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Abstract

High-throughput sequencing of transcriptomes (RNA-Seq) has recently become a powerful tool for the study of gene
expression. We present rSeqDiff, an efficient algorithm for the detection of differential expression and differential splicing of
genes from RNA-Seq experiments across multiple conditions. Unlike existing approaches which detect differential
expression of transcripts, our approach considers three cases for each gene: 1) no differential expression, 2) differential
expression without differential splicing and 3) differential splicing. We specify statistical models characterizing each of these
three cases and use hierarchical likelihood ratio test for model selection. Simulation studies show that our approach
achieves good power for detecting differentially expressed or differentially spliced genes. Comparisons with competing
methods on two real RNA-Seq datasets demonstrate that our approach provides accurate estimates of isoform abundances
and biological meaningful rankings of differentially spliced genes. The proposed approach is implemented as an R package
named rSeqDiff.
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Introduction

Alternative splicing is an important mechanism in post-

transcriptional regulation of eukaryotes. Through alternative

splicing, a single gene can produce multiple different transcript

isoforms that usually lead to different protein isoforms with

different structures and biological functions, which can greatly

enrich the diversity of eukaryote transcriptomes [1–3]. Several

studies also show that many human disease-causing mutations

affect alternative splicing rather than directly affecting coding

sequences and ill-regulated alternative splicing events have been

implicated in a large number of human pathologies [4–6]. Due to

its vital role in biological processes such as gene regulation, cell

differentiation, development and disease pathophysiology, there is

an urgent need for the development of new technologies and

methodologies for the study of alternative splicing events and the

quantification of the expression of alternative isoforms.

In recent years, high-throughput sequencing of transcriptomes

(RNA-Seq) has rapidly evolved as a powerful tool for the study of

alternative splicing in humans and model organisms [1–3,7].

Many RNA-Seq experiments have been conducted to investigate

the following two problems: (i) the discovery of novel transcripts

and (ii) the estimation and detection of differentially expressed

transcripts. Here we focus on the second problem. Several

statistical approaches have been proposed in recent years towards

this end. One type of approach is exon-based, which focuses on

the detection of differential usage of exons [8–11]. The other type

of approach is isoform-based, which focuses on the estimation of

differential expression of isoforms across different biological

conditions [12–16].

In this article, we present an isoform-based approach for the

detection of differential isoform expression from multiple RNA-

Seq samples. In particular, we extend the linear Poisson model in

[17,18] for the estimation of isoform abundances from single-end

or paired-end RNA-Seq data. Unlike existing approaches which

detect differential expression of transcripts, we consider three cases

for each gene: 1) no differential expression, 2) differential

expression without differential splicing and 3) differential splicing.

We specify statistical models characterizing each of these three

cases and use hierarchical likelihood ratio test for model selection.

The remaining part of the paper is organized as follows: We first

introduce the statistical model and method, and then use

simulations to study the type-I error and statistical power of the

proposed method, followed by the analyses of two real RNA-Seq

datasets. For the first dataset (an ESRP1 dataset published in [11]),

we compare our approach with two other methods (MATS [11]

and Cuffdiff 2 [16]) using RT-PCR assays performed in [11]. For

the second dataset (an ASD dataset published in [19]), we present

a genome-widely analysis of differential splicing between Autism

Spectrum Disorder (ASD) and normal brain samples.

Methods

Notations
We use similar notations as in [18] to present the statistical

model, which are summarized in Table 1 and explained below in

details.
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The linear Poisson model for multi-sample RNA-Seq data
We extend the linear Poisson model for one-sample RNA-Seq

data in [17,18] to multiple samples. Assume there are K conditions

in the study, and in the kth condition there are Jk distinct read

types. A read type refers to a group of reads (single-end or paired-

end) mapped to same position in a transcript [18]. We write Jk as J

to avoid cluttering but note this quantity depends on the condition

k. For a gene G of interest with I annotated transcripts (isoforms),

we define h as the K6I isoform abundance matrix for all the K

conditions, where the kth row vector of this matrix,

hk~ hk1,hk2, . . . ,hkI½ �T denotes the isoform abundance vector of

G in the kth condition, and hki denotes the abundance of the ith

isoform in the kth condition. Correspondingly, each condition has

its own read sampling rate matrix

Ak~

ak11 � � � ak1J

..

.
P

..

.

akI1 � � � akIJ

2
664

3
775

where akij denotes the rate that read type j is sampled from isoform

i in condition k. In our implementation we adopt the uniform

sampling model in [18] for single-end reads which assumes all the

possible read types from a transcript are generated with the same

rate. For paired-end reads we adopt the insert length model in

[18], which assumes the sampling rate of a particular paired-end

read type depends on its insert size. The sampling rate matrix Ak

can be estimated based on all the mapped reads in condition k

[18]. Each condition also has its own read count vector

Nk~ nk1,nk2, . . . ,nkJ½ �T , where nkj denotes the number of reads

of type j mapped to any of the I isoforms in condition k. Given hk

and Ak, Nk is assumed to follow the one-sample linear Poisson

model [17,18]. In particular, the probability mass function of Nk is

fhk
Nkð Þ~ P

J

j~1

hk
:akj

� �nkj e
{hk

:akj

nkj !
ð1Þ

where hk
:akj~

PI
i~1

hkiakij .

Given Ak and Nk for k = 1, 2, …, K, our goal is to jointly estimate

h combining the data from all the samples. This will be

complicated by the fact that the hk’s may not be independent of

each other under different biological situations. Therefore, we

need to re-parameterize h according to the underlying biological

situation of whether the gene and its isoforms show differential

expression. In particular, we propose the following three nested

models (Figure 1) corresponding to three possible underlying

biological situations regarding the pattern of gene expression

across multiple conditions.

Model 0 [no differential expression] characterizes the situation where

none of the gene’s isoforms show differential expression across the

K conditions (Figure 1B, row 1, where the hypothetical gene

structure is given in Figure 1A). Under this model, all K conditions

have the same isoform expression levels so that all the rows of h are

the same and equal to a joint isoform abundance vectorhk~~hh0,

k = 1, 2, … K. Under the assumption that the reads of each

condition are generated independently, the joint likelihood

function of ~hh0 combining all K conditions is the product of the

likelihood of each condition

L0
~hh0jN1,N2, . . . ,Nk

� �
~ P

K

k~1
f~hh0

Nkð Þ

~ P
K

k~1
P
J

j~1

~hh0
:akj

� �nkj
e
{~hh0

:akj

nkj !

ð2Þ

Model 1 [differential expression without differential splicing] character-

izes the situation where the gene shows differential expression, but

not differential splicing of its isoforms across the K conditions

(Figure 1B, row 2). Under this model, the relative abundances

between the isoforms are the same across the K conditions and the

rows of h are therefore proportional to each other. Accordingly,

we re-parameterize h as the outer product of a K61 vector t and

an I61 vector ~hh1, where ~hh1 is the basic isoform abundance vector

for all K conditions, and t is the isoform ratio vector. To make the

model identifiable, t is subject to a linear constraint:

jjtjj1~
XK

k~1
tk~1. For the example of model 1 in Figure 1B,

~hh1~½90,60�T and t~½1
3

,
2

3
�T . If t1~t2~ . . . tK~

1

K
, model 1

Table 1. Summary of notations.

Symbol Meaning

K Total number of biological conditions in the study.

I Total number of transcripts (isoforms) of a specific gene of interest.

Jk(J) Total number of read types in the kth condition (we write Jk as J to avoid cluttering, but note this quantity depends on the condition k).

Ak The I6Jk read sampling rate matrix for the kth condition.

Nk The Jk61 read count vector for the kth condition.

h The K6I isoform abundance matrix for all K conditions. The kth row corresponds to the isoform abundance vector for the kth condition.

~hh0
The I61 joint isoform abundance vector for all K conditions (for model 0 only).

~hh1
The I61 basic isoform abundance vector (for model 1 only).

t The K61 isoform ratio vector (for model 1 only).

tk The kth element of t which is the ratio between the isoform abundance vector for the kth condition and the basic isoform abundance vector,

i.e. hk = tk
~hh1(for model 1 only).

L0, L1, L2 The likelihood functions for model 0, 1 and 2 (l0, l1 and l2 are the log-likelihood for each model), respectively.

doi:10.1371/journal.pone.0079448.t001
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degenerates to model 0. Similarly, the joint likelihood function of
~hh1 and t combining all K conditions is

L1
~hh1,tjN1,N2, . . . ,NK

� �
~ P

K

k~1
f~hh1,tk

Nkð Þ

~ P
K

k~1
P
J

j~1

½(tk
~hh1):akj �nkj e

{(tk
~hh1):akj

nkj !

ð3Þ

Model 2 [differential splicing] characterizes the situation where the

gene shows differential isoform usage across the K conditions

(Figure 1B, row 3). Under this model, each condition has its own

independent isoform abundance vector hk. Therefore, the joint

likelihood function is

L2 hjN1,N2, . . . ,NKð Þ~L2 h1,h2, . . . ,hK jN1,N2, . . . ,NKð Þ

~ P
K

k~1
fhk

Nkð Þ

~ P
K

k~1
P
J

j~1

hk
:akj

� �nkj e
{hk

:akj

nkj !

ð4Þ

Maximum likelihood estimation of the three models
The parameters of each of the three models can be estimated

using maximum-likelihood estimation (MLE). As discussed in [18],

one computational burden in solving the MLE is that J could be

quite large, especially for paired-end RNA-Seq data. We adopt the

two data reduction techniques introduced in [18]: (i) We take only

read types with non-zero mapped reads and further group them to

form larger read categories; (ii) For each condition k, we compute

the total sampling rate for each isoform i wki ~
def PJ

j~1 akij (denote

Wk~ wk1,wk2, . . . wkJ½ �T as the total sampling rate vector for all

isoforms) without enumerating each particular sampling rate akij .

In practice, we work with the reduced form of the likelihood

functions for the three models, and the details of these data

reduction techniques are given in Text S1.

Similar to the log-likelihood function for one-sample linear

Poisson model given in equation (1) (see also [17,18]), all the log-

likelihood functions for the above three models are concave.

Therefore, the MLEs for all of the three models can be obtained

by linear constraint convex optimization algorithms. In practice,

we use an expectation-maximization (EM) algorithm to calculate

the MLEs, and the details are given in Text S1.

Model selection using hierarchical likelihood ratio test
Since model 0 is nested within model 1, which is again nested

within model 2, we use the likelihood ratio test (LRT) for model

selection. For large sample size, the LRT statistics for nested

models asymptotically follow x2 distributions. The degrees of

freedom (DF) of the three models are DF(model 0) = I (the free

parameters are the I61 joint isoform abundance vector ~hh0),

DF(model 1) = I+K-1 (the free parameters are the I61 basic

isoform abundance vector ~hh1 and the K61 isoform abundance

ratio vector t subjects to one linear constraint
PK

k~1 tk~1) and

DF(model 2) = K6I (the free parameters are the K6I isoform

abundance matrix h), respectively.

Given a pre-specified significance level a (e.g., 0.05), we perform

model selection using the following hierarchical likelihood ratio

test (hLRT) procedure (Table 2). The first round tests include two

parallel tests which compare model 0 vs. model 1 and model 0 vs.

model 2, each at significance level a/2. If neither of the two tests is

significant, then model 0 is selected. If only one of the two tests is

significant, model 1 or model 2 is selected accordingly. If both tests

are significant, we perform the second round test which compares

model 1 vs. model 2 at significance level a and selects model 2 if

this test is significant or model 1 otherwise.

Ranking of differentially spliced genes
When comparing between two biological conditions (e.g.,

normal vs. diseased), it is often useful to generate a ranking of

genes being differentially spliced (i.e., model 2 genes). We rank

model 2 genes as follows: Suppose ĥh1 and ĥh2 are the estimated

isoform abundance vectors for the two conditions, we calculate the

statistic:

T~
1

2
jj ĥh1

jjĥh1jj1
{

ĥh2

jjĥh2jj1
jj1,

where ||?||1 denotes the vector L1 norm ([20] uses a similar

statistic without the constant 1/2, which is introduced here to have

0ƒTƒ1). Large T values indicate high level of differential

splicing. The T value is 0 for model 0 and model 1 genes.

Alternatively, genes classified in model 1 or model 2 can also be

ranked according to their p-values from the hLRT, if statistical

significance is of major interest.

The proposed approach is implemented as an R package named

rSeqDiff, which is available at http://www-personal.umich.edu/

,jianghui/rseqdiff/. The analysis pipeline of using rSeqDiff is

outlined in Figure S1 and Text S1.

Results

Simulation studies
We study the performance of our proposed hLRT approach by

simulating read counts from genes with a wide range of

Figure 1. Illustration of the three models. (A) A hypothetical gene
with three exons and two isoforms in blue and red, respectively. (B)
Three models characterizing three biological situations of the gene
expression patterns between two conditions. The numbers of red and
blue bars represent the relative abundances of the corresponding
isoforms in the two conditions.
doi:10.1371/journal.pone.0079448.g001
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abundances (from lowly expressed genes to highly expressed genes)

and report the specificity and sensitivity of our approach for the

detection of differential expression and differential splicing events.

Detailed procedure and results of the simulation studies are given

in Text S1, and here we briefly outline the methods that we

applied in the simulations. We test differential expression and

differential splicing of a hypothetical gene with a well-annotated

known isoform structure (Figure S2) between two biological

conditions with sequencing depths of total 50 million and 55

million reads, respectively. The gene structure and the sequencing

depths are fixed in the simulations. For each of the three models,

we vary the expression level (denoted as G in Text S1) of the gene

within a broad range, and for each G we simulate the number of

reads mapped to each of the two isoforms according to the three

models (equations (2), (3) and (4)). For each G, we simulate 1000

replicated pairs of samples. We run the hLRT with significance

level a= 0.05 using rSeqDiff on the 1000 simulated pairs of

samples and report the proportions of the simulated pairs of

samples for which our approach correctly selects the true

underlying model (i.e., true classification rate). Table S1, S2 and

S3 show the true classification rates under model 0, 1 and 2,

respectively.

In summary, the simulation studies show that our proposed

hLRT approach has well controlled type I error rate at a= 0.05

(Table S1) and good statistical power for detecting differential

expression and differential splicing for genes with moderate to high

abundance in both conditions (Table S2 and S3). When the gene is

lowly expressed in one condition but moderately or highly

expressed in the other condition, our proposed hLRT approach

still has good power in selecting model 1, i.e., differential

expression without differential splicing. The power in detecting

differential expression or differential splicing is low when the gene

has low expression levels in both conditions, which is well

expected. In real data analysis, genes with very low expression

levels in all the conditions are usually filtered out prior to the

analysis. By default, rSeqDiff filters out genes with less than 5 reads

in all the conditions.

Applications of rSeqDiff to real RNA-Seq datasets
We demonstrate the practical usage of rSeqDiff and compare it

with two other approaches by analyzing two real RNA-Seq

datasets: the ESRP1 dataset and the ASD dataset.

Analysis of the ESRP1 dataset. Epithelial splicing Regula-

tory Protein 1 (ESRP1) is a master cell-type specific regulator of

alternative splicing that controls a global epithelial-specific splicing

network [11]. This dataset was published in [11], where Shen et al

performed single-end RNA-Seq experiments on the MDA-MB-

231 cell line with ectopic expression of the ESRP1 gene and an

empty vector (EV) as control. The dataset contains 136 million

reads for the ESRP1 sample and 120 million reads for the EV

sample. Shen et al used this dataset to demonstrate their exon-

based approach MATS for detect differential splicing, and

performed RT-PCR assays to test for 164 exons skipping events.

Since the biological significance of this dataset was further

analyzed in a follow-up paper by Shen and collaborators [21],

our analysis here is solely focused on the validation and

comparisons of our proposed hLRT approach with other methods

using the 164 RT-PCR tested alternative exons as gold standard.

MATS is an exon-based method and its results cannot be

directly compared with our isoform-based approach. In the

MATS model (Figure 2A, adapted from [11]), exon 2 is the

alternatively spliced exon (skipped exon) unique for the longer

isoform and exon 1 and 3 are common exons shared by both of the

two isoforms. The exon inclusion level y of the skipped exon was

defined as the abundance ratio between the longer isoform and the

sum of both the two isoforms, which was estimated as

y~
(UJCzDJC)=2

(UJCzDJC)=2zSJC
by MATS (Figure 2A). The exon

inclusion level difference between the two conditions (ESRP1 and

EV) was calculated as Dy~yESRP1{yEV . The genome coordi-

nates, junctions read counts (UJC, DJC and SJC), yESRP1, yEV

and Dy values from MATS and RT-PCR for the 164 exons are

provided in [11]. We first apply rSeqDiff to these 164 exons using

only the junction read counts from [11]. We transform the ‘‘exon-

exon junction model’’ (Figure 2A) to a ‘‘two-isoform’’ model

(Figure 2B), where the hypothetical ‘‘isoform 1’’ contains two

‘‘exons’’ each with length of 84 bp (the length of the exon-exon

junction region in [18]) corresponding to the upstream junction

(UJC) and downstream junction (DJC), respectively, and the

hypothetical ‘‘isoform 2’’ contains a single ‘‘exon’’ with length of

84 bp corresponding to the skipping junction (SJC). Hence, the

abundances of ‘‘isoform 1’’ (h1) and ‘‘isoform 2’’ (h2) (Figure 2B)

are equivalent to the abundances of the longer and shorter

isoforms in exon-based method (Figure 2A), respectively. The exon

inclusion level y is then estimated as y~
h1

h1zh2
. For the 164 RT-

PCR tested exons, we first use rSeqDiff to estimate h1 and h2 using

the junction read counts (UJC, DJC and SJC) from [11], and then

calculateyESRP1, yEV and Dy accordingly. Figure 3A shows the

scatter plot of the Dy values estimated by rSeqDiff (using junction

reads only) and MATS, and figure 3B shows the scatter plot of the

Dy values estimated by rSeqDiff (using junction reads only) and

RT-PCR (MATS and RT-PCR results are adapted from [11]).

We can see that rSeqDiff gives very similar results as MATS when

only junction reads are used, and overall both methods agree well

with the RT-PCR assays (Figure 3B and Table 3).

We then apply rSeqDiff using its default settings (detailed

method is given Text S1) where all the reads mapped to exons and

exon-exon junctions are used (referred as rSeqDiff (all reads)

below). We also run another isoform-based approach Cuffdiff 2

[16,22] on the same dataset (details are given in Text S1). These

two methods give the estimates of the abundances of all the

isoforms. Based on the gene symbols and the genome coordinates

of the 164 RT-PCR tested exons in [11], we identify genes

containing these exons from the results of rSeqDiff (all reads) and

Cuffdiff 2, and calculate the Dy values for these exons based on

the isoform abundances estimated by rSeqDiff (all reads) and

Cuffdiff 2. Figure 3C shows the scatter plot of the Dy values

estimated by rSeqDiff (all reads) and RT-PCR, and Table 3 shows

the correlation coefficients of the Dy values between RT-PCR

assays and the three methods, rSeqDiff, MATS and Cuffdiff 2,

respectively. We can see that rSeqDiff (all reads) outperforms

MATS and Cuffdiff 2 significantly.

One major advantage of isoform-based approaches like

rSeqDiff and Cuffdiff 2 over exon-based approaches like MATS

is that isoform-based approaches use all the reads mapped to exons

Table 2. Summary of hLRT for model selection.

models being
compared

LRT
statistics

test
against

First round tests model 0 vs. model 1 22(l0-l1) x2DF = K-1, 1-a/2

model 0 vs. model 2 22(l0-l2) x2DF = (K-1)6I, 1-a/2

Second round test model 1 vs. model 2 22(l1-l2) x2DF = (K-1)6(I-1), 1-a

doi:10.1371/journal.pone.0079448.t002
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and exon-exon junctions and incorporate the information from all

the isoforms rather than using only the local exon structures as

shown in figure 2A. The structure of the full length isoforms is

important for inferring complex alternative splicing events. Three

examples out of the 164 RT-PCR validated exons are given in

Figure 4. In the first example (Figure 4A), the ARHGAP17 gene

has only two isoforms differed by an alternative exon. The isoform

structure of this gene is relative simple, and all the three algorithms

provide similar estimates which are also validated by RT-PCR. In

the second example (Figure 4B), the ATP5J2 gene has four

isoforms differed by an alternative exon in the middle and an

alternative 59 splice site on the exon at the 59 end. For this gene

with a relative complex isoform structure, the two isoform-based

methods, Cuffdiff 2 and rSeqDiff, give more accurate estimates

than MATS, and rSeqDiff is slightly more accurate according to

the RT-PCR result. In the third example (Figure 4C), the CSF1

gene has an even more complex isoform structure with four

isoforms differed by an alternative exon in the middle and two

mutually exclusive exons at the 39 end. For such an isoform

structure, some isoforms (NM_172212 and NM_000757) can only

generate upstream junction reads (UJC) for the alternatively

spliced middle exon but not downstream junction reads (DJC). As

a result, the estimate of MATS is less accurate than that of

rSeqDiff. rSeqDiff classifies this gene as model 1, which is

consistent with the RT-PCR result. Cuffdiff 2 fails to test (it reports

as ‘‘FAIL’’ [22]) this gene due to ‘‘an ill-conditioned covariance

matrix or other numerical exception prevents testing’’.

We also compare the estimates of all the gene between rSeqDiff

(all reads) and Cuffdiff 2. Cuffdiff 2 fails to test (it reports as

‘‘LOWDATA’’, ‘‘HIDATA’’ or ‘‘FAIL’’ [22]) several hundred

genes with relative complex isoform structures. Figure 3D shows

the scatter plot of the log2 fold changes of transcript abundances

between ESRP1 and EV estimated by the two approaches (genes

with low read counts or failed to be tested by Cuffdiff 2 are

excluded). Overall the two approaches agree well with each other

(Pearson Correlation Coefficient = 0.834, Spearman Correlation

Coefficient = 0.933), and the degree of agreement is generally

higher when the alternative spliced transcripts are more differen-

tially expressed: the Pearson Correlation Coefficient (PCC) and

Spearman Correlation Coefficient (SCC) of transcripts classified in

each of the three models are PCC = 0.685, SCC = 0.802 (model 0),

PCC = 0.827, SCC = 0.932 (model 1) and PCC = 0.862,

SCC = 0.954 (model 2). We also run rSeqDiff with different

fractions of reads from the dataset to check for possible saturation

(Figure S3 and Table S4).

Analysis of the ASD dataset. Increasing evidence has

indicated that alternative splicing plays an important role in brain

development [23,24] and the pathology of many neurological

disorders [25,26]. This dataset was published by Voineagu et al

[19], where single-end RNA-Seq experiments were performed on

three brain samples of Autism Spectrum Disorder (ASD) patients

with down-regulated A2BP1 gene levels (a.k.a. FOX1, an

important neuronal specific splicing factor that regulates alterna-

tive splicing in the brain) and three control brain samples with

normal A2BP1 levels.

In [19], the authors separately pooled the reads for ASD and

control to generate sufficient read coverage for the quantitative

analysis of alternative splicing events (referred as ‘‘pooled dataset’’

below), and then used an exon-based method similar to MATS in

their analysis and detected 212 significantly differentially spliced

exons (belonging to 196 unique genes). As we have shown in the

analysis of the ESRP1 dataset, the exon-based methods provide

less accurate results for complex alternative splicing events and

cannot infer the abundances of the isoforms, here we analyze this

pooled dataset using rSeqDiff (detailed method is given in Text

S1).

rSeqDiff classifies 4,507 genes (with 6,850 transcripts) as model

0, 12,374 genes (with 19,556 transcripts) as model 1, 1,769 genes

(with 5,848 transcripts) as model 2 (Table S7), and 7,349 genes

(with 8,884 transcripts) are filtered out because they have less than

5 mapped reads in both conditions (Figure S4). We also run

Cuffdiff 2 [16,22] on this dataset with its default settings. We find

Cuffdiff 2 to be relatively conservative for detecting differential

expression of spliced transcripts and it only identifies 43 transcripts

as significant under default settings (FDR,0.05). Figure S5 shows

the scatter plot of the log2 fold changes of transcript abundances

between ASD and control estimated by the two approaches (genes

with low read counts or failed to be tested by Cuffdiff 2 are

excluded). Similar to the analysis of the ESRP1 dataset, the two

methods generate concordant results overall (PCC = 0.825,

SCC = 0.937). The correlation coefficients for transcripts classified

in each of the three models are PCC = 0.539, SCC = 0.796 (model

0), PCC = 0.847, SCC = 0.940 (model 1) and PCC = 0.854,

SCC = 0.953 (model 2), which also show the same pattern as we

observed in the ESRP1 dataset. We also run rSeqDiff on each

individual biological replicate and get consistent results as the

analysis on the pooled dataset (Table S6).

The authors of [19] tested 7 differentially spliced exons with

relevant neurological functions using semi-quantitative RT-PCR

assays, and validated 6 of them. Table 4 shows the ranking of these

Figure 2. Models for estimating the exon inclusion level y using the junction reads. (A) The ‘‘exon-exon junction model’’ used by MATS
[11]. Exon 1 and 3 are common exons shared by the two isoforms, and exon 2 is the skipped exon unique for the longer isoform. y: exon inclusion
level; UJC: number of reads mapped to the upstream junction; DJC: number of reads mapped to the downstream junction; SJC: number of reads
mapped to the skipping junction. (B) The ‘‘two-isoform model’’ transformed from (A). The abundances of the longer and shorter isoforms are h1 and
h2, respectively, which are estimated using the junction read counts (UJC, DJC and SJC).
doi:10.1371/journal.pone.0079448.g002
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Figure 3. Comparisons of rSeqDiff, MATS, Cuffdiff 2 and RT-PCR assays. (A) Scatter plot of the Dy values estimated by rSeqDiff (using
junction reads only) and MATS. (B) Scatter plot of the Dy values estimated by rSeqDiff (using junction reads only) and RT-PCR. (C) Scatter plot of the
Dy values estimated by rSeqDiff (using all reads) and RT-PCR. (D) Scatter plot of the log2 fold changes of isoform abundances between ESRP1 and EV
estimated by rSeqDiff and Cuffdiff 2. Transcripts classified as model 0, model 1 and model 2 are shown in green, blue and red, respectively. The solid
line is the regression line. The dashed line is the y = x line, which represents perfect agreement of the two methods. Dy: difference of exon inclusion
level between ESRP1 and EV; PCC: Pearson Correlation Coefficient; SCC: Spearman Correlation Coefficient.
doi:10.1371/journal.pone.0079448.g003

Table 3. The correlation coefficients of the Dy values between RT-PCR and rSeqDiff, MATS and Cuffdiff 2 for the 164 RT-PCR tested
exons*.

rSeqDiff (junction reads only) rSeqDiff (all reads) MATS* Cuffdiff 2**

Pearson 0.810 0.898 0.799 0.838

Spearman 0.831 0.913 0.814 0.850

*The values from RT-PCR and MATS are directly adapted from [11].
**Three genes failed to be tested by Cuffdiff 2 (Reported as ‘‘FAIL’’) are excluded.
doi:10.1371/journal.pone.0079448.t003
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genes by rSeqDiff and Cuffdiff 2 (The CDC42BPA gene was not

validated in [19]). rSeqDiff is able to detect all the 6 confirmed

genes as differentially spliced (model 2) and also gives a more

meaningful ranking of these genes than Cuffdiff 2, which might be

helpful for biologists to design follow-up experiments. We also

compare the estimates of the exon inclusion levels of the six RT-

PCR validated exons by rSeqDiff with the exon-based method in

[19]. Five out of the six genes (except AGFG1) have concordant

annotations for the skipped exons in the RefSeq annotation

database are used in our analysis. Table S5 shows the comparisons

between the two methods. Basically, rSeqDiff consistently recovers

the results from the exon-based method in [19].

We further analyze the biological significance of the differen-

tially spliced genes detected by rSeqDiff. The enrichment of gene

ontology (GO) terms and functional categories for the 1769 genes

classified in model 2 are tested. 88 GO terms related to biological

processes (Table S8), 48 GO terms related to cellular components

(Table S9) and 30 functional categories (Table S10) are

significantly enriched at FDR,0.01 level. rSeqDiff captures

majority of the relevant enriched GO terms reported in [19],

Figure 4. Examples comparing the estimates between rSeqDiff, MATS, Cuffdiff 2 and RT-PCR assays. (A) ARHGAP17 gene. (B) ATP5J2
gene. (C) CSF1 gene. The figures on the left show the gene structure and the coverage of reads mapped to the gene visualized in CisGenome Browser
[45], where the horizontal tracks in the picture are (from top to bottom): genome coordinates, gene structures where introns are shrunken for better
visualization and the coverage of reads mapped to the genes in ESRP1 and EV samples. The table to the right each figure shows the estimates from
each method. yESRP1 and yEV : exon inclusion levels in ESRP1 and EV, respectively; Dy: difference of exon inclusion levels between ESRP1 and EV
(yESRP1{yEV ).
doi:10.1371/journal.pone.0079448.g004
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such as cell junction (p = 1:98|10{11), neuron projection

(p = 1:71|10{14), synapse (p = 4:27|10{13) and clathrin-coated

vesicle (p = 2:75|10{4) (Table S8 and S9). The result of enriched

functional categories further confirms that alternative splicing is

the top enriched functional category (p = 7:14|10{133) (Table

S10). We further test the enrichment of genetic association disease

classes (Table S11) and the tissue expression pattern of these genes

(Table S12). Neuropsychiatric and neurological diseases are the

two significantly enriched disease classes (p = 3:53|10{10 and

6:64|10{3 respectively, Table S11), and brain is the top enriched

tissue (p = 2:76|10{51, Table S12). We also search the relevance

of the top 400 differentially spliced genes with autism and other

related neurological diseases in the NIH Genetic Association

Database [27] and the two autism spectrum disorder genetic

database, AutDB [28] and SFARI Gene [29]. Among these genes,

173 are found to be associated with a variety of neurological and/

or neuropsychiatric disorders from these databases, and 20 of

them are associated with ASD (Table S7). Three of the 20 ASD-

associated genes, NRCAM, EHBP1 and GRIN1, are validated by

RT-PCR assays in [19]. All together, these results further

Table 4. Ranking of the RT-PCR validated genes with relevant
neurological functions.

Genes rSeqDiff Cuffdiff 2

AGFG1 178 5841

RPN2 166 3884

EHBP1 281 8301

CDC42BPA* Model 1 20470

GRIN1 338 6803

SORBS1 208 6313

NRCAM 325 FAIL**

*The RT-PCR result for this gene is not consistent with the exon-based method
in [19], therefore this gene is not validated by RT-PCR. rSeqDiff classifies it in
model 1.
**FAIL: the gene has ‘‘an ill-conditioned covariance matrix or other numerical
exception that prevents testing’’ by Cuffdiff 2 [22].
doi:10.1371/journal.pone.0079448.t004

Figure 5. Examples demonstrating the estimates from rSeqDiff. (A)-(C) show NRCAM gene. (D)–(F) show BACE1 gene. (G)-(I) show SCIN gene.
(A)(D)(G) show the gene structure and coverage of reads mapped to the gene. (B)(E)(H) show enlargement of the parts in the red boxes in (A)(D)(G),
respectively, emphasizing the alternative spliced exons. In (B), the red box emphasizes the alternative exon that was validated by RT-PCR assay in [19],
and the two red arrows represent the positions of the primers of RT-PCR [19]. (C)(F)(I) show estimated abundances for each gene and its isoforms by
rSeqDiff. Values in the brackets are the 95% confidence intervals for the estimates.
doi:10.1371/journal.pone.0079448.g005
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demonstrate the biological significance of the findings of the

differentially spliced genes.

Figure 5 shows three examples of genes with differential

expression or differential splicing reported by rSeqDiff for the

purpose of demonstrating rSeqDiff’s capability in dealing with

very complex isoform structures. In the first example (Figure 5A–

C), the NRCAM gene has five annotated alternative spliced

isoforms (Figure 5A) and the estimation of their abundances

between ASD and control is shown in Figure 5C. Figure 5B shows

the differentially spliced exon that was validated by RT-PCR in

[19]. This gene encodes a neuronal cell adhesion molecule which

involves in neuron-neuron adhesion and promotes directional

signaling during axonal cone growth [30] and has been reported to

be associated with ASD by two genetic association studies [31,32].

The second example is the BACE1 gene (Figure 5D–F) with six

annotated alternative isoforms. This gene has a complex isoform

structure, with an alternative 59 splice site and an alternative 39

splice site (the part in the red box of figure 5D, enlarged in

figure 5E). The estimates of the abundances of the gene and its

isoforms are shown in figure 5F. This gene encodes the b-site APP

cleaving enzyme 1 (BACE1), which plays an important role in the

pathology of Alzheimer’s disease [33]. Previous studies show that

the isoforms of this gene have different enzymatic activities in the

brain [34–36]. Although this gene has not been reported to be

associated with ASD, several recent studies have showed that the

expression levels of three BACE1 processed protein products,

secreted amyloid precursor protein-a form (sAPP-a), secreted

amyloid precursor protein-b form (sAPP-b) and amyloid-b peptide

(Ab), have substantial changes in severely autistic patients [37–40].

The third example is the SCIN gene (Figure 5G–I) with two

alternative isoforms which differ by the mutually exclusive exons at

the 59 end (the part in the red box of figure 5G, enlarged in

figure 5H). This gene is identified as model 1 by rSeqDiff, which

has a significant higher expression level in autism than control.

Also, there is no read mapped to the short exon unique to

NM_033128 at its 59 end (Figure 5H), therefore this isoform is

estimated to have low abundances in both conditions. This gene

encodes Scinderin (also known as Adseverin), a calcium-dependent

actin filament severing protein that controls brain cortical actin

network [41].

Discussion

The two types of approaches for detecting differential

transcription across multiple conditions, exon-based approaches

and isoform-based approaches, each have their own strengths and

weaknesses. Exon-based approaches do not rely on annotated full-

length transcripts and provide relatively accurate inference for the

differential splicing of a local exon from a gene with relative simple

isoform structure [9,11]. However, they cannot provide estimates

of isoform abundances and provide less accurate inference for the

differential splicing of genes with complex isoform structures.

Isoform-based approaches can directly infer isoform abundances

and are more accurate for estimating the differential splicing of

multi-isoforms with complex splicing events. Since the final

functional units are the protein isoforms translated from the

alternatively spliced transcripts, isoform-based methods are more

biologically informative for follow-up studies. However, isoform-

based approaches may give inaccurate estimates if the annotation

of full length transcripts is incorrect. We believe that isoform-based

approaches will be increasingly used with the improvement of the

transcript annotation databases.

One limitation of our approach is that it ignores the biological

variations across biological replicates, which will be handled in our

future work by extending our model. One way to handle biological

variations is to use the negative binomial model as implemented in

edgeR [42], DEseq [43], DSS [44] and Cuffdiff 2 [16], where an

over-dispersion parameter is introduced and estimated using the

empirical Bayes method that borrow information from all the

genes. Another way is to use hierarchical Bayesian models, where

choosing appropriate prior distributions and efficient parameter

estimation (typically using Markov chain Monte Carlo (MCMC)

algorithms) are challenging. It is also possible to extend our model

to more complicated experimental designs such as crossed

experiments by incorporating the covariates into the sampling

rate matrix for each sample, since the hLRT is generally

applicable to comparisons of complex models.
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