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Abstract

Background: Antimicrobial peptides are a promising alternative to conventional antibiotics. Plants are an important source
of such peptides; their pharmacological properties are known since antiquity. Access to relevant information, however, is
not straightforward, as there are practically no major repositories of experimentally validated and/or predicted plant
antimicrobial peptides. PhytAMP is the only database dedicated to plant peptides with confirmed antimicrobial action,
holding 273 entries. Data on such peptides can be otherwise retrieved from generic repositories.

Description: We present C-PAmP, a database of computationally predicted plant antimicrobial peptides. C-PAmP contains
15,174,905 peptides, 5–100 amino acids long, derived from 33,877 proteins of 2,112 plant species in UniProtKB/Swiss-Prot.
Its web interface allows queries based on peptide/protein sequence, protein accession number and species. Users can view
the corresponding predicted peptides along with their probability score, their classification according to the Collection of
Anti-Microbial Peptides (CAMP), and their PhytAMP id where applicable. Moreover, users can visualise protein regions with a
high concentration of predicted antimicrobial peptides. In order to identify potential antimicrobial peptides we used a
classification algorithm, based on a modified version of the pseudo amino acid concept. The classifier tested all
subsequences ranging from 5 to 100 amino acids of the plant proteins in UniProtKB/Swiss-Prot and stored those classified as
antimicrobial with a high probability score (.90%). Its performance measures across a 10-fold cross-validation are more
than satisfactory (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90) and it succeeded in classifying 99.5% of the PhytAMP
peptides correctly.

Conclusions: We have compiled a major repository of predicted plant antimicrobial peptides using a highly performing
classification algorithm. Our repository is accessible from the web and supports multiple querying options to optimise data
retrieval. We hope it will greatly benefit drug design research by significantly limiting the range of plant peptides to be
experimentally tested for antimicrobial activity.
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Background

Antimicrobial peptides constitute a crucial part of plant defence

against pathogens [1]. Such peptides have been extracted from

leaves, flowers, stems, seeds and roots and can be broadly grouped

into three categories, namely thionins [2], defensins [3] and lipid

transfer proteins [4]. Thionins are small, positively charged peptides,

enriched in arginine, lysine, and cysteine and act against fungi,

bacteria and animal and plant cells. Defensins, originally classified as

a type of thionins, are also abundant in basic residues. They exhibit

strong antifungal action, but their role in vivo is otherwise still poorly

understood. In vitro, they are known to inhibit translation in both

mammalian and non-mammalian cells. The defensive properties of

lipid transfer proteins have not been fully elucidated yet, but they

have been observed to act against fungi and bacteria.

Availability of information on plant antimicrobial peptides

remains limited, despite their established role in combating

pathogens and potential uses in medicine and agriculture. There

is only one central repository of experimentally validated plant

antimicrobial peptides, PhytAMP, with 273 entries [5]. Otherwise,

plant peptides can be found in databases [6–9] containing

antimicrobial peptides from various species. Of these databases,

CAMP is the only one to hold predicted peptides as well [10].

We constructed a database of predicted antimicrobial peptides

from plants, which we hope will complement PhytAMP and

promote research in antimicrobial compound design. Potential

antimicrobial candidates were selected by a machine learning

algorithm and were stored along with relevant information in a

database, which is easily accessible from the web.

Construction and Content

Datasets
Our positive dataset consists of a set of 2,160 experimentally

validated antimicrobial peptides found in the antimicrobial
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peptide database (APD) [11] and CAMP. This set was obtained by

filtering the APD and CAMP peptides through CD-HIT [12] to

eliminate sequences at .85% identity.

Our negative dataset consists of three types of sequences:

random subsequences of UniProt/SwissProt proteins that have not

been described or annotated as antimicrobial, synthesized amino

acid sequences following a uniform amino acid distribution and

synthesized amino acid sequences following the amino acid

distribution of UniProt/SwissProt. The former type of sequences

was selected using BioPython [13] whereas the latter two types of

sequences were generated using GenRGenS [14]. We used a

diverse training set to avoid overfitting the classifier. The initial

negative dataset consisted of 4,000 sequences (2,000 random

protein fragments and 2,000 artificial sequences, 1,000 of each

type), 3,983 of which remained after applying CD-HIT to

eliminate sequences at .85% identity. All sequences in the

negative dataset are less than150 amino acids long.

Feature Selection
The feature vector consists of the pseudo-amino-acid compo-

sition [15] with respect to the E1 amino acid descriptor as

described in [16]. In this paper, 237 physicochemical descriptors

of amino acids are transformed to a set of 5 quantitative

descriptors that allow amino acids to maintain roughly the same

distribution as in the original 237-dimensional property space.

Specifically, the 5 descriptors are the eigenvectors corresponding

to the first 5 eigenvalues of the matrix containing the scalar

products between all pairs of the original 237-dimensional vectors.

Among these descriptors (termed E1–E5), the E1 descriptor was

found to be highly correlated with hydrophobicity/hydrophilicity,

polarity and charge, all of which have been associated with

antimicrobial action.

Moreover, the pseudo-amino-acid composition provides infor-

mation on both amino acid composition and the relative

positioning of amino acids within the sequence. Within this

framework an amino acid sequence is represented by a 20+l
vector. The first 20 dimensions correspond to amino acid

composition and the subsequent l dimensions represent sequence

order correlations from all the most contiguous residues of a

sequence to all l most contiguous ones. For instance, if l equals 2,

we would have a 22-dimensional vector whose 21st and 22nd

dimensions would reflect correlations among all the most

contiguous and all the second most contiguous amino acids

respectively. The feature vector is given by (1):
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We set l equal to 4 (our shortest peptide is 5 amino acids long),

resulting to 24-dimensional feature vectors.

Since the E1 amino acid descriptor comprises several physical

properties related to antimicrobial activity and the pseudo-amino-

acid composition formulation allows us to use structural informa-

tion as well, their combination is optimally suited to our purposes.

It should be noted that this method will identify sequences of

similar physical and, therefore, functional properties even if they

are highly dissimilar. Besides, the pseudo-amino-acid composition

has already been successfully used in predicting functional

properties of proteins and peptides [15].

Classification
The classifier used in the present study is a Support Vector

Machine (SVM) as implemented in the scikit-learn package [17].

SVMs have been successfully used in protein functional classifi-

cation and localisation problems in the past (e.g. [18], [19], [20]),

and in the context of antimicrobial activity prediction in particular

(Table 1). The implementation is based on LIBSVM [21], which

also outputs probability values for each class. Probabilities are

computed using an improved version of Platt’s suggestion [22]:

Pr (yjX )~
1

1z exp (Af (X )zB)
ð4Þ

where Pr(y|X) is the posterior probability that point X belongs to

class y and f(X) is the signed distance of X from the separating

hyperplane. A and B are obtained by minimizing the likelihood

function. LIBSVM uses a solver that ensures global convergence

and uses cross-validation to avoid overfitting [23], [24].

By experimenting with all built-in kernels, we have found that a

radial basis function with the default parameters performs best.

The proposed SVM classification scheme takes an amino acid

sequence as input and reports whether it exhibits antimicrobial

properties or not, providing a probability estimate of the outcome.

Table 2 shows performance measures computed using a 10-fold

cross-validation on the dataset described in the previous section.

Accuracy is consistently high, however true negative rate is slightly

lower than true positive rate, meaning the classifier will fail to

recognize antimicrobial peptides slightly more often than non-

antimicrobial ones. Still, all performance metrics score very well

and made all the more credible by the high MCC values. Current

classification schemes attained accuracies of 87.5%-93.2% for

CAMP using 64 features [10], 90% for [25,26] using an Artificial

Neural Network (ANN) with 50 nodes (without cross-validation),

94% for [27] using an ANN with 44 descriptors and a validation

set consisting exclusively of randomly synthesized peptides,

83.02% for [28] using 4 features and an SVM with a small

dataset, and 93.3% for [29] using a combination of physicochem-

ical properties and the Basic Local Alignment Search Tool

(BLAST) alignment (with a sensitivity of ,80.2%), as outlined in

Table 1. Compared to the classification algorithms mentioned

above, our classifier manages to achieve both high accuracy and

high sensitivity and specificity while being trained on a diverse set
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(including both naturally occurring and artificial amino acid

sequences) and employing a relatively low number of features.

Figure 1 shows the probability distributions for antimicrobial/

non-antimicrobial predictions for one of the cross-validation test

sets consisting of ,1050 peptides (results from the rest cross-

validation runs are similar).

We selected PhytAMP, which contains experimentally validated

plant antimicrobial peptides, in order to test our algorithm’s

predictive power against that of CAMP. We firstly used all the 271

antimicrobial peptides of PhytAMP (273 peptides except 2 that

include non-standard amino acids). CAMP predicted correctly 252

out of 271 peptides (92.99%) whereas C-PAmP predicted correctly

270 out of 271 peptides (99.63%). Excluding from the initial

PhytAMP dataset 59 peptides that had been included to our

training set results in a subset of 212 peptides. When screening

these 212 peptides, CAMP predicted correctly 197 out of 212

peptides (92.93%) whereas C-PAmP predicted correctly 211out of

212 peptides (99.53%).

Scanning proteins for antimicrobial regions
We used our classifier to identify antimicrobial regions of length

ranging from 5 to 100 amino acids [11] in all proteins of all plant

species found in UniProtKB/Swiss-Prot. For each plant protein,

all subsequences of a given length were tested using a sliding

window (e.g. in order to find antimicrobial sequences of length 5,

we tested subsequences spanning positions 1 to 5, 2 to 6, …, (n-4)

to n, where n is the length of the protein). Sequences whose

antimicrobial probability exceeds 90% have been stored in a

database. These data have been created utilizing our Institution’s

(BRFAA) High Performance Computer Cluster consisting of 6

servers, each equipped with 2 x 6-core Xeon 2.66 GHz processors

and 16 GB RAM.

Database
As previously mentioned, we created a database in Apache

CouchDB format (see Figure 2). Our database contains

15,174,905 antimicrobial sequences, whose probability of being

antimicrobial is at least 90%. These sequences are derived from

33,877 proteins found in 2,112 plant species. It is worth noting

that since proteins were scanned using a sliding window, many of

these peptides overlap, or are subsets of one-another, so the

number of unique subsequences of proteins is significantly lower.

Database records (documents) correspond to proteins, and each

has the following fields:

N _id: contains the protein accession number (AC). For instance,

‘‘A0A314’’.

N Description: Contains a brief description of the protein,

extracted from UniProtKB/SwissProt. For instance, ‘‘RecName:

Full = 30S ribosomal protein S12, chloroplastic’’

N Organism: contains the name of the plant the specific protein

belongs to. For instance, ‘‘Coffea arabica (arabian coffee)’’

N Sequence: contains the sequence of the whole protein. For

instance, ‘‘MPTIKQLIRNARQPIRNVTKSPALRGCPQRRGT-

CTRVYTITPKKPNSALRKVARVRLTSGFEITAYIPGIGHNL-

QEHSVVLVRGGRVKDLPGVRYHIVRGTLDAVGVKDRQQGRS-

KYGVKKPK’’

Table 1. Comparative overview of other antimicrobial peptide studies.

Study Method Accuracy Features Positive set Negative set Validation set

CAMP SVM
Random Forests

91.50%
93.2%

64 (after recursive feature
elimination on initial set
of 257) physicochemical
properties (composition),
dipeptide & tripeptide
frequencies, distribution
& transition of some
features along sequences

2578 experimentally
validated CAMP
peptides

4011 random proteins
from UniProt,
synthesized sequences
using random numbers,
experimentally verified
non-antimicrobial
peptides (25)

30% of positive &
negative sets

Fjell et al Quantitative
structure-activity
relationships
(QSAR)

80.00% 44 QSAR descriptors 1433 synthesized peptides, 9 amino-acids long
(antibacterial acitivity measured experimentally)

,100000 synthesized
peptides

Torrent et al ANN
SVM

90%
75%

8 physicochemical
& structural properties
(50 hidden neurons)

1157 CAMP
antimicrobial
peptides

991 randomly selected
UniProt protein fragments

290 antimicrobial
peptides from CAMEL
and RANDOM
databases

Porto et al SVM 83.02% 4 physicochemical
properties

199 peptides from
APD

199 proteins predicted
to be transmembrane

106 sequences from
positive & negative
training sets

Wang et al BLASTP & Nearest-
Neighbour Algorithm
(NNA)

93.31% 25 composition
& pseudo-amino acid
composition features from
initial set of 270 (for NNA)

870 peptides from
CAMP (including
some predicted)

8661 protein fragments
randomly selected from
UniProt

1136 predicted
peptides from CAMP

doi:10.1371/journal.pone.0079728.t001

Table 2. Maximum, minimum and average values of
Accuracy, Sensitivity, Specificity and Matthews Correlation
Coefficient (MCC) for a 10-fold cross-validation.

Values Accuracy Sensitivity Specificity MCC

Max 0.94 0.96 0.94 0.87

Min 0.89 0.92 0.87 0.78

Average 0.91 0.93 0.90 0.82

doi:10.1371/journal.pone.0079728.t002

In Silico Predicted Plant Antimicrobial Peptides

PLOS ONE | www.plosone.org 3 November 2013 | Volume 8 | Issue 11 | e79728



N win5…win100, where applicable: contain peptides of corre-

sponding length along with their respective C-PAmP antimi-

crobial probability. For instance, ‘‘win10’’; ‘‘Peptide Sequence:

VTKSPALRGC’’; ‘‘Probability: 0.986’’.

In addition, four CouchDB views were also created to speedup

query processing time. In Figure 2, an example of view of the

database with 10 out of 15,174,905 peptides is illustrated.

Utility and Discussion

This database is accessible via C-PAmP (see Figure 3), a web

application that provides users with the ability to search and

estimate the antimicrobial potential of individual peptides within a

variety of plant proteins. Users can search by:

N Peptide Sequence: The application searches the database for

proteins that contain the submitted peptide sequence and

responds with the antimicrobial classifier score, also providing

the CAMP antimicrobial score. In addition, if there is any

experimental evidence for this peptide sequence either in

PhytAMP database or in CAMP platform, then the proper

links are provided to the user.

N Protein Sequence: The application searches whether the

protein is contained in the database. If so, the corresponding

species, protein name and AC, sequence and description are

returned. Clicking on the protein AC displays the results of a

search by protein AC (see below).

N Protein AC: The application returns some basic information

on the requested protein along with information regarding the

probability for antimicrobial action with respect to position

within the protein (presented as both antimicrobial graph and

heatmap). Moreover, a list of antimicrobial peptides derived

from the protein is presented. Furthermore, the application

presents the protein structure, if a corresponding Protein Data

Bank (PDB) file is found. The antimicrobial graph and the

corresponding heatmap show regions where antimicrobial

peptide presence is prevalent: amino acids are coloured

according to the number of antimicrobial peptides they are

part of. The graph/heatmap value is the normalised weighted

sum of C-PAmP probability scores of all the overlapping

antimicrobial peptides.

N Species: The user selects the plant species of interest and the

system retrieves the corresponding proteins with high-scoring

antimicrobial peptides from the database.

Figure 1. Distribution of predicted probabilities for antimicrobial (a) and non-antimicrobial (b) samples.
doi:10.1371/journal.pone.0079728.g001
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Five examples using the C-PAmP tool are illustrated below. In

the first example, according to [30] it is stated that in protein

[Swiss-Prot:A4L7R7], plant Pinus Sylvestris (scots pine), Defensin-1

is found in the Chain from 34 to 83 amino acid with score 0.81

using CAMP, whereas no respective record in PhytAMP database

was found. Using our approach, C-PAmP found that sequence to

be antimicrobial with probability equal to 1. In the second case

described in [31], antimicrobial activity (Defensin D1) was found

in the whole chain of the protein [Swiss-Prot:P86972], plant Nigella

sativa (black cumin), with CAMP scoring 0.79 and no respective

record in PhytAMP. Again, C-PAmP classifies that protein as

antimicrobial with 0.99 probability. In the third example

Defensin-like protein 1 [Swiss-Prot:P0C8Y4] was found by [32]

in plant Dahlia merckii (bedding dahlia). However, there is no

relevant PhytAMP entry, whereas CAMP scores 0.91 and C-

PAmP scores 0.99. In the fourth case, if we analyse protein [Swiss-

Prot:O24006] of Impatiens balsamina (balsam), we see six peaks in its

antimicrobial score graph. This finding is consistent with the

corresponding annotations in Swiss-Prot as shown in Figure 4.

Finally, the protein [Swiss-Prot: P01542] that is classified by the

proposed prediction algorithm as antimicrobial with probability

0.98, is found in PhytAMP as antimicrobial too, whereas the

specific peptide is absent in CAMP database.

In the presented examples we observe that C-PAmP provides

information that is consistent either to experimental data from

PhytAMP or to data retrieved from CAMP. The prediction scores

for the presented antimicrobial peptides are higher in C-PAmP

than in CAMP, providing stronger evidence in the correct

direction. Therefore, we believe that C-PAmP can act comple-

mentary to the other two platforms, providing a comprehensive,

large scale repository of strong candidate antimicrobial peptides

found in plant species.

In Figures 5 (a) and (b) we can see some statistics concerning the

computationally predicted plant antimicrobial peptides. According

to them, the most probable peptide length is between 12 and 15

amino acids. In addition, the candidate antimicrobial peptides are

found with high content of glycine residue, which may provide

flexibility to the peptide structures. Peptides are also enriched in

lysine, alanine, serine, proline, leucine and cysteine. They are poor

in histidine, methionine and tryptophan, a trend also present in

the PhytAMP peptides.

Conclusions

C-PAmP is a database that contains computationally predicted

antimicrobial peptides from plants. Peptides were selected by a

highly performing classifier that tested all subsequences ranging

from 5 to 100 amino acids of all proteins of all plant species in

UniProt/SwissProt. The web interface of C-PAmP supports

multiple types of queries and provides a lot of relevant information

on peptides besides their probability score. C-PamP is the first

Figure 2. Snapshots from the C-PAmP Database.
doi:10.1371/journal.pone.0079728.g002
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Figure 3. Snapshots from the web interface of C-PAmP Database.
doi:10.1371/journal.pone.0079728.g003

Figure 4. C-PAmP predictions for 6 antimicrobial regions in protein O24006 of Impatiens balsamina (Balsam) in comparison with
the corresponding annotations in UniProtKB/Swiss-Prot.
doi:10.1371/journal.pone.0079728.g004

In Silico Predicted Plant Antimicrobial Peptides

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e79728



database of its kind, offering such comprehensive information on

predicted peptides and direct comparison with other predictors. It

is the only database of predicted peptides dedicated to plants and

the result of a large-scale computational experiment. C-PamP is

driven by a powerful classifier, whose performance metrics on a

diverse training set and classification results on PhytAMP lend

credibility to its predictions. Since classification is based on a

different approach than those of other studies and benefits from

high performance, C-PamP can also provide an independent test

to other, state-of-the-art antimicrobial activity predictors.

We hope researchers involved in novel drug design will use it to

speed up the discovery component of antimicrobial peptide

research.

Availability and Requirements
C-PAmP is available at: http://bioserver-2.bioacademy.gr/

Bioserver/C-PAmP/. Latest Sun Java (http://www.java.com)

software should be installed in order to display protein structure

PDB files associated with Protein Accession Number.

Figure 5. Statistics of the predicted plant antimicrobial peptides.
doi:10.1371/journal.pone.0079728.g005
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