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Abstract

As the discipline of biomedical science continues to apply new technologies capable of producing unprecedented volumes
of noisy and complex biological data, it has become evident that available methods for deriving meaningful information
from such data are simply not keeping pace. In order to achieve useful results, researchers require methods that
consolidate, store and query combinations of structured and unstructured data sets efficiently and effectively. As we move
towards personalized medicine, the need to combine unstructured data, such as medical literature, with large amounts of
highly structured and high-throughput data such as human variation or expression data from very large cohorts, is
especially urgent. For our study, we investigated a likely biomedical query using the Hadoop framework. We ran queries
using native MapReduce tools we developed as well as other open source and proprietary tools. Our results suggest that
the available technologies within the Big Data domain can reduce the time and effort needed to utilize and apply
distributed queries over large datasets in practical clinical applications in the life sciences domain. The methodologies and
technologies discussed in this paper set the stage for a more detailed evaluation that investigates how various data
structures and data models are best mapped to the proper computational framework.
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Introduction other tag-based hierarchical formats like ASN.1 (Abstract Syntax
Notation One) (http://www.ncbi.nlm.nih.gov/Sitemap/Summary
/asnl.html). More recently, large databases like UniProt have
versions were supplied in book form and later distributed as a made their databases available for download in the RDF (Re-
series of floppy disks, the biological sciences field has recognized a source Description Framework) format (ftp://fip.uniprot.org/pub/

need for daFaban:s to store information. For many years, different databases/uniprot/current_release/rdf/), which is more suitable for
types of biological data have been represented in standard knowledge representation

relational databases, which form the basis of numerous searchable
online databases spanning multiple biomedical domains [1,2].
Most of these databases are available for download as tab delimited
files. To accommodate these diverse data sources within the defined
schemas required for a relational framework, various data normal-
ization approaches that force the data to fit into the designated
structures have been utilized. In order to maintain relations and allow
knowledge mining, some of the popular biological databases have
also become available in XML format (eXtensible Markup
Language) (http://www.uniprot.org/docs/uniprot.xsd, http://
www.nlm.nih.gov/bsd/licensee/elements_descriptions.html) and

Ever since the original protein and nucleic acid database

The accessibility and usability of these powerful resources has
been further increased through the adoption of programmatic APIs,
web services and direct access language packages (http://www.ncbi.
nlm.nih.gov/entrez/query/static/ esoap_help.html,  http://www.
resh.org/pdb/software/soap.do,  http://useast.ensembl.org/info/
docs/api/index.html, http://www.biomart.org). Consequently, it is
now possible to dynamically combine the results from varied queries
in different databases stored in an in-house data warehouse [3] or
across the internet [4,5] into a single result report in an automated
manner.
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In addition to these biological annotation databases, vast
amounts of information is currently available through the very
large and complex data sets produced by many research projects,
including TCGA (http://cancergenome.nih.gov/), ICGC (http://
icgc.org/), and 1000 genomes (http://www.1000genomes.org/).
Large unstructured data sources, including the traditional sources
such as published literature and new big data sources such as social
media and electronic health records, are also now becoming part
of the biomedical data domain.

The availability of these unstructured and structured data
sources makes it highly desirable and feasible to query and
integrate known biological information with patient-specific
information. The importance of mining information from
literature and combining with patient related gene expression or
proteomics data has long been realized [6]. More recently,
however, new unstructured data sources and new query methods
are creating new biomedical insights, such as the ability to detect
Flu outbreaks by mining ‘Google searches [7,8].

Many different ways to amass, store and represent the variable
data sources exist, and the intended application of the particular
biomedical data store will dictate its content and structure.
However, the success of any of these approaches requires a set of
best practices that experimentally address both scale and
performance for this type of querying. Because of the nature of
the data, the appropriate choices will likely involve a combination
of relational tables in conjunction with unstructured data
representations. Additional application of semantics, ontologies
and Natural Language Processing (NLP), to improve language
interpretation and other utilities, will also be required.

As a part of a 3-month summer project, we evaluated one
possible configuration for these data, using Apache Hadoop
(Hadoop) (http://hadoop.apache.org/), for obtaining high perfor-
mance and flexibility in querying and integrating biomedical big
data. Hadoop is a widely used open source implementation of
distributed computing and is being increasingly adopted in
bioinformatics [9]. The project was designed to demonstrate a
possible application of distributed computing technologies with
two major objectives:

1. Concept/theme discovery: Searching concepts/themes in
unstructured data sources such as medical literature by using
standard lexicons to identify search terms through semantic
expansion and perform distributed queries on the published
literature to identify articles containing single terms or pairs of
terms.

2. Scalability of Differentially Expressed Gene (DEG) lists to
disease association: Demonstrating scalability for a huge
number of structured data sets such as the gene expression or
miRNA expression data sets from TCGA. Given an input set of
microarray expression (or miRNA expression) data, identify a
DEG list of a subset of samples against a very large set of
background samples. Use the programs developed in objective
(1) to create DEG to disease associations from the medical
literature.

In order to accomplish the objectives, they were sub-divided
into several related tasks.
The concept/theme discovery objective was sub-divided into:

a. Literature counts of genes.
b. Literature counts of disease terms.

c.  Gene — disease co-occurrence.
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The scalability and DEG to disease association objective was
sub-divided into:

a. Identifying filtered genes from terabytes of omics data.
b. Literature counts of filtered genes.

c. Co-occurrence of filtered genes and disease terms.

The results of the project were graphical representations of the
gene to disease and miRNA to disease networks useful to
researchers attempting to understand gene-disease associations.
These results form the basis for subsequent expansion to include
more diverse queries in future developments.

Results

The test cases were intentionally engineered to align objectives
with the ability to easily parallelize queries while still meeting the
12-week project timeline. All tasks were completed with high
performance and tabular results were generated. All cancer terms,
gene terms, miRNA terms and their corresponding PubMed 1D’s
are listed in tables S1, S2 and S3 respectively. The bar chart
representation of the cancer term counts in literature obtained
through task 1b is illustrated in Figure 1 and the gene terms are
represented in Figure SI.

Lists of differentially expressed genes and miRNAs were
generated after successfully completing task 2a. Performance
scaled linearly when the queries were run on different sized data
sets (Table 1). Tab delimited result files with counts of gene -
cancer term co-occurrence and miRNA — cancer term co-
occurrence generated from tasks lc and 2c¢ are available as tables
S4 and S5. The gene — cancer term co-occurrence results were also
visualized using R scripts.

Although existing literature mining methods are able to
generate similar results for smaller datasets ([10]), using distributed
computing and running in a batch mode decreased the time to
obtain these results. As shown in Table 2, irrespective of the size of
the categorical lexicon and the number of lexicons used, for each
batch query, the PubMed documents are processed in their
entirety in a single run giving near identical performance with
different sized categorical lexicons. After the datasets were loaded,
the time to query all ~20 million abstracts with a combination of
~11,250 genes and ~130 disease terms 1.e., a total of ~1,450,000
term combinations, took about 1 minute with the commodity
hardware-software cluster (hereto referred to as non-BDA) and 28
seconds on the Oracle Big Data Appliance (BDA). It is important
to note that the result populates all cells of this 1.45M cell matrix
simultaneously.

As proof that this implementation could produce biologically
meaningful results, we sought to reproduce a figure from a recent
issue of Genetic and Engineering News (http://www.genengnews.
com/gen-articles/hotspots-of-mirna-research-activity/4162/?kwrd
=miRNA). The figure in the article is a heatmap matrix with
different types of cancer on one axis and specific miRNAs on the
other axis. The values used for the heatmap were derived from the
number of literature citations for that cancer-type - miRNA pair. R
scripts were used to generate Figure 2, a similar chart to the
heatmap, using genes on one axis and different cancer terms on the
other axis and the number of citations represented as the size of the
bubble. From the figure, it can be seen that some genes have been
implicated in many cancers while other cancers seem to have fewer
gene associations. Further, some genes are shared across many
cancer types while others are specific to a single cancer subset.
While this fact was already known, the ability to reproduce the
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Figure 1. Cancer term occurrences in the literature. A bar chart representation with cancer terms on the y-axis and publication counts on the x-
axis. Only the cancer terms with high literature occurrences are shown.

doi:10.1371/journal.pone.0080503.g001
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Table 1. Load and query times using simulated gene
expression data.
Datasets Time

Task Data Size (TB)  (millions) (seconds)
HDFS Ingest 32 60 36,000
Hive Query to subset data 2 3.75 6,336

4 7.5 7,058

8% 15 8,304

16 30 11,420
Hive query to extract DEGs 2 3.75 690

4 7.5 1,347

16 30 5,769

32 60 10,630
* Query to get the DEG list was not run on the 8TB data due to time constraints.
doi:10.1371/journal.pone.0080503.t001

result from a single query is very significant in being able to easily
permute the query in real time.

In Figure 3, R scripts were used to generate a literature-based
network of cancer term to gene linkages. This demonstrates
another method to visualize the same data revealing that some
genes are shared across multiple cancer types while others are
unique to a particular cancer.

While the results obtained are not surprising and could be
programmatically produced using PubMed (www.ncbinlm.nih.
gov/pubmed/) or one of several literature mining tools ([11,12]),
the searches using these tools would take significantly longer as
they would require selecting a subset list of genes and a subset list
of disease terms and then running the query for each cell in this
comparison matrix. The term combinations should also include
semantic expansion of the terms to include gene aliases and disease
synonyms, which would further slow and complicate the process.

The ability to dynamically produce such a graph means that
clinical interpretation of mutational datasets could already be
impacted by this methodology depending on the type of cancer (or
other disease) and the mutational spectrum. For example, mutated
genes not typically observed in a particular cancer subtype may
help guide clinical treatment or even distinguish metastases from
primary tumors. The results could be further evaluated for themes
shared across those genes or perhaps unique to a specific subset of
the genes to help guide the clinical course for that particular
patient. As explained above, this scenario was demonstrated and
tested through task 2c, where an actual excerpt of both mRNA
and miRNA expression data was utilized and simulated data was
then added to increase the data volume to test performance over a

Table 2. Query times for batch queries on PubMed abstracts
with gene, miRNA and/or cancer term lexicons.

Categorical lexicon Number of terms Time (seconds)

Genes 11,250 29
Cancer terms 130 28
miRNAs 530 30
Gene x Cancer terms 11,250x130 28
miRNA x Cancer terms 531x130 30

doi:10.1371/journal.pone.0080503.t002
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number of sample ranges extending into the millions of samples
(patients). Differentially expressed gene lists could then be used to
create similar networks or bubble charts of differentially expressed
genes versus cancer terms.

Discussion

In this study, methods for a scalable, dynamic data mining
application that can be easily expanded to ask clinically relevant
questions that retrieve literature evidence were developed. With
objective 1, we derived a method to dynamically search the 20
million abstracts in PubMed using semantic expansion at
impressive speeds. Both the Oracle BDA and the non-BDA
cluster were able to provide the results directly through map-
reduce jobs. While relatively simple language processing entities
were used, more sophisticated ontologies and/or defined learning
sets would presumably behave similarly and extend the value
tremendously. Semantic expansion of query terms has been
proven to be important in concept based searches of health
conditions [13] and functional associations [14]. The ability to
dynamically run millions of these queries on terabytes of
unstructured documents would mean faster time to get answers
that inform clinical course.

In objective 2, using prototypes of large volumes of both
structured and unstructured data, it was demonstrated that queries
against multiple data sources can indeed be optimized through the
use of query distribution methods. The ability to integrate
information from unstructured data including published literature
with structured data sets including omics data, such as microarray
gene expression results, is extremely powerful in the context of
advancing both basic science and translational science. The
importance of integrating such information and their application
in understanding disease has been demonstrated previously
[15,16].

Due to the nature of the data and the analysis required, the
NextGen Sequencing community has been quick to adopt
distributed computing. As reviewed in the literature [9], there
have been several map-reduce based software applications
developed in recent years to aid in the assembly, mapping,
aligning and variant analysis of the generated sequence reads
[17,18,19]. Widely adopted bioinformatics algorithms like BLAST
and GSEA have also been implemented in Hadoop [20,21,22]
and large scale efforts have been spawned to provide consolidated
knowledge bases (DOE K-Base) (http://genomicscience.energy.
gov/compbio/, http://www.systemsbiologyknowledgebase.org/)
and computing resources for biological researchers. This study
shows that distributed computing can be leveraged to bring
together structured and unstructured data sets, as the performance
speeds are significant enough to influence the generation and
refinement of research hypothesis in real time.

Employing these ‘Big Data’ technologies to integrate data from
thousands of patients and controls might also help us understand
which measurements provide the most insights into a disease
mechanism. Such insights also raise the possibility that one would
not need to limit data to any specific disease or other pattern and
thus, similar gene expression patterns could be detected in other
disease studies and these similarities would extend our under-
standing of commonalities in disparate disease processes.

Although parts of the datasets used in the experiments were
arguably small and the complexity of applied processing was
relatively low, we believe that our test cases demonstrate the
benefits of integrating distributed computing technologies as part
of a broad platform on both structured and unstructured datasets.
Given the initial success of the prototype, further application
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Figure 2. Bubble chart of Cancer-Gene associations from literature. A bubble chart representation with cancer terms on the x-axis and genes
on the y-axis. The size of the bubble is directly proportional to the number of literature articles where the cancer and gene terms co-occur.
doi:10.1371/journal.pone.0080503.9g002
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Skin Melanoma

Figure 3. Network of Cancer-Gene associations from literature. Network of Cancer/Gene associations displaying shared genes between
cancers and genes specific to certain cancer types based on literature evidence. Cancer terms are represented as labeled nodes, genes are unlabeled
pink nodes and the edges represent at least one publication with a co-occurrence of the cancer term and gene.

doi:10.1371/journal.pone.0080503.g003

opportunities of the programs that were developed through this

project are foreseen including:

a)

Expanding the prototype to integrate structured patient data
sets from TCGA, including mRNA and miRNA expression,
methylation and SNP data with literature and other
unstructured text from sources such as ClinicalTrials.gov
(http://www.clinicaltrials.gov/) and Cancer Commons
(http://www.cancercommons.org/). The results obtained by
integration can be stored in NoSQL data stores and be
utilized for further real time comparisons with experimental
data from researchers.

PLOS ONE | www.plosone.org

b)

©)

Extending the program by integrating additional semantic
relations and concepts derived from semantic databases like
SemMedDB [23] and taking advantage of several new
initiatives integrating the text mining power of Lucene with
the data processing speeds obtained through Hadoop (http://
incubator.apache.org/blur/, http://www.cloudera.com/
content/cloudera/en/products/cdh/search.html).

Building automated systems for annotating study-specific
literature articles by using custom ontologies. Annotated
literature resources like that provided by TextPresso [24]
provide a huge benefit to the research community. Any
performance gains associated with building such resources

December 2013 | Volume 8 | Issue 12 | 80503



would be immensely helpful, especially in view of the current
growth in published literature as seen in Figure 4. Study-
specific vocabularies or ontologies can be used and several
such lexicons combined to annotate literature for specific
projects. Although these would lack the extent of functionality
seen by the TextPresso application, they would still provide
an immensely valuable resource for researchers, as they can
be generated in a relatively short period of time and updated
through automated scripts.

d) Research on the applicability of integrating several omics
data sets to patient stratification as observed by Yan et. al,,
[25]. It would be interesting to see if any of the distributed
computing and NoSQL query approaches would permit
querying across many patient data sets to detect disease sub-
type specific gene signatures.

This pilot study demonstrated that real time integration of large
structured and unstructured data sets can be achieved by leveraging
massively parallel computing and querying technologies like
Hadoop and Hive. The performance and results obtained with
immense data sets directly translate to a greater flexibility in
defining/ingesting the data sets and generating hypotheses with an
exponentially faster iterative cycle time. Through the success of this
project, we believe that the power of combining a distributed
computing hardware platform with novel data structures and
innovative query technologies has the potential to create an
automated custom pipeline in which terabytes of information
available from data sources like TCGA (https://tcga-data.nci.nih.
gov/tcga/) and ENCODE (http://www.genome.gov/10005107)
can be mined and integrated with literature evidence, using drug/
disease vocabularies in any desired combination, to generate
actionable biological knowledge producing improved treatment
outcomes.

Methods

Queries were performed on a commodity hardware-software

cluster (non-BDA) and the Oracle Big Data Appliance (BDA)

Theme Discovery across Large Biological Data Sets

(http:/ /www.oracle.com/us/products/database/big-data-appliance/
overview/index.html). The non-BDA cluster was based upon the Sun
Blade 6000 chassis. Single gigabit Ethernet interconnected 9 blades
supporting 16 AMD 2224 cores, 40 Intel X5355 cores, 244 gigabytes
of memory, and 1.3 terabytes of disk. The project’s BDA consisted of
18 Oracle servers interconnected by 40 Gbit Infiniband delivering
216 Intel Xeon 5675 processing cores, 2.6 terabytes of memory, and
648 terabytes of disk within a single cabinet. The disparity between the
non-BDA cluster and the BDA were known from the beginning; the
idea of this part of the project was not to replicate the hardware
requirements of the Oracle Big Data Appliance (BDA) but to replicate
the environment of the BDA so that code can be developed and
queries can be run on the non-BDA cluster prior to BDA access. This
was necessitated, as the BDA was accessible only during the last 2
weeks of the project.

Software applications including Java, Cloudera’s Enterprise
Hadoop, Oracle R Connector for Hadoop, Oracle Loader for
Hadoop, Oracle JRockit, Oracle Data Integrator, and Oracle
NoSQL database were installed on the non-BDA. All these are
pre-installed on and optimized for the BDA. Additional details on
the non-BDA cluster are provided in document S1.

Data was acquired in a short initial phase and literature queries
conforming to the objectives were performed in the later phase.

Data Aquisition

Literature. Publicly available 2012 MEDLINE baseline data
was licensed and downloaded from NLM (http://www.nlm.nih.
gov/databases/journal.html, http://www.nlm.nih.gov/databases/
license/license.html). The data consists of approximately 20 million
literature abstracts formatted in XML. The size of the dataset is
approximately 80 gigabytes. Along with the title and abstract of the
published article, it also includes metadata about the publications
such as Author, Institution, Dates, Publisher, etc. For this prototype,
we were interested in three fields: PMID (The unique ID of the
publication), Title and Abstract text (The abstract of the
publication). In order to extract these fields, we used a simple
Python script to parse each XML document and convert it to tab-

25,000,000

20,000,000

15,000,000

10,000,000

5,000,000

Figure 4. Growth of articles in MEDLINE. A bar chart displaying the number of baseline records in NLM MEDLINE's 2001 baseline release to 2012
baseline release. (http://www.nlm.nih.gov/bsd/licensee/2012_stats/baseline_doc.html).

doi:10.1371/journal.pone.0080503.g004
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doi:10.1371/journal.pone.0080503.9g005

delimited files containing the columns, PMID, title and abstract.
The files were then ingested into the Hadoop Distributed File
system (HDFS) for pre-processing. Pre-processing involved two
steps: tokenizing and stop-word removal. In the first step, we did not
use a standard English language tokenizer from known tools such as
Lucene but instead we manually selected characters as delimiters to
avoid missing Genes with symbols containing special characters
such as gene Hs.6719. Next, we filtered the data to remove common
English words. Since batch processing was the main goal of the
prototype we elected not to use any of the KeyValue databases such
as HBase or Oracle NoSQL as their main purpose is to provide low
latency and near real-time response for random access while our
task demands high throughput.

Gene lexicon. In order to create the Gene Lexicon that will
be used by our program to mine the publications, we linked all
Gene Symbols and Synonyms to the same Gene ID by parsing the
gene_info file from EntrezGene (ftp://ftp.nchi.nih.gov/gene/
DATA/gene_info.gz). This lexicon is simply made of two fields:
Gene symbol and Gene 1D, where the Gene Symbol contains all
human EntrezGene symbols and synonyms. For this step, we used
Hive; A data warehouse system for Hadoop. Hive provides a SQL
like querying language dubbed HiveQL over data residing in
HDFS. Since the gene info.dat file was a tab delimited file, there
was no pre-formatting and the file was loaded into HDF'S and then
into a Hive table. We then created the gene lexicon by extracting
Gene symbols and synonyms for the Human species from the gene

PLOS ONE | www.plosone.org

info table using simple queries. The created lexicon was formatted
using Python and was ready to be used by our tool for mining the
abstracts.

Disease terms. A disease lexicon containing terms related to
5 different cancers (melanoma, breast cancer, lung cancer, prostate
cancer and thyroid cancer) was created. The NCI Thesaurus
version 12.05d  (http://evs.ncinih.gov/ftpl /NCI_Thesaurus/
archive/12.05d_ReleaseNCI) was used to create this lexicon. For
this prototype, a simple lexicon was created using the terms for
these 5 cancers as categories and parsing the NCI Thesaurus to
look for related disease terms for each of the 5 cancers, which in
some cases contained author names. As the intended goal was to
test the feasibility and scalability of the approach, and due to the
limitations in time, no additional processing was performed and
these artifacts were treated as part of the lexicon.

Omics data sets. mRNA expression data and miRNA
expression data from a single Glioblastoma patient, TCGA-02-
0022, was downloaded from TCGA. This patient data set was
chosen, since it was one of the few patients where all the data
including variation results were available in the publicly available
domain  (https://tcga-data.nci.nih.gov/tcga/dataAccessMatrix.
html ). Although all publicly available data for TCGA-02-0022
was downloaded, only the mRNA and miRNA expression data
were used in this prototype.

Simulated data sets. To demonstrate scalability, a simula-
tion program was created to generate the requested number of
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either mRNA or miRNA sample data sets. These simulated data
sets were formatted based on the format of the mRNA and
miRNA expression data from TCGA-02-0022. In total, 60 million
simulated data files of gene expression data (32 TB) and 900
million simulated data files of miRNA expression data (18 TB)
were generated. The simulated data was created such that the
approximate distribution of expression values and values range
were reproduced for each sample from randomly generated
values.

Queries

To achieve the objectives we developed a program for tagging
text documents using a categorical lexicon. The lexicon consists of
a list of tokens and their corresponding categories. A category can
consist of several tokens. Also a token can be associated with more
than one category. The use of these categorical lexicons is not
limited to the scope of this project but can be used in sentiment
analysis, feature extraction and other areas. We used categorical
lexicons to associate the variations of gene symbols with their
corresponding gene IDs. For example, gene symbols ACTGI1P1,
ACT1GP1, ACTGPI and HY-psi-gamma-AC6 all correspond to
one gene. The program parses each document by tokenizing the
text into tokens then uses the categorical lexicons to look for the
appearances of terms within the document and tagging the
document with the corresponding categories. The program is also
capable of scanning multiple tokens at once (Window of tokens).
This capability was needed since the disease lexicon contained
multiple-word diseases such as “Invasive Breast Carcinoma”. We
used Java for developing the code and implemented the
MapReduce framework as the distributed processing model for
scalability. Each mapper processes a single document and outputs
the document ID as key and the associated categories as value.

CLASS MAPPER
lexicon : HashTable
lexicon : = Load(lexicon)
method MAP (docid n, doc d)
for all \tevrim w inid do :
categories : = categories+ lexicon{w}

EMIT (docid n, categories)

Objective 1: Concept/Theme Discovery

a) Literature count for genes. We processed the abstracts
with a map-reduce job using the gene categorical lexicon to tag
each publication with the list of gene IDs it contained. The results
were also grouped to get the number of abstracts containing each
of the human genes annotated in EntrezGene.

b) Literature count for disease terms. The cancer based
disease categorical lexicon was used for getting the literature
associated with all 5 cancers. The results were the counts of the
number of abstracts containing each cancer term.

c) Gene — Disease co-occurrence query. In order to look
for co-occurrences, we extended our program to take two
categorical lexicons and output the co-occurrences of categories
as pairs, as well as the number of abstracts containing them.
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method M AP (docid n, doc d)
for all \nevrim w ind do :
lexiconl.categories : = lexiconl.categories+ lexicon1{w}
lexicon2.categories : = lexicon2.categories+ lexicon2{w}
for all \aianheigiorny 1cl inheixincioml acianiergroriiiers do :
for all icianeigioirny 1c2 in 1heixinaom2 aaanieigionriiers do :

EMIT (paviir (1cl,1¢2), 101me)

method REDUCE (pair p, counts[1,1,1,...1])
sum : =0
for all \cronnmt 1¢c in 1c1ounmaus do :
sum : =sum-+1c

EMIT (pair, sum)

The program was used to query for the co-occurrence of every
possible gene-cancer term combination derived from the gene and
cancer lexicons. R scripts were used to visualize the co-occurrence
results as bubble charts and network views.

Objective 2: Scalability and DEG to Disease Association
a) Identifying Differentially Expressed Genes (DEGs).
Simulated gene expression and miRNA expression datasets,
generated based on sample TCGA data sets from a single patient,
were loaded into HDF'S. Due to the differences in the two clusters,
the data set sizes varied between the non-BDA and the BDA, and
scalability and performance testing for larger data sets was limited
to the BDA (Table 1). Only a limited simulated data sets, roughly
equivalent to 100 thousand mRNA expression and 1 million
miRNA expression data sets were used in the non-BDA while it
was scaled to relatively large data sizes of 60 million mRNA
expression and 900 million miRNA expression data sets for the
BDA. In total, 32TB of gene expression and 18TB of miRNA
expression data, were ingested into HDFS in the BDA. Simple
‘create table’ Hive queries were used to generate subsets of the
data. Hive queries with expression level filter of log2x, to get
differentially expressed genes/miRNAs with greater than 2 fold

expression, were run on these subsets.

b) Literature counts of DEGs. 'Tables with the differentially
expressed genes/miRNAs and the counts of the number of
abstracts in which these terms occur were generated using the
map-reduce jobs created through objective la.

c) Co-occurrence of filtered genes and disease terms.
The extended version of the program described in objective lc, in
combination with R was used to create co-occurrence graphs for
differentially expressed genes and disease terms.

The different tasks and steps involved in achieving the objectives
are shown in Figure 5.

Supporting Information

Figure S1 Gene term occurrences in the literature. A bar
chart representation with genes on the y-axis and publication
counts on the x-axis. Only the genes with high literature
occurrences are shown.

(TIFF)
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Table S1 Cancer term occurrences in the literature. A
three column tabular representation with cancer terms, number of
publications and the PubMed ID’s of articles containing the
cancer term.

(TXT)

Table S2 Gene occurrences in the literature. A three
column tabular representation with genes, number of publications

and the PubMed ID’s of articles containing the gene term.
(TXT)

Table S3 miRNA occurrences in the literature. A three
column tabular representation with miRNAs, number of publica-
tions and the PubMed ID’s of articles containing the miRNA term.
(TXT)

Table S$4 Gene-Cancer Co-occurrences in the literature.
A four column tabular representation with genes, cancer terms,
number of publications and the PubMed ID’s of articles
containing both the gene and cancer terms.

(TXT)
Table S5 miRNA-Cancer Co-occurrences in the litera-
ture. A four column tabular representation with miRNAs, cancer
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