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Abstract

Hereditary Hemochromatosis (HH) is a recessively inherited disorder of iron overload occurring commonly in subjects
homozygous for the C282Y mutation in HFE gene localized on chromosome 6p21.3 in linkage disequilibrium with the
human leukocyte antigen (HLA)-A locus. Although its genetic homogeneity, the phenotypic expression is variable
suggesting the presence of modifying factors. One such genetic factor, a SNP microhaplotype named A-A-T, was recently
found to be associated with a more severe phenotype and also with low CD8+T-lymphocyte numbers. The present study
aimed to test whether the predictive value of the A-A-T microhaplotype remained in other population settings. In this study
of 304 HH patients from 3 geographically distant populations (Porto, Portugal 65; Alabama, USA 57; Nord-Trøndelag,
Norway 182), the extended haplotypes involving A-A-T were studied in 608 chromosomes and the CD8+ T-lymphocyte
numbers were determined in all subjects. Patients from Porto had a more severe phenotype than those from other settings.
Patients with A-A-T seemed on average to have greater iron stores (p = 0.021), but significant differences were not
confirmed in the 3 separate populations. Low CD8+ T-lymphocytes were associated with HLA-A*03-A-A-T in Porto and
Alabama patients but not in the greater series from Nord-Trøndelag. Although A-A-T may signal a more severe iron
phenotype, this study was unable to prove such an association in all population settings, precluding its use as a universal
predictive marker of iron overload in HH. Interestingly, the association between A-A-T and CD8+ T-lymphocytes, which was
confirmed in Porto and Alabama patients, was not observed in Nord-Trøndelag patients, showing that common HLA
haplotypes like A*01–B*08 or A*03–B*07 segregating with HFE/C282Y in the three populations may carry different
messages. These findings further strengthen the relevance of HH as a good disease model to search for novel candidate loci
associated with the genetic transmission of CD8+ T-lymphocyte numbers.
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Introduction

The major histocompatibility complex (MHC) region on

chromosome 6p21.3 constitutes the most dense gene region of

the human genome. It has been estimated that 40% of classical

MHC genes are expressed in the immune system [1]. These genes

are physically clustered, possibly reflecting functional relationships,

and are characterized by high polymorphism levels and strong

linkage disequilibrium. These characteristics make the MHC

region a paradigm in many aspects of genomic research,

particularly in disease association studies. Genetic variation in

the MHC is associated with more disorders than any other

genomic region, the majority of which are immune-related.

Nevertheless, fine mapping of those disease associations and the

identification of specific functional variants remain difficult. Both

structural and regulatory variants are important in disease

associations and may operate in tandem [1].

A classic example of disease association with extreme linkage

disequilibrium at the MHC region is Hereditary Hemochroma-

tosis (HH), an autosomal recessive disorder of primary iron

overload characteristically found in Caucasians and associated

with homozygosity for the HFE p.Cys282Tyr mutation (C282Y) in

the vast majority of cases. HFE encodes a non-classical MHC

class-I molecule and is localized 4 Mb telomeric to HLA-A [2], in

very strong association with an ancestral haplotype carrying the

human leukocyte antigen (HLA) antigens A*03 and B*07 [3,4]. By

applying several types of linkage-disequilibrium calculations to

analyze the HH locus, Ajioka and co-workers found very high

disequilibrium values over a large region from 150 kb centromeric

to 5 Mb telomeric of HLA-A, partly due to an unusual low

recombination rate of approximately 28% of the expected value

[5]. In the same study, a haplotype phylogeny for HH

chromosomes suggested that the origin of HFE C282Y is recent.

These observations also provided a plausible explanation for

previous difficulties in localizing the HH gene [6,7].

Despite the genetic homogeneity at HFE among HH patients,

their iron phenotypes are highly variable. Consequently, possible

environmental and genetic modifiers of iron phenotypes in

hemochromatosis have been intensively investigated. Among

others, genes within the MHC class I region, inherited in linkage

with the ancestral C282Y-containing haplotype, have been

implicated in the clinical heterogeneity of HFE-associated HH

[8]. However, conflicting results obtained by different authors

have still not solved this question. Earlier independent studies in

geographically different populations have shown that the number

of copies of the common ancestral haplotype HLA-A*03–B*07

was associated with the expression of iron phenotypes. Patients

with two copies of the ancestral haplotype were shown to have

more severe iron overload phenotypes than those with one or no

copy of the ancestral haplotype in studies performed in Australia,

Italy and Alabama, USA [9–12]. Moreover, Pratiwi et al. showed

by extended linkage disequilibrium analysis in patients from

Australia that there are two distinct peaks of association separated

by 2 Mb in the region of HFE, a pattern not expected for a single

gene disorder [13]. This suggested that a gene modifying the

phenotype of C282Y homozygotes could be localized around the

area of D6S105. More recent studies did not support the previous

observations [14–17]. In a review of the origin and spread of the

hemochromatosis mutation, Distante and co-workers [14] report-

ed that although associations of HLA haplotypes with the severity

of iron overload were described, no such relationship was found in

patients from the UK (R. Raha-Chowdhury, A. Bomford and M.

Worwood, unpublished data). In another study of 8 HH families

from Britanny, France, Sachot and co-workers analyzed C282Y

homozygous relatives with no clinical signs of the iron overload in

comparison to the respective probands who had abnormal iron

phenotypes. They found no evidence that either HFE polymor-

phisms or variants in 10 microsatellite markers surrounding HFE

could explain phenotypic variability in the respective kinships [15].

Barton and co-workers extended their study of genotype/

phenotype correlations to a population of 141 C282Y homozygous

probands from Alabama, USA, and did not reproduce the

previous observations that were based on a relatively small

number of probands [16]. Finally, in a study of HLA haplotypes of

HH patients in a rural population from a former Norwegian

province in Central Sweden, Olsson and co-workers could not find

an association of the HLA-A*03 with the iron phenotype.

Interestingly however, they found that males with double copies

of the very common A*01–B*08 haplotype expressed a milder

phenotype, supporting again an association of iron overload with

the MHC region, but in the setting of a different haplotype [17].

Altogether the above described studies demonstrate that

associations between the HH phenotype and the classical HLA

markers vary among different cohorts from geographically distinct

populations (who naturally diverge due to genetic drift or

recombination events) and point to the necessity to look for novel

markers at the MHC region that may help explaining the

phenotypic variability in HH patients. One such factor could be a

new 500 kb microhaplotype localized between HFE and the HLA-

A locus as described by Cruz and coworkers [18]. This haplotype

was associated with a more severe phenotype in its carriers and

also with low CD8+ T lymphocyte numbers, which in previous

studies from Portugal have predicted a more severe iron overload

[19–22]. Low lymphocyte numbers were also associated with a

more severe phenotype in patients from Alabama in particular

those with HLA-A*01–B*08 [23]. However, this same haplotype

reported in a former Norwegian province seemed to be associated

with a milder phenotype [17]. Unfortunately, no data are available

regarding CD8+T lymphocyte numbers in this population from

Central Sweden.

In the present study we sought to test whether the predicting

value of the microhaplotype described by Cruz et al. [18] could be

reproduced in other settings, i.e., in different populations from

geographically distant regions. In this context, we explored the

degree of conservation of the reported HH-associated haplotypes

in relation to their effect on the low CD8+ T lymphocyte

phenotype or the clinical expression of iron overload. Our data

indicate that although the same haplotypes are observed in distant

geographical regions, their relative frequencies are variable, which

may explain differences in genotype/phenotype associations

among different populations.

Methods

Ethics Statement
The study was approved by the Ethical Committees of Centro

Hospitalar do Porto, Porto; Institutional Review Board of

Brookwood Medical Center, Alabama and The Regional Com-

mittee for Medical and Health Research Ethics, REC Central,

Trondheim. Written informed consent was obtained from

participants according to the Helsinki declaration.

Study Populations & Clinical Data
Three different populations of Hereditary Hemochromatosis

patients from geographically distant regions were included in this

study. The only inclusion criteria for the purpose of the study were

the confirmation of homozygosity for the C282Y HFE mutation

and to be an adult, because the CD8+ T lymphocyte phenotype is

MHC Haplotypes in Hereditary Hemochromatosis
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stable in adults. The first group included 65 unselected, unrelated

HH patients from the north of Portugal, mainly from the Porto

district area, consecutively identified between 1985 and 2011 in

non-screening settings and regularly followed up at the Hemo-

chromatosis Outpatient Clinic of Santo António Hospital, Porto

and Predictive and Preventive Genetic Centre, Porto. This group

of patients is designated as Porto patients. The second group of

patients included 57 unrelated HH patients diagnosed in non-

screening settings from central Alabama, USA, diagnosed between

1988 and 2010 and treated at Southern Iron Disorders Center,

Birmingham, Alabama. These probands were selected for the

present study only because they presented for diagnosis or

treatment in a consecutive mode. This group of patients is

designated as Alabama patients. The third group of patients

included 182 patients from the Nord-Trøndelag County, Norway,

who were diagnosed with HH as part of a population screening

study (HUNT2) between 1995 and 1997, and were followed up at

St. Olav Hospital, Trondheim. This group of patients is designated

as Nord-Trøndelag patients. Most of the clinical and laboratory

information about all patients were already available and

described elsewhere [8,18,24–28]. Previously available informa-

tion included, in all patients, the iron parameters at diagnosis:

transferrin saturation (TfSat) and serum ferritin (SF); HFE

genotype (all homozygous for the C282Y mutation); and HLA

class I alleles (A and B) as determined by low-resolution DNA-

based techniques (PCR/sequence-specific oligonucleotide probes,

Dynal RELITM SSO, Dynal Biotech Ltd, UK). Values of total

body iron stores (TBIS) estimated by quantitative phlebotomies

were available from 104 patients (34 from Porto, 32 from Alabama

and 38 from Nord-Trøndelag).

Immunophenotyping
Blood counts of T-CD8+ lymphocyte subpopulation were

available for all study participants. T-lymphocyte subpopulations

were determined by FACS analysis using anti-CD3 and anti-CD8

monoclonal antibodies as previously described in detail [24]. We

defined as a ‘‘low CD8 phenotype’’ the finding of CD8+ T

lymphocyte numbers below the 25% percentile in controls. This

value was 3106103/ml in Porto and Alabama patients and

3196103/ml for Nord-Trøndelag patients. Mean values (6

standard deviation) in controls were 433(6168) x103/ml in Porto

and Alabama and 490(6234) x103/ml in Nord-Trøndelag.

Genetic Markers at the MHC Region
In addition to HFE and HLA genotyping, genetic information

on three single nucleotide polymorphisms (SNPs) localized in the

region between HFE and HLA-A was obtained in all patients

included in this study. These SNPs were localized in the genes:

piggyBac transposable element derived 1 (PGBD1, rs1997660), zinc

finger protein 193 (ZNF193, rs7206) and zinc finger protein 165

(ZNF165, rs203878), and defined a SNP microhaplotype of 500

kilobases (kb). These were the SNP microhaplotypes previously

described in Porto patients [18] and were determined ‘‘de novo’’

in patients from Alabama by gene sequencing as described in [18]

and in patients from Nord-Trøndelag by hybridization probe

melting curve analysis on the LightCyclerH, Roche Diagnostics.

Details on primer and probe sequences in addition to PCR

conditions for SNP analysis can be provided by request.

Generation of Phased Chromosomes and Haplotype
Construction

HLA A–B haplotypes, and the SNP microhaplotypes defined by

the genes PGBD1, ZNF193 and ZNF165, were defined in HH

patients by family segregation whenever informative family

members were available. Otherwise they were inferred by the

PHASE program.

Statistical Methods
Associations of HLA alleles and haplotypes in chromosomes

carrying the C282Y mutation in HFE were tested by the Chi-

square test by comparison of their frequencies in HH patients from

the 3 different regions of Porto, Alabama and Nord-Trøndelag

with those of the respective reference normal populations. For the

purpose of statistical analysis, only alleles or haplotypes with

frequencies respectively higher than 10% and 7% in any of the

tested population were considered. Information about HLA allele

and haplotype reference frequencies in the normal populations

from Porto (north Portugal) was obtained at the ‘‘Allele*Frequen-

cies in worldwide populations’’ database [30]. Frequencies for the

Alabama control population were reviewed from the data

previously analyzed by Barton and co-workers [26]. Frequencies

in the non-Sami population from Norway were obtained from the

data described by Harbo et al. 2009 [29], also published at the

‘‘Allele*Frequencies in worldwide populations’’ database [30]. In

order to eliminate the artificially lowered frequencies in HH

chromosomes of other alleles and haplotypes that were due to the

relatively high frequencies of alleles A*03 and B*07 and the

haplotype A*03–B*07, we estimated (in patients and respective

controls) ‘‘corrected’’ allele and haplotype frequencies by sub-

tracting from the denominator respectively the sum of A*03 and

B*07 alleles or the number of A*03–B*07 haplotypes. These

corrected frequencies allowed a more meaningful comparison

between frequencies in HH and control chromosomes, as

originally described by Marcel Simon and co-workers [4]. To

analyze the relative strength of HLA allele or haplotype

associations, the etiological fraction delta (d) was calculated as

described according to the formula d= (FAD-FAP)/(1-FAP) where

FAD is the allele frequency in HH chromosomes and FAP the

allele frequency in control chromosomes [31–33]. In the case of

multiple comparisons we used the Bonferroni correction to test for

the significance of differences.

To investigate the association of CD8+ T lymphocyte numbers

with particular genotypes, we assigned to each chromosome the

value of CD8+ T lymphocytes of the respective carrier. Differences

in mean CD8+ T lymphocyte values among groups were tested by

the Student’s T-test or the One-Way analysis of variance

(ANOVA) as appropriate. In addition, patients with CD8+ T

lymphocyte numbers below the 25% percentile of the respective

controls were selected and their chromosomes assigned as ‘‘low

CD8 phenotype’’ cases. Differences in the relative frequencies of

‘‘low CD8 phenotype’’ cases among groups were tested by the

Chi-square test.

Quantitative measures of iron parameters were also compared

among the 3 populations of HH patients from Porto, Alabama and

Nord-Trøndelag. Because of skewness in the distribution of serum

ferritin and total body iron stores, for statistical purposes the

logarithmic transformation was applied to those values. For

representation in table and figure, however, the non-transformed

values were used. Differences in means among groups were tested

by One-Way analysis of variance (ANOVA) or the Student’s T-test

as appropriate.

Data were analyzed by Statgraphics software (Statgraphics

Graphics System, version 7.0). Values of P,0.05 were defined as

significant.

MHC Haplotypes in Hereditary Hemochromatosis
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Results

1. Clinical Heterogeneity among the HH Populations
from Porto, Alabama and Nord-Trøndelag

A summary of the iron-related parameters of the HH patients

from Porto, Alabama and Nord-Trøndelag is provided in Table 1,

where values are given according to gender. Significant differences

among the 3 populations of patients were observed in males for

TfSat, SF, and TBIS, with P values ,0.00001 in all cases. These

differences were explained by a more severe expression in patients

from Porto and a milder expression in Nord-Trøndelag patients.

In females, SF (P,0.00001) and TBIS (P,0.04) were also

significantly different among the 3 populations, with Porto and

Nord-Trøndelag patients having respectively the highest and

lowest values. The HH cohort from Nord-Trøndelag was the only

one in which patients were identified in screening programs.

Moreover, previous studies in the same population showed that, in

general, Nord-Trøndelag patients have a low prevalence of clinical

symptoms and less severe iron overload [27,28].

2. Analysis of Genetic Markers between HFE and HLA-B in
the HH Populations from Porto, Alabama and Nord-
Trøndelag

From the study of 304 HH patients with C282Y homozygosity

from three geographically distant regions, namely Porto, Portugal

(n = 65), Alabama, USA (n = 57) and Nord-Trøndelag, Norway

(n = 182), we obtained respectively 130, 114 and 364 chromo-

somes carrying HFE C282Y. These were genetically characterized

with 5 different markers including HLA-A alleles, HLA-B alleles,

and SNPs in the genes PGBD1, ZNF193 and ZNF165. HLA A–B

haplotypes and SNP microhaplotypes were assigned by family

segregation, or generated by PHASE in patients without available

informative family members (see Methods).

HLA-A and HLA-B allele frequencies were first analyzed in HH

chromosomes from the three populations. Results are summarized

in Table 2 (uncorrected data are shown in Table S1). As expected

from all previously published studies of HLA associations in HH,

the most common HLA-A and B alleles in chromosomes from all

the three HH populations from Porto, Alabama and Nord-

Trøndelag were A*03 (respectively 0.408, 0.474 and 0.420) and

B*07 (respectively 0.238, 0.307 and 0.288); these frequencies were

significantly different from those of the corresponding controls

(Table 2). The strength of these significant associations was

measured by estimating the etiological fraction delta (see Methods)

being similar in all populations (Table 2). After correcting for the

strong effect of A*03 and B*07 on other allele frequencies (see

Methods), other significantly associated HLA alleles were found in

the populations from Porto (A*01, B*08 and B*40) and Nord-

Trøndelag (A*11, B*14 and B*44). In Alabama patients, the only

additional HLA allele with a statistically significant association was

B*14, suggesting that Alabama patients represent a genetically

more conserved population.

The most prevalent HLA A–B haplotype in the three

populations from Porto, Alabama and Nord-Trøndelag was

A*03–B*07, the proportion of its carriers being 0.169, 0.272 and

0.214, respectively (see also Table 2). Although these haplotype

frequencies do not differ statistically among the different

populations (shown in Supplementary Table 1), the strength of

their associations to HH, as measured by the etiological fraction

delta, is stronger in Alabama (d= 0.247) than in Nord-Trøndelag

(d= 0.164) or Porto (d= 0.158), suggesting a more recent founder

effect in Alabama HH patients. This interpretation is also

consistent with our observation that the prevalence of HLA-A

and -B alleles and haplotypes is less diverse in Alabama patients

than in Porto or Nord-Trøndelag patients. After we corrected for

the predominance of A*03–B*07 haplotypes on other haplotype

frequencies (see Methods), the next most common HLA haplotype

found in patients from all populations was A*01–B*08, although

the respective frequencies of A*01–B*08 did not differ significantly

from those in the respective control populations. The A*03–B*14

haplotype also occurred in hemochromatosis chromosomes from

Alabama and Nord-Trøndelag patients. The significance of this

association could be defined only in the Alabama population due

to lack of sufficient available information about control subjects in

Porto and Nord-Trøndelag. Nevertheless, its significance might be

supported by the very low frequencies found in controls from

Scandinavia [34]. The haplotype A*02–B*44, a very common

haplotype in normal Caucasian populations, was found at similar

frequencies in all non-A*03–B*07-carrying chromosomes from the

three present populations. These respective frequencies did not

differ significantly from those in the respective control subjects.

We next analyzed the SNP microhaplotypes defined by the

SNPs in the genes PGBD1, ZNF193 and ZNF165 in the three

Table 1. Iron parameters (at diagnosis) in HH patients from Porto, Alabama and Nord-Trøndelag.

N TfSat (%) SF (ng/ml) TBIS (g)

HH male patients from:

Porto 43 90614 (63–123) 17506295 (163–7685) 7.9360.78 (2.19–17.40)

Alabama 32 73617 (41–100) 815682 (123–2119) 3.6660.50 (0.40–10.40)

Nord-Trøndelag 103 8169 (58–100) 541663 (27–3511) 3.2360.47 (1.12–15.32)

P value ,0.00001 ,0.00001 ,0.00001

HH female patients from:

Porto 22 81618 (55–111) 5436286 (67–3954) 3.2061.33 (1.10–13.80)

Alabama 25 74620 28–100) 433678 (65–1892) 1.9360.27 (0.40–5.60)

Nord-Trøndelag 79 73612 (51–97) 172627 (16–1151) 1.6560.30 (0.89–4.32)

P value n.s. ,0.00001 0.040

Transferrin saturation (TfSat) is presented as arithmetic mean 6 standard deviation; serum ferritin (SF) and total body iron stores (TBIS) are presented as geometric mean
6 standard error. Minimum-maximum values are in parenthesis. TBIS was available in 34 males from Porto, 32 from Alabama and 38 from Nord-Trøndelag and in 13
females from Porto, 23 from Alabama and 12 from Nord-Trøndelag.
Statistically significant differences (P value indicated) were tested among groups using One-way Anova.
doi:10.1371/journal.pone.0079990.t001
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populations (results shown in Table S1). Previous studies in HH

patients had revealed that the most conserved of these SNP

microhaplotypes was the one designated as A-A-T and that this

microhaplotype is also transmitted in association with a more

severe iron phenotype of HH [18]. This microhaplotype was the

most prevalent in all the populations studied here but its relative

frequency differed significantly among them (P = 0.0003). Porto

patients had the highest A-A-T frequency (0.908) and Nord-

Trøndelag patients the lowest (0.765). Among the non-A-A-T SNP

microhaplotypes, the most common was G-G-G, the frequency of

which also differed significantly among the three populations

(P = 0.003). G-G-G frequency was highest in Nord-Trøndelag

patients (0.160) and lowest in Porto patients (0.062).

In summary, the observation of differences in the relative

frequencies of the described HLA and SNP markers among the

three geographically distant populations of HH patients support

the postulate that evolutionary histories among populations differ

due to differences in genetic drift and recombination of the HH

founder chromosomes in the respective geographic regions.

3. Haplotype Conservation in HH Patients from Porto,
Alabama and Nord-Trøndelag

We analyzed the degree of haplotype conservation as a measure

of their proximity from the ancestral HH founder chromosomes

by selecting the HH chromosomes carrying the most commonly

associated HLA-A alleles (A*01, A*02 and A*03) and calculating

the degree of conservation (%) of the most common SNP

microhaplotype A-A-T in those chromosomes. Results are shown

in Table 3 and Figure 1. In general, a high degree of conservation

was observed in cohorts from Porto, Alabama and Nord-

Trøndelag for chromosomes carrying A*03 (respectively 94%,

98% and 97%), including the A*03–B*07-carrying chromosomes

(respectively 91%, 100% and 99%). In contrast, significant

differences occurred among the three populations regarding the

conservation of chromosomes carrying A*01 or A*02 alleles

(Table 3). These differences are illustrated in Figure 1, particularly

visible for chromosomes carrying HLA-A*01. In the case of Porto

patients, the SNP microhaplotype A-A-T is conserved in all HLA-

A*01 carrying chromosomes (16/16), including all HLA-A*01–

B*08 carrying chromosomes (7/7). This was not observed in either

Alabama or Nord-Trøndelag. In the case of Alabama patients,

53% (9/17) of HLA-A*01-carrying chromosomes (or 56%, 5/9, of

A*01–B*08 carrying chromosomes) do not conserve the A-A-T

microhaplotype. In Nord-Trøndelag patients, 87% (41/47) of

chromosomes carrying HLA-A*01 (or 86%, 25/29, of A*01–B*08

carrying chromosomes) do not conserve the A-A-T microhaplo-

type. In the Nord-Trøndelag population the A-A-T microhaplo-

type was not conserved in 42% (32/76) of A*02 carrying

chromosomes. In contrast, the percentage of conservation was

96% (22/23) and 100% (18/18) in Porto and Alabama cohorts,

respectively. Taken together, the present results further suggest

that the recombination histories or founder effects of the C282Y-

carrying HH chromosomes differ in the three hemochromatosis

populations studied. This may affect other traits encoded in the

same chromosomal region, including determinants of CD8+ T

lymphocyte numbers or other putative modifiers of iron overload.

4. Associations of the CD8+ T Lymphocyte Phenotype
with MHC Markers in HH Patients

We sought to investigate the association of CD8+ T lymphocyte

numbers with particular MHC markers. First, we analyzed the

distribution of CD8+ T lymphocyte numbers in the three

populations of HH patients, each of whom had C282Y

homozygosity. Low CD8+ T lymphocyte numbers were common

in patients from each geographic region (Fig. 2), but the

distribution of T lymphocyte numbers differed. Patients from

Porto and Alabama had a more striking deviation to low numbers

than patients from Nord-Trøndelag (Fig. 2).

We then analyzed the associations of the ‘‘low CD8 phenotype’’

with particular extended haplotype combinations among the three

different populations. A ‘‘low CD8 phenotype’’ was defined as

CD8+ T lymphocyte numbers below the 25% percentile in the

respective controls, i.e., 3106103/ml for Porto and Alabama, and

3196103/ml for Nord-Trøndelag (see Methods). The extended

haplotype combinations were chosen to reflect the degree of

conservation relative to the most common ancestral haplotype, i.e.,

if the A-A-T microhaplotype was conserved or not and, within A-

A-T conserved haplotypes, if HLA-A*03 was conserved or not

(Table 4). We estimated the frequencies of ‘‘low CD8 phenotype’’

cases for each haplotype combination. The results, illustrated in

Table 4, demonstrate that there are differences among the three

populations. The ‘‘low CD8 phenotype’’ was significantly associ-

ated with the most conserved haplotypes carrying A-A-T and the

HLA-A*03 in the populations from Porto (P = 0.045) and Alabama

(P = 0.012) but not in the population from Nord-Trøndelag. These

associations were also reflected on the mean CD8+ T lymphocyte

counts. Values in Porto and Alabama patients were significantly

lower than the expected values in controls (P = 0.0017 and

P = 0.021, respectively). Taken together, the different patterns of

association of the ‘‘low CD8 phenotype’’ with particular extended

haplotype combinations in the three populations of patients

suggest a stronger founder effect in the patients from Porto and

Alabama with fewer recombination events between a putative

locus marking the ‘‘low CD8 phenotype.’’ In patients from Nord-

Trøndelag, genotype/phenotype associations were apparently lost.

5. Associations of the Iron Phenotype with MHC Markers
in HH Patients

In order to analyze the effect of associated SNP microhaplo-

types on the clinical expression of iron overload, HH patients were

divided in two groups, according to the presence, in homozygosity,

of the ancestral SNP microhaplotype A-A-T. For statistical

purposes, males and females were analyzed separately. Results

are presented in Table 5 and Figure 3. No significant differences

were found in females and no significant differences were found for

TfSat in both males and females (Fig.3). In general, the average SF

and TBIS values in male patients were significantly higher

(respectively P = 0.027 and P = 0.021) in those homozygous for

the A-A-T microhaplotype than in those carrying one or more

non-A-A-T microhaplotype. Even if the average SF and TBIS

values in male patients appeared higher in those homozygous for

the A-A-T, no significant differences were seen in the 3 separate

populations (Table 5). In conclusion, these results may support a

general prediction of a more severe iron phenotypes in patients’

populations carrying the conserved A-A-T microhaplotype in

homozygosity, but they also show that, for individual purposes, the

microhaplotype A-A-T cannot be used as a universal marker of

iron phenotype in HH.

Discussion

The question of HLA haplotype conservation in HH has been a

focus of scientific interest for a long time, and several interpre-

tations about its role in the recent evolutionary history of

chromosomes carrying the C282Y mutation have been largely

discussed [3–7,14,17,35,36]. Besides the well described A*03–

B*07 ancestral haplotype [3–7], also the A*01–B*08 haplotype is

MHC Haplotypes in Hereditary Hemochromatosis
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very long and resistant against recombination, and appears to be

derived from a single ancestor [14,17]. The present study explored

the implications of haplotype conservation on HH patient’s

phenotypes. While not confirming the value of the A-A-T

microhaplotype as a universal predictive marker of iron overload

in HH, the study revealed important differences in both the

genetic composition and the genotype/phenotype correlations

among the geographically distant populations which may help

explaining differences in phenotype and local penetrance of the

disease. The most relevant questions raised by these results were:

Why do all A*01–B*08 haplotypes from Porto patients carry the

conserved A-A-T microhaplotype, but only 47% in Alabama and

13% in Nord-Trøndelag? Why don’t we see an association of the

A-A-T microhaplotype with low CD8+ T lymphocytes in the

Nord-Trøndelag population, as we observe in Porto and Alabama?

Could the selection of ‘‘non-conserved’’ chromosomes in HFE

C282Y homozygotes may help us in future to identify the

individual loci contributing to the ‘‘low CD8 phenotype’’ and/or

other novel associated modifiers of iron overload? Could the loss of

A-A-T microhaplotype provide the explanation for the mild

phenotype of A*01–B*08 carriers in particular populations, such

Figure 1. Conservation (%) of the SNP microhaplotype A-A-T according to HLA-A alleles in chromosomes from HH patients. A
comparison of the percent haplotype conservation among the three groups of HH patients from Porto, Alabama and Nord-Trøndelag was done using
the Chi-square test and significant results are indicated by a * (P,0.00001).
doi:10.1371/journal.pone.0079990.g001

Table 3. Comparison of the conservation of the SNP microhaplotype A-A-T in chromosomes of HH patients from Porto, Alabama
and Nord-Trøndelag.

Percentage (n) of haplotypes

Associated HLA alleles
Associated SNP
microhaplotype Porto Alabama Nord-Trøndelag P *

A*01

Conserved A-A-T 100% (16) 47% (8) 13% (6) 2.5261029

Non conserved A-A-T 0 53% (9) 87% (41)

A*02

Conserved A-A-T 96% (22) 100% (18) 58% (44) 3.0661025

Non conserved A-A-T 4% (1) 0 42% (32)

A*03

Conserved A-A-T 94% (50) 98% (53) 97% (148) n.s.

Non conserved A-A-T 6% (3) 2% (1) 3% (5)

Non A*01–A*02–A*03

Conserved A-A-T 74% (28) 76% (19) 89% (78) n.s.

Non conserved A-A-T 26% (10) 24% (6) 11% (10)

*Relative frequencies of conserved and non-conserved haplotypes among three populations were compared using the Chi-square test (P values are indicated).
doi:10.1371/journal.pone.0079990.t003

MHC Haplotypes in Hereditary Hemochromatosis

PLOS ONE | www.plosone.org 7 November 2013 | Volume 8 | Issue 11 | e79990



as the one described in a former Norwegian province in Sweden

[17]?.

In a recent study, Baschal and co-workers analyzed HLA data

and genotypes for thousands of SNPs across the MHC complex in

Figure 2. Distribution of peripheral blood CD8+ T lymphocytes
in HH patients from Porto, Alabama and Nord-Trøndelag. The
dash lines indicate the mean value observed in the respective control
populations.
doi:10.1371/journal.pone.0079990.g002
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a large number of families, demonstrating the occurrence of

multiple common ‘‘completely’’ conserved complex SNP haplo-

types in the MHC region, several of them influencing disease

susceptibility [37]. They suggested that such conservation could

also occur in other genomic areas and proposed that this type of

analysis of conservation versus sub-conservation of extended

haplotypes may be an important tool for further positioning of

disease-associated loci. In the present study, we took advantage of

the known occurrence of highly conserved MHC-linked haplo-

types in patients with HH and its known association with a

phenotype of low CD8+ T lymphocyte numbers to study the

distribution and composition of the HH-associated chromosomes

and explain differences found in genotype/phenotype correlations

among three geographically distant populations. Although high

frequencies of the low CD8+ T lymphocyte phenotype were found

in all HH populations, the pattern of association of this phenotype

with particular haplotypes differed among patients from the three

geographic regions, possibly reflecting diverse haplotype structures

due to different recombination histories or founder effects.

Haplotype Heterogeneity among Populations
The simple analysis of the distribution of HLA associated

haplotypes (Table 2), in addition to the degree of conservation of

the associated A-A-T SNP microhaplotype (Table 3, Fig. 1) in the

three cohorts of patients from Porto, Alabama and Nord-

Trøndelag, shows that the strong association of HH with the

HLA-A*03–B*07 haplotype is the most consistent observation in

all populations studied, confirming the existence of a common

ancestral haplotype subsequently modified by recombination and

geographical scattering due to migrations [4]. The diversity of

associations with other haplotypes reveals differences among

populations which agree with the expected differences in the

history of their HH-carrying chromosomes, taking into consider-

ation particular founder effects or the time for recombination

events. The most stricking differences are observed in chromo-

somes carrying HLA-A*01 (which include the ancestral HLA-

A*01–B*08), in which the SNP microhaplotype A-A-T was

conserved in 100% chromosomes of Porto patients, while it was

less conserved in patients from Alabama (47%) and much less

conserved in or Nord-Trøndelag patients (13%) (see Fig.1),

Figure 3. Effect of the SNP microhaplotypes on the expression of iron overload. Comparisons of the iron parameters: transferrin saturation
(TfSat), serum ferritin (SF) and total body iron stores (TBIS) between groups of HH patients divided according to the associated SNP microhaplotypes
(A-A-T homozygous or non-A-A-T homozygous). Males are represented by solid circles and females represented by open circles. Significant
differences in the mean values (by the Students T test) are indicated by an *(P = ,0.027).
doi:10.1371/journal.pone.0079990.g003

Table 5. Average values of total body iron stores (TBIS) and serum ferritin (SF) of HH male patients according to the associated
SNP microhaplotypes (A-A-T homozygous or non- A-A-T homozygous).

All HH patients HH patients from

Porto Alabama Nord-Trøndelag

Average of TBIS (g) in:

A-A-T homozygous male patients 4.98 [4.24–5.85] (n = 77) 8.08 [6.42–10.11] (n = 29) 3.83 [3.01–4.88] (n = 24) 3.62 [2.75–4.76] (n = 24)

Non-A-A-T homozygous male patients 3.37 [2.43–4.69] (n = 27) 7.11 [3.07–16.48] (n = 5) 3.23 [1.34–7.75] (n = 8) 2.65[1.87–3.77] (n = 14)

P* 0.021 n.s. n.s. n.s.

Average of SF (ng/ml) in:

A-A-T homozygous male patients 849 [718–1004] (n = 124) 1764 [1296–2400] (n = 36) 818 [670–999] (n = 24) 571 [461–707] (n = 64)

Non-A-A-T homozygous male patients 602 [470–771] (n = 51) 1652 [576–4737] (n = 5) 806 [402–1616] (n = 8) 496 [381–646] (38)

P* 0.027 n.s. n.s. n.s.

TBIS and SF are presented as geometric mean and 95% Confidence Interval for Mean [Lower Bound - Upper Bound]; the numbers of patients in each group (n) are
indicated in each case.
*(P) Statistical significant differences using the Students T- test (with log transformed values, see methods).
doi:10.1371/journal.pone.0079990.t005
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supporting the different founder effects or distinct recombination

histories in the respective populations. The highest haplotype

diversity observed in the Nord-Trøndelag population is also

consistent with the high frequency of HFE C282Y in Norwegians

[27,28,38], possibly related with characteristics of rapid population

growth that has occurred in northwestern Europe since the Celtic

period [14]. On the contrary, patients from Alabama showed the

lowest haplotype diversity, reflecting a more recent founder effect.

A previous study showed that aggregate ‘‘British Isles’’ or Scotland

indices of ancestry were significantly greater and the proportion of

non-British Isles, non-Native American ancestry was significantly

lower in Alabama hemochromatosis probands with HFE C282Y

homozygosity than in population control subjects [39,40]. These

observations suggest that British Isles ancestry likely accounts for

the relatively high C282Y allele frequency and association of

HLA-A*03–B*07 and HFE C282Y in central Alabama whites.

Therefore, the evidence of a recent founder effect in Alabama HH

patients suggested by the present results agrees with the previous

ancestry studies and with the predominance of English people

among whites who migrated to and settled the geographic area of

the present State of Alabama in the late 18th and early 19th

centuries [41,42]. HLA-A*03–B*14 also occurred in hemochro-

matosis chromosomes from Alabama and Nord-Trøndelag

patients. Although this haplotype is also described as a common

HH ancestral haplotype in hemochromatosis populations in many

northwestern European countries, particularly in Scandinavia

[36], its appearance in Alabama HH patients is unlikely to be

attributed predominantly to Norwegian or other Scandinavian

founders because ancestry reports from these geographic areas of

Europe are rare in Alabama hemochromatosis probands and

population control subjects [39]. Nevertheless this haplotype could

have a common ancestral Irish origin and be spread in Norway by

the close contacts between Ireland and Scandinavia through the

Vickings’ movements [35,36]. In the case of Porto patients, the

relative low diversity of HH haplotypes could be attributed to the

particular demographic characteristics of the Portuguese popula-

tion in the north region namely the unipolar mode of migration

and the low rate of mobility from other regions [43]. Significant

regional differences were previously found in the distribution of

the C282Y mutation in Portugal with the highest frequencies

found in the north of the country [44]. In terms of historical

population settlements, it is well recognized that there is a

geographical and cultural boundary between the north and the

south of Portugal documented by archeological, ethnographic and

linguistic records [43], all favoring the notion that a stronger Celtic

influence in the north could map the founder HH chromosomes in

this region by the 6th century BC. The hypothesis that the later

Nordic/Suevian occupation and settlement, which also occurred

only in the north of the present country, could also contribute to

the increased frequency of the mutation cannot be excluded. The

present results of divergent patterns of haplotype conservation and

genotype/phenotype associations in patients from Porto and

Nord-Trøndelag do not favor a strong Scandinavian HH founder

effect in north Portugal.

Effect of Haplotype Conservation on the CD8+ T
Lymphocyte Phenotype

It is well known that the existence of different founder effects

and different recombination histories at the MHC region affect the

transmission of other genetic traits encoded in the same

chromosomal region [1]. The previously demonstration that

CD8+ T lymphocyte numbers are transmitted in association with

particular HLA haplotypes in Portuguese HH patients [24,25]

prompt us to analyze if the same association was also observed in

the other HH populations, We confirmed that the phenotype of

low CD8+ T lymphocytes was commonly observed in each of the

three populations, but their respective distributions (Fig. 2) and

their genotype/phenotype correlations (Table 4) varied. The ‘‘low

CD8 phenotype’’ was significantly associated with the most

conserved ancestral haplotype carrying A*03-A-A-T in the cohorts

from Porto (n = 50) and Alabama (n = 51) but it was not associated

in a much greater series from Nord-Trøndelag (n = 148). This lack

of association of the common ancestral haplotype with the ‘‘low

CD8 phenotype’’ in Nord-Trøndelag patients is intriguing. One

should stress however, that discrepancies in expected genotype/

phenotype correlations can also be highly informative regarding

the localization of genetic traits. That individual chromosomes

with the same alleles (A*03, A-A-T) may or may not be associated

with the ‘‘low CD8 phenotype’’ indicates that these alleles are not,

by themselves, determinants of the trait, further supporting the

hypothesis of another independent, still unidentified, genetic

marker in the region. The time and place, during the evolutionary

history of the HH chromosomes, when the association occurred

remains unknown. Further studies of genotype/phenotype corre-

lations in other populations with different founder effects could

clarify this question. As suggested by Olsson and co-workers [35],

it would be of great interest to explore further the HLA haplotype/

phenotype correlations in an extended population of patients from

the Trøndelag region, because of its long historic close contacts

with the British islands, the supposed origin of founders of the

‘‘Celtic’’ haplotypes in Scandinavia [35]. On the other hand,

results from Porto and Alabama support the postulate that a major

genetic determinant of CD8+ T lymphocyte numbers is transmit-

ted in linkage disequilibrium with HFE in this ancestral haplotype

and suggest these populations as good targets to further position a

candidate locus associated with the transmission of low CD8+ T

lymphocyte phenotypes. The evidence that the association is lost

not only in chromosomes without the A-A-T SNP microhaplotype

but also, within the A-A-T conserved haplotypes, in chromosomes

without the ancestral A*03 allele (Table 4), favors the localization

of such a putative trait between HLA-A and PGBD1. Future studies

in these populations should consider selecting ‘‘non-conserved’’

chromosomes, i.e., those with discontinuous regions of conserva-

tion to the consensus haplotypes, to facilitate the search for

individual loci contributing to the trait.

Effect of the SNP Microhaplotypes on the Iron Overload
Phenotype

In addition to its association with a ‘‘low CD8 phenotype’’, the

conservation of the ancestral A-A-T microhaplotype had been

previously shown to be associated with a more severe iron

overload phenotype [18]. In the present study we showed that,

although in general, the presence in homozygosity of the A-A-T

microhaplotype was associated to higher values of serum ferritin

and total body iron stores in male patients, this association was not

significantly sustained at the individual populations’ level and

therefore cannot be used as a reliable universal marker of the

phenotypic expression in HH (Table 5). The lack of statistical

power in individual populations could be explained by the low

numbers of non-A-A-T homozygous patients found in each region

together with a high phenotypic diversity in these patients

(reflected in the high range of values shown in Table 5), but it

could also be influenced by genetic differences among populations,

namely the loss of association of the A-A-T microhaplotype with

the putative ‘‘low CD8 phenotype’’ marker in the Nord-Trøndelag

patients. One should also note that these patients were mainly

identified by screening of asymptomatic subjects, therefore

unselected for clinical severity. On the contrary, Porto and
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Alabama, patients were mainly diagnosed on a clinical setting.

Nevertheless, even using the same selection criteria, there are also

great differences in iron loading between Porto and Alabama

patients that could be related with different environmental factors

or local life-style habits, including regular alcohol consumption.

Therefore, further studies are still needed in larger populations

and with a higher density mapping of the region, in order to find a

more specific and universal surrogate marker of iron overload

severity in HH.

Concluding Remarks
We conclude that the evolutionary history of long extended

haplotypes on chromosome 6p21.3 could account for heteroge-

neity within the haplotypes and consequent differences in the

phenotypic expression of persons with HFE C282Y related HH.

These observations have important implications for the interpre-

tation of genotype/phenotype association studies in HH such as in

the case of MHC loci associated with the transmission of the

phenotype of low CD8+ T lymphocyte numbers where differences

occur among HH populations from geographically distant regions

(namely in north Portugal, Norway and Alabama, USA) or the

association of MHC markers with iron overload. The effect of

haplotype conservation may also have implications for under-

standing differences in disease penetrance or the consequences of

patients’ sampling according to different detection methods.

Although no consistent evidence is given about the predictive

value of the A-A-T microhaplotype for individual purposes, one

may predict that, in general, any cohort of severe or symptomatic

HH patients may contain a high frequency of this conserved

ancestral haplotype associated with a ‘‘low CD8 phenotype’’, such

as we have consistently found in Portuguese patients. On the

contrary, in populations where programs for screening of

asymptomatic cases are implemented, such as in Norway, it will

be more probable to find HH patients with non-conserved

haplotypes that are not associated with low CD8+ T lymphocytes.

It remains unknown whether the severity of iron overload depends

directly on the ‘‘low CD8 phenotype’’ or whether another

independent modifier of the iron phenotype is inherited in linkage

disequilibrium. Naturally, future positional cloning of a long-

sought major genetic trait in MHC associated with the transmis-

sion of CD8+ T lymphocyte numbers [45] should provide answers

to this question.
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