquired
preferences for cues driven by rewards [44]. In this framework,
if the fraction of L-neurons in the population is not sufficiently
large, prior preferences dominate choice, precluding learning.
Most interesting, another dimension emerges when considering
the firing rate of the neurons at the population level. dorsal
putamen’s population activity predicts the ability to develop a
preference towards the most rewarding cue (Figure 5C). In
other words, while at the individual level some neurons
encoded cue preference, at population level dorsal putamen
activity is correlated with the ability to learn in a session,
predicting whether the monkey will have a "good" or "bad"
learning day. This suggests that a general, population-wide
increase in the firing rate of dorsal putamen neurons enhances
the final performance of the animal. Our finding could be
related to recent fMRI studies in human showing that the
activity in the dorsal striatum at the beginning of a learning task
is predictive of the final performances of the subjects [45][2].

Whether fluctuations in putamen’s activity and learning ability
reflect changes in attentional or motivational processes is hard
to distinguish. It is well-known that MSN neurons are generally
silent at rest [46][3]. In this state they are not sensitive to
cortical inputs unless these inputs are strong. However, in the
presence of a strong-enough input, such as an attentional gain,
these neurons become sufficiently active to be responsive to
weaker modulations in cortical inputs [47][4]. Therefore, if the
population of dorsal putamen neurons is in the low activity
state, in case of low attention, the neurons are less able to
process cortical information, which hinders learning.

It is also known that dopamine release increases the firing
rate of striatal neurons and as a result, increases their
sensitivity to cortical inputs [48-50]. Previous studies have
shown that dopamine is released during learning [51-53][5-7].
In addition to the other roles of dopamine as representing
reward-related information, dopamine also gates the ability of
the dorsal putamen neurons to respond to cortically-mediated
information [54][8], which is necessary for the learning of the
values of the actions. Thus, fluctuations in the overall levels of
dopamine, which could be related to change in the motivational
state [55] could result in fluctuations in the ability to learn to
prefer the most rewarding cue. High concentrations of striatal

dopamine increase the sensitivity of putamen neurons for
cortical inputs such that the number of dorsal putamen neurons
that are sensitive to reward-predictive cues and their sensitivity
will increase. This dopamine-induced motivational gain favors
stronger and better representations of reward-predictive cues
over prior preferences relayed by competing cortical inputs,
biasing the competition between reward-driven preferences
and priors in efferent regions of the striatum in favor of the
former. One could test this hypothesis by locally injecting
dopamine antagonists in monkeys’ dorsal putamen at the very
early trials of learning. The resulting impairment of dopamine
transmission should mimic low motivational states and disrupt
monkeys’ ability to learn, giving rise to maladaptive
preferences.

All our recording were localized in the sensorimotor and
motor planning areas of the putamen [37]. Some of those areas
have been shown to be zones of convergence of orofacial,
forelimb and hindlimb regions of MI and SMA in the central
zone of the dorsomedial-to-ventrolateral portion of the putamen
[28,37,38]. The other areas located in the central zone of the
dorsomedial-to-ventrolateral portion of the putamen have been
shown to receive projections essentially from CMAr in rostral
part, but also from pre-SMA and SMA at the location of the
anterior commissure. Those projections have also been shown
to be segregated [28,37,38]. We didn’t record from ventral
putamen (limbic territories), associative territories (essentially
caudate and very rostral putamen) or from areas receiving
projections from dorsal anterior cingulate cortex (dACC, limbic)
nor dorsolateral prefrontal cortex (dLPFC, associative; [39])
more rostral [40]. These results suggest that the learning
mechanisms identified occur in the sensorimotor and motor
planning areas of the striatum that are known to be involved in
decision making and habit-based behavior. This further
suggests that the learning mechanisms identified may be the
bases of decision-making processes driven by acquired habit-
based preferences.

In conclusion, our results showed that failure to meliorate
and the formation of irrelevant or even detrimental preferences
is reflected at the cellular level. These preferences may result
from insufficient engagement of brain regions involved in
learning processes. We hypothesize that the attention/
motivational deficit leads to decreased dorsal putamen activity
at the start of the session, which disrupts reward-based
learning in cortico-basal ganglia circuits. Testing this
hypothesis awaits further studies, as does an explanation for
the formation of direction preference.

Supporting Information

Figure S1.  Variability holds for both monkeys and all
reward schedules. (A) Distribution of preferences, average
choices in the last 50 trials of the session, for no-learning (red),
no-learning (black), and minimizing (blue) sessions, for monkey
1 (top) and monkey 2 (lower). (B) Distribution of preferences
for the 3 reward schedules: bottom (0.9 vs. 0.6), middle (0.67
vs. 0.33) and top (0.75 vs. 0.25), for no-learning (red), no-
learning (black), and minimizing (blue) sessions.
(TIF)
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