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Abstract

In the face of drastically rising drug discovery costs, strategies promising to reduce development timelines and
expenditures are being pursued. Computer-aided virtual screening and repurposing approved drugs are two such
strategies that have shown recent success. Herein, we report the creation of a highly-curated in silico database of
chemical structures representing approved drugs, chemical isolates from traditional medicinal herbs, and regulated
chemicals, termed the SWEETLEAD database. The motivation for SWEETLEAD stems from the observance of
conflicting information in publicly available chemical databases and the lack of a highly curated database of chemical
structures for the globally approved drugs. A consensus building scheme surveying information from several publicly
accessible databases was employed to identify the correct structure for each chemical. Resulting structures are
filtered for the active pharmaceutical ingredient, standardized, and differing formulations of the same drug were
combined in the final database. The publically available release of SWEETLEAD (https://simtk.org/home/sweetlead)
provides an important tool to enable the successful completion of computer-aided repurposing and drug discovery
campaigns.
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Introduction

As the research and development costs needed per
approved new chemical entity (NCE) continue to soar[1-3],
drug discovery researchers are seeking new strategies aimed
at controlling these costs. Repurposing approved drugs to treat
new indications is one such strategy, which brings the promise
of rapid advancement into clinical trials, pre-determined
pharmacokinetic and toxicity profiles, and overall reduced
development costs. Many examples of successfully repurposed
drugs exist with dramatically lower research price tags in
comparison to de novo design[4-11]. A second drug discovery
strategy aimed at reducing development costs is the utilization
of computer-aided drug design, including in silico
screening[12-14]. These techniques are wide ranging and
extremely diverse, but all centered on the goal of filtering a
database of molecules to identify promising compounds in

hopes of reducing the subsequent costs of experimental
validation. Recently, many have seen promising results from
combining these two strategies to rapidly identify and advance
promising new therapeutic strategies[15-20].

The success of any computational technique is dependent
on the quality of data used during the creation of the
computational algorithm, and when poor data is used one can
only expect poor quality results. A recent report manually
evaluated 728 crystal structures used to train well-used
docking algorithms, and found only 233 of these crystal
structure provided the electron density needed to validate the
correctness of the structural model[21]. Of the 233 which did
provide density, inspection revealed several errors in the
published ligand models - including incorrect element types,
incorrect stereochemistry, and even one instance of the wrong
ligand being used in the model. In the end, nearly half of the
considered structures were deemed to be of insufficient quality
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for use in developing docking algorithms. It is unreasonable to
expect exceptional performance from algorithms trained using
such imperfect data.

It is challenging to find publicly available, complete, and well
curated information regarding the molecular structures of the
known approved drugs. While several databases are available
containing vast amounts of chemical data[22-30], when
querying these databases for a given drug conflicting
information is occasionally retrieved. As motivation for the
present work, consider the HIV protease inhibitor Indinavir.
Searching two well used databases, PubChem and
Chemspider, for this drug returns PubChem compound
5362440 and ChemSpider compound 4515036[31]. While the
structure and IUPAC name suggested on these two databases
appear identical, Figure 1a and 1b show the structures
perceived by the OpenEye software upon opening the 2D
structure files downloaded from each database. Unexpectedly,
these two files disagree on the stereochemistry of one of the
molecules chiral centers. Figure 1c demonstrates the effect of
this difference when Indinavir is docked into its native protein
crystal structure (PDB 2R5P) using the OpenEye docking
program FRED[32]. While the correct stereoisomer of Indinavir
scores in the top 6% of all approved drugs, the incorrect
stereoisomer falls to the bottom 12% - demonstrating the
sensitivity of such calculations to data integrity. For future
efforts utilizing computational screening to repurpose approved
drugs, it is essential that a highly accurate database of
molecular structures be available.

We report here our effort to address this issue, and the
creation of a database of highly accurate chemical structures of
approved drugs. Using an automated tool, we queried several
free, public, and well-used chemical databases for reported
structures of approved drugs and employed these structures in
a consensus building scheme to identify the true structure for
every approved drug. In addition to approved drugs, we include
the structures of other biologically active and non-toxic
molecules (or, molecules for which toxicity profiles are known)
such as illegal drugs and chemical isolates from traditional
medicinal herbs. We have termed this database the
SWEETLEAD database (Structures of Well-curated Extracts,
Existing Therapies, and Legally regulated Entities for
Accelerated Discovery), and have made it available for public
use.

Methods

Resource Evaluation
We first sought to build a tool capable of automating the

process of identifying the correct molecular structure for a
given drug substance. Prior to building this tool, the free and
public resources relevant to such a task were evaluated. It was
found the lists of approved drugs, for example from the FDA
Electronic Orange Book or the WHO Essential Medicines List,
were disseminated as text documents or similar. When
structural information was provided, it was frequently in the
form of an image of the chemical structure which was not
readily convertible to a format amenable for cheminformatics.
This constraint required our tool to take as input only the name,

or a list of names, of drug substances. We note here, given the
ever increasing use of computational tools in drug discovery,
the potential utility of regulatory agencies providing structural
information as molecular structural files.

Additionally, we aimed to release SWEETLEAD publicly, and
thus required all datasources used to be of a free and public
nature. While this eliminates well used but proprietary chemical
datasources (such as SciFinder), several publicly available
databases have emerged which provide structural and other
information about approved drugs. These include PubChem,
ChemSpider, DrugBank, KEGG, PharmGKB, ChEBI, and
others. Further, several of these databases are either available
for download or provide automated querying services, which
enable automated querying sufficient for our purposes. In
relevance to this work, these databases provide either links to
other databases in the form of database IDs (referred to herein
as Reference Databases), information describing the chemical
structure of a molecule (Structural Databases), or both types of
information.

As indicated above, we have found that when querying
various Structural Databases by a drug name, conflicting
structural information is sometimes retrieved for a single drug
substance. These differences occur most often as conflicting
stereochemistry definitions, but included more egregious errors
such as incorrect connectivity and incorrect substituents.
However, manual inspection revealed that while a single
Structural Database may have incorrect structural information,
when multiple databases were consulted simultaneously the
correct chemical structure was often obvious by simply
determining which structure was the most ‘popular.’ That is, the
structure present in the highest number of Structural
Databases after searching by a drug name was the correct
structure. Thus, we decided that a simple ‘rank-by-vote’
scheme, where the structure returned by the highest number of
databases was selected as the true structure, would be
sufficient to ensure our tool returned the correct structure for a
given drug name. Such rank-by-vote approaches have been
used to build consensus among conflicting information in other
fields, such as virtual screening and gene expression
prediction[33-36].

Finally, we sought to design our algorithm to create a
database of structures for use in cheminformatics, and in
particular for use in ligand and structure based drug design. It
was decided that the most useful end product would be, for a
given drug name, a consensus molecular structure, a collection
of known synonyms, and relevant database IDs to enable
further research when a given drug was identified as a potential
hit from virtual screening. Further, since differing formulations
such as different salt forms of a drug are equivalent from the
standpoint of virtual screening, only the active pharmaceutical
ingredient (API) was considered. As a result, multiple specific
formulations for a given API have been condensed into a single
record in SWEETLEAD.

Algorithm Workflow
The algorithm developed to create SWEETLEAD is outlined

below, but is simplified for ease of explanation. This algorithm
was implemented in Python and makes extensive use of the

SWEETLEAD Database
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OpenEye Scientific cheminformatics toolkits in addition to freely
available Python libraries[37]. The PubChem Power User
Gateway (PUG) and ChemSpider WebAPI offer sophisticated
automated searching capabilities, while the database
information for KEGG, PharmGKB, and DrugBank is available
for download and can be manipulated locally.

The overall workflow of our tool is shown in Figure 2, and
can largely be divided into data collection and data curation
stages. In the first step of the data collection stage, a drug
name is taken as input. Several Reference Databases are then
queried using this name, and the internal and external
Structural Database IDs from each are collected. The list of

Structural Database IDs returned from the previous step is then
sorted according to how frequently they were returned; a
database ID returned by all queried sources would thus
become the ‘most popular’ and highest ranked ID, and less
frequently returned IDs would be lower ranked. Next, each
Structural Database is then queried by database ID, and the
molecular structure associated with each ID is collected
(preferably, as a 2-D sdf file). Given that each Structural
Database uses a unique processing workflow in creating these
structure files, including differing aromaticity models and
protonation states, it is then necessary to standardize these
structures prior to comparison. Standardization is

Figure 1.  Effect of inaccurate ligand structural information on virtual screening performance.  A) and B) Chemical structures
for indinavir as depicted by the OpenEye Scientific visualizations program VIDA. The 2D structures returned by ChemSpider (A –
ChemSpider ID 4515036) and PubChem (B – PubChem ID 5362440) differ in the stereochemistry of a single chiral center,
highlighted by the red circles. C) Effect of the differing structures of indinavir on docking results obtained by the OpenEye Scientific
docking program FRED. Ten low energy conformers of each ligand were created with the OpenEye Scientific program Omega, and
ligands were docked into the protein structure of HIV protease extracted from the indinavir-bound crystal structure PDB 2R5P. The
best scoring pose for the PubChem (green carbons) and ChemSpider (orange carbons) ligands are shown in comparison to the
crystallographic ligand (yellow carbons). While the correct structure, obtained from PubChem, scores in the top 6% of all approved
drugs, the incorrect structure scores in the bottom 12%.
doi: 10.1371/journal.pone.0079568.g001
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accomplished by stripping salts and other non-API fragments,
assigning specific chirality (when appropriate), applying a
common aromaticity model, protonating the API as predicted at
pH 7, and finally representing the structure as an isomeric
SMILES string.

The second stage of the algorithm involves data curation by
identifying the correct molecular structure and collecting
relevant associated data. First, the highest ranking structures
from each Structural Database are compared, as isomeric
SMILES strings, to determine whether all suggested structures
are identical. If such a consensus is reached, the resulting
structure is associated with the input drug name. If the highest
ranking structures are not identical, all retrieved structures from
the five Structural Databases are compared in an attempt to
obtain a consensus. If no consensus is reached, then the
number of ‘votes’ each structure receives are tallied and the
structure obtaining the most votes is associated with the input
drug name. Finally, if no structure receives the majority of votes
manual inspection is employed to determine the correct
structure by referring to patents filed for the approved
medicine. Once the correct structure has been identified, the
database IDs linking to that exact structure are collected and
recorded. Finally, the synonyms provided by the Structural
Databases for each relevant database ID are collected and
sorted according to frequency. An entry is then made into our
SWEETLEAD containing the drug name, chemical structure,
database IDs, and synonyms. Entries which are identical in
structure, such as arise from different salt forms of the same
API, are combined in the final database. As a concrete
example of this process, we have outlined the consensus
building scheme for the drug Apomorphine Hydrochloride in the
supplementary material (Figure S1).

Results and Discussion

Given the input of our tool is a list of drug names, we first
sought to obtain lists of approved drugs from several regulatory
agencies. We attempted to include approved drug lists from
several geographically disperse and highly populated countries
with two aims. Firstly, doing so would ensure that the final
database represents drugs available for a significant portion of
the world population. Secondly, by including geographically
diverse countries we hoped that any regional differences in
medical training and disease burden would not limit the
widespread utility of SWEETLEAD. As such, we have included
drugs approved in the USA, India, China, Australia, Brazil, the
EMA, the WHO Essential Medicines List, and those listed in the
NGCG Pharmaceutical Collection[38].

The original intent of our work was to provide a database of
all approved drugs to help facilitate the repurposing efforts
occurring in our lab and elsewhere. The benefits of repurposing
as a drug discovery strategy are well known, and include the
facts that approved drugs a) are known to be physiologically
active, b) are relatively well tolerated (or at least have known
toxicity), and c) are bioavailable (or at least have known
effective routes of administration), among others. We then
considered what other chemical substances had these same
benefits and may provide useful lead compounds for

repurposing efforts. For example, if publicly known, compounds
that pass Phase II clinical trials but then are abandoned due to
lack of efficacy for their primary indication could still possess
the same benefits as approved drugs for use in repurposing
campaigns. Further, compounds such as recreational drugs
have obvious physiological activity and well known toxicity
profiles. Traditional and herbal medicines have been used for
centuries for purported medical benefits, and chemical isolates
from these substances could also be interesting lead
compounds. As such, lists containing these types of chemicals
were also obtained and added to the database, and include US
scheduled drugs and chemical isolates from traditional Chinese
and Ayurvedic medicinal plants.

The SWEETLEAD database was then constructed by
inputting this list of drug and chemical names into our structure
determination algorithm. For most compound names, either a
consensus or majority structure was determined. Figure 3
shows the outcomes of the 1996 API names obtained from the
FDA electronic Orange Book. Over 90% of names led to the
identification agreed upon structure, and consensus between
all databases polled was achieved for 55% of compound
names. From the combined list of drug and chemical names,
4442 chemical structures were collected, and the classification
of all compounds included in the initial release of SWEETLEAD
is given in Table 1. Of the 4442 compounds, 2836 are
approved drugs in at least one region and 1427 are FDA
approved drugs. 217 of these compounds are scheduled drugs
in the United States, and 1625 of the compounds derive from
traditional medicinal herbs. Some compounds can be multiply
classified, such as methamphetamine and codeine which are
both approved therapeutics and scheduled drugs. Reflecting
the fact that multiple formulations of APIs are combined into a
single entry in SWEETLEAD, the number of unique PubChem
IDs (4713) and ChemSpider IDs (4501) is greater than the total
number of unique compounds. The entire SWEETLEAD
database can be downloaded at https://simtk.org/home/
sweetlead. A natural question following our decision to include
approved and non-approved compounds in SWEETLEAD, and
in light of often discussed ‘drug-like’ properties, would be
whether the two sets of compounds are similar in their
molecular properties. Figure 4 compares the distributions of
molecular properties of the approved drugs and non-approved
chemicals in the SWEETLEAD database. Molecular weight and
rotor, hydrogen bond donor, and hydrogen bond acceptor
distributions are shown, while predicted LogP was omitted due
to inaccuracies in computational LogP prediction tools. Chi-
Squared tests indicate that the distributions for all for properties
are statistically different between the drug and non-drug
groups, however this difference is most marked for the
distributions of rotatable bonds where over 31% of non-drugs
have less than 2 rotatable bonds as compared to 13% for
approved drugs. Additionally, 93% of the non-approved
compounds pass Lipinski’s Rule of 5 with only 1 violation,
identical to the 93% mark for approved drugs, which indicates
their drug likeness according to that metric. Overall, both the
drugs and non-drugs in the SWEETLEAD database exhibit
molecular properties similar to the ‘drug-like’ rules of thumb
typically used in a drug discovery setting.

SWEETLEAD Database
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Figure 2.  Workflow of the consensus building algorithm.  The described process of identifying a correct structure for a given
drug begins with a drug or chemical name. In the first stage of the algorithm, the Data Collection stage, several databases are
polled by the name and the database IDs linked to that name are retrieved and ranked by frequency each ID was returned (i.e.,
which ID is ‘most popular’ among databases polled). For each ID returned, the chemical structure associated with that ID is
retrieved and standardized (salts removed, standard protonation states and aromaticity models, etc.). In the second stage, the Data
Curation stage, the most popular structures from each database are compared. If all structures match, then the structure is
assumed to be correct and is assigned to the drug name in the final SWEETLEAD database. If the structures do not match, an
iterative cycling through the most popular structures for each database attempts to identify a consensus structure for the drug name.
If a consensus or majority structure can not be identified, a manual review is undertaken. Finally, duplicate structures in
SWEETLEAD are combined, to allow for numerous brand names and other identifiers for approved drugs.
doi: 10.1371/journal.pone.0079568.g002
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Figure 3.  Example outcomes of chemical names input into the SWEETLEAD workflow.  For the list of 1996 API names from
the FDA orange book, the percentage of compounds is shown for which either a consensus structure, a majority vote structure, or
no clear majority structure was identified via the SWEETLEAD algorithm. Of these drug names, a consensus or majority structure
was determined for 91% of compounds.
doi: 10.1371/journal.pone.0079568.g003
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Table 1. SWEETLEAD Database Content Profile.

SWEETLEAD Data Field Number Unique Entries
Total Molecules 4442
Approved Drugs 2836
Illegal/Scheduled Drugs 217
Herbal Isolates 1625
PubChem IDs 4713
KEGG IDs 2592
ChemSpides IDs 4501
DrugBank IDs 1286
ChEBI IDs 1760
PharmGKB IDs 1070

doi: 10.1371/journal.pone.0079568.t001

Conclusions

In summary, SWEETLEAD is a highly curated database
containing accurate chemical structures and identification
information for the world’s known approved drugs and other
non-toxic chemicals. We hope to continue to refine and build
the SWEETLEAD database by adding to the number of
compounds represented by the database, increasing the
quantity of external database links provided herein, and
correcting any errors which exist in the present release. Given
the sensitivity of computational based approaches to data
quality, it is our hope that SWEETLEAD will serve as a
valuable resource supporting cheminformatics based
repurposing efforts.

Figure 4.  ‘Drug-like’ properties of approved drugs vs. non-approved compounds in SWEETLEAD.  Comparison of molecular
descriptors frequently referenced as important to drug-likeness between approved drugs and other compounds in the SWEETLEAD
database. The property distributions for both the approved drugs and non-approved compounds in SWEETLEAD are shown for A)
molecular weight, B) the number of rotatable bonds, C) the number of hydrogen bond donors and D) acceptors.
doi: 10.1371/journal.pone.0079568.g004
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Supporting Information

Figure S1.  Example Consensus Building for Apomorphine
Hydrochloride. Step 1) To begin the consensus building
process, each Reference Database is queried by the
compound name, and Structural Database IDs are collected.
The resulting IDs are tallied by assigning each Structural
Database ID a vote equal to 1/(# Structural Database IDs
returned by that Reference Database). So, in this example,
PubChem ID 107882 is the most popular PubChem ID by
obtaining 1.25 votes (1 for being the only result returned by
PubChem, and .25 for being one of 4 IDs returned by
ChemSpider). Step 2) The structure associated with each
winning Structural Database ID is obtained, and standardized
according to the text. The structures are then associated with
all Structural Database IDs which return the structure after
standardization (various salt forms, protonation states, etc.)
Step 3) The most popular structure is identified. In this case,
there is a consensus structure as all Reference Databases

pointed towards Structural Database IDs matching the most
popular structure. Step 4) The winning structure is associated
with the drug name, winning Structural Database IDs,
synonyms associated with the winning Structural Database
IDs, and entered into the SWEETLEAD database.
(PDF)
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