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Abstract

Purpose: To assess macular photoreceptor abnormalities in eyes with retinitis pigmentosa (RP) with preserved central vision
using adaptive optics scanning laser ophthalmoscopy (AO-SLO).

Methods: Fourteen eyes of 14 patients with RP (best-corrected visual acuity 20/20 or better) and 12 eyes of 12 volunteers
underwent a full ophthalmologic examination, fundus autofluorescence, spectral-domain optical coherence tomography
(SD-OCT), and imaging with a prototype AO-SLO system. Cone density and spatial organization of the cone mosaic were
assessed using AO-SLO images.

Results: In 3 eyes with RP and preserved central vision, cones formed a mostly regular mosaic pattern with small patchy
dark areas, and in 10 eyes, the cone mosaic patterns were less regular, and large dark regions with missing cones were
apparent. Only one eye with RP demonstrated a normal, regular cone mosaic pattern. In eyes with RP, cone density was
significantly lower at 0.5 mm and 1.0 mm from the center of the fovea compared to normal eyes (P,0.001 and 0.021,
respectively). At 0.5 mm and 1.0 mm from the center of the fovea, a decreased number of cones had 6 neighbors in eyes
with RP (P = 0.002 for both). Greater decrease in cone density was related to disruption of the photoreceptor inner segment
(IS) ellipsoid band on SD-OCT images (P = 0.044); however, dark regions were seen on AO-SLO even in areas of continuous IS
ellipsoid on SD-OCT. Decreased cone density correlated thinner outer nuclear layer (P = 0.029) and thinner inner segment
and outer segment thickness (P = 0.011) on SD-OCT.

Conclusions: Cone density is decreased and the regularity of the cone mosaic spatial arrangement is disrupted in eyes with
RP, even when visual acuity and foveal sensitivity are good. AO-SLO imaging is a sensitive quantitative tool for detecting
photoreceptor abnormalities in eyes with RP.

Citation: Makiyama Y, Ooto S, Hangai M, Takayama K, Uji A, et al. (2013) Macular Cone Abnormalities in Retinitis Pigmentosa with Preserved Central Vision Using
Adaptive Optics Scanning Laser Ophthalmoscopy. PLoS ONE 8(11): e79447. doi:10.1371/journal.pone.0079447

Editor: Celia Oreja-Guevara, University Hospital La Paz, Spain

Received April 18, 2013; Accepted September 23, 2013; Published November 19, 2013

Copyright: � 2013 Makiyama et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Supported, in part, by the Innovative Techno-Hub for Integrated Medical Bio-imaging of the Project for Developing Innovation Systems, from the
Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, and Canon Inc. No additional external funding received for this study. The funders
had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: This study was supported in part by Canon Inc. Canon Inc. has provided a prototype of AO-SLO system to the authors institution. This
does not alter the authors adherence to all the PLOS ONE policies on sharing data and materials.

* E-mail: ohoto@kuhp.kyoto-u.ac.jp

Introduction

Retinitis pigmentosa (RP), the prevalence of which has been

reported as approximately 1:4,000 worldwide, is the term used for

a group of disorders that are characterized by inherited,

progressive dysfunction and dystrophy of retinal tissue [1,2].

Initial involvement of photoreceptors leads to subsequent damage

to inner retinal cells. The age of onset of visual impairment in the

different types of RP ranges from infancy to late adulthood. Visual

impairment usually manifests as night blindness and visual field

loss. The eventual visual burden from retinal dystrophy can range

from just sectorial visual field loss to profound loss of the

peripheral visual field. Central vision may be well preserved even

if electroretinography (ERG) shows remarkably reduced response

[3].

Optical coherence tomography (OCT) has become the gold

standard for assessing anatomical abnormalities in retinal diseases.

Structural changes in the photoreceptors of eyes with RP, such as

varying degrees of disruption of inner segment (IS) ellipsoid and

thinning of the outer plexiform layer (OPL) and outer nuclear

layer (ONL), have been identified using time-domain OCT (TD-

OCT) and spectral-domain OCT (SD-OCT) [4–10]. These

imaging modalities have not, however, provided sufficiently clear

images of individual photoreceptor cells to allow identification of a

specific structural abnormality that may explain visual disturbance

in eyes with RP. The primary reason for this failure is that ocular

optics possess aberrations, which can be compensated for by

incorporating adaptive optics (AO)—specifically, either OCT or

another imaging technique such as scanning laser ophthalmoscopy

(SLO)—into the imaging system.
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An AO system consists of a wavefront sensor that measures

aberrations of the whole eye and a deformable mirror or a spatial

light modulator that compensates for these aberrations in living

eyes [11–15]. The addition of AO to imaging systems such as

flood-illuminated ophthalmoscopes or SLO equipment has

allowed researchers to obtain clear images of microstructural

details in living eyes, including abnormalities in individual cone

photoreceptors in patients with various retinal diseases [16–31].

Several researchers have reported the observation of abnormal

cone patterns using AO-imaging devices in eyes with forms of

inherited retinal degeneration [17–21]. However, it has not been

investigated fully whether macular cone abnormalities occur in RP

patients with preserved central vision. In the current study, we

used a prototype AO-SLO system to assess macular photoreceptor

abnormalities in RP patients with preserved central vision in

comparison with findings on SD-OCT images.

Methods

All investigations adhered to the tenets of the Declaration of

Helsinki, and the study was approved by the institutional review

board and the ethics committee at Kyoto University Graduate

School of Medicine. The nature of the study and its possible

consequences were explained to study candidates, after which

written informed consent was obtained from all who participated.

For a patient under 20 years old (Case 10, 16 y), written informed

consent was obtained from both the participant and his father.

Participants
A total of 26 participants were included in this prospective cross-

sectional study. Fourteen were patients (14 eyes, 5 men and 9

women; mean age, 42.6 y; range, 16–63 y) with RP and preserved

central vision (best-corrected visual acuity [BCVA] 20/20 or

better) but without any other macular abnormality; all patients

visited the Kyoto University Hospital, Kyoto, Japan, between July

2011 and March 2012. The other 12 participants were healthy

volunteers (12 eyes; 11 men and 1 woman; mean age, 38.2 y;

range, 28–52 y) with no eye disease. RP was diagnosed based on

the presence of features including night blindness, progressive loss

of visual field, fundus appearance (attenuated retinal vessels,

mottling and granularity of the retinal pigment epithelium, bone-

spicule intraretinal pigmentation, and optic disc pallor), and

electroretinographic abnormalities. We excluded eyes with cone-

rod or cone dystrophy, Leber congenital amaurosis, retinal

inflammatory diseases, autoimmune paraneoplastic retinopathy,

or drug toxicity.

Ophthalmologic Examinations
All subjects underwent, at the same visit for each participant,

comprehensive ophthalmologic examination including BCVA

assessed with the Landolt chart and expressed as the logarithm

of the minimal angle of resolution (logMAR), visual field testing

with Humphrey Field Analyzer (HFA) with the 10-2 Swedish

Interactive Threshold Algorithm (SITA) standard program,

intraocular pressure (IOP); axial length assessed using an IOL

Master (Carl Zeiss Meditec, Dublin, CA, USA), indirect ophthal-

moscopy, slit-lamp biomicroscopy with a contact lens, color fundus

photography, fundus autofluorescence (FAF), SD-OCT, and AO-

SLO. FAF images were obtained with confocal scanning (HRA2;

Heidelberg Engineering, Dossenheim, Germany) using 30 degrees

camera objective. All patients had undergone 30-Hz flicker ERG

within the past 2 y. ERG results were recorded according to the

ISCEV standard protocol recommended in 2008, using LS-C

(Mayo Co., Nagoya, Japan) and Neuropack MEB-2204 systems

(Nihon Kohden, Tokyo, Japan) [32]. Notably, one patient had

undergone focal macula ERG [33].

Figure 1. Normal cone photoreceptors. (A) Adaptive optics scanning laser ophthalmoscopy (AO-SLO) image registered on color fundus
photograph. (B) Fundus autofluorescence (FAF) imaging. (C) Montage of a series of high-resolution images from the central fovea outward to 1.5 mm
from the center of the fovea, obtained by AO-SLO. Asterisk = foveal center. First, 3 different field of view images (L [yellow box]: 170061700 mm, M
[green box]: 8206820 mm, S [white box]: 3406340 mm) centered on the center of the fovea were obtained, followed by 2 field of view images (M and
S) centered 0.5 mm and 1.0 mm from the center of the fovea at each direction (superior, nasal, inferior, temporal) (D and E) Representative images of
areas 0.5 mm (D) and 1.0 mm (E) from the center of the fovea (340 mm6340 mm area).
doi:10.1371/journal.pone.0079447.g001
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Adaptive Optics Scanning Laser Ophthalmoscopy System
We have developed an original prototype AO-SLO system in

collaboration with Canon Inc [34,35]. The system is composed of

4 primary optical subsystems: the AO subsystem, which includes

the wavefront sensor and the spatial light modulator; the high-

resolution confocal SLO imaging subsystem; the wide-field

imaging subsystem; and the pupil observation subsystem, which

facilitates the initial alignment of the subject’s pupil with respect to

the optical axis of the AO-SLO system through adjustment of the

chin rest position. The wavefront sensor measures aberrations in

the whole eye, and the spatial light modulator compensates for

these aberrations. The details of the AO-SLO system are

described in the Information S1. The AO-SLO system is confocal,

enabling creation of ‘‘en face’’ images in any plane; these images

show individual cone photoreceptor cells.

Analysis of Adaptive Optics Scanning Laser
Ophthalmoscopy Images: Cone Mosaic Features

For each eye, we acquired a series of AO-SLO images at each of

several locations in the macula. The series at each location was

acquired by shifting the focus from the retinal nerve fiber layer

(RNFL) to the retinal pigmented epithelium (RPE), with particular

attention paid to acquisition of images that showed the cone

mosaic. First, 3 different field-of-view images (L: 170061700 mm,

M: 8206820 mm, S: 3406340 mm) centered on the center of the

fovea were obtained, followed by 2 field-of-view images (M and S)

centered 0.5 mm and 1.0 mm from the center of the fovea in each

direction (superior, nasal, inferior, temporal) (Fig. 1). At each

location of interest, 32 images were acquired and averaged to

reduce noise. We verified correspondence between each montage

and the area of interest by comparing the high-magnification AO-

SLO image with the wide-field AO-SLO images for that eye. The

montage of AO-SLO images were used for the registration with

images of other imaging modalities by matching the shape of the

vessels.

To evaluate cones, we applied the automated cone labeling

process of Li and Roorda [36]. After automated cone labeling, 2

experienced observers independently examined each image. If

Figure 2. Cone labeling and cone density/arrangement measurement. (A) A cone mosaic image 0.5 mm from the center of the fovea in a
normal eye. (B) Cone labeling results. (C) Voronoi diagram. The colors indicate the number of sides of each Voronoi polygon (pink, 4; blue, 5; green, 6;
yellow, 7; and orange, 8). (D) A cone mosaic image 0.5 mm from the center of the fovea in an eye with retinitis pigmentosa (RP). (E) Cone labeling
results. (F) Voronoi diagram. The colors indicate the number of sides of each Voronoi polygon (pink, 4; blue, 5; green, 6; yellow, 7; and orange, 8). The
cone densities are 27,275 and 13,102 cones/mm2 in the normal eye and the eye with RP, respectively. Proportions of 6-sided Voronoi polygons were
54.1% and 40.0% in the normal eye and the eye with RP, respectively. The ratio of observed average nearest-neighbor distance (NND) for each subject
divided by expected NND was 0.795 and 0.723 in the normal eye and the eye with RP, respectively.
doi:10.1371/journal.pone.0079447.g002

Figure 3. Spectral-domain optical coherence tomography
measurement. Measurements included the thickness of the outer
nuclear layer (ONL), which was measured between the vitreoretinal
interface and external limiting membrane (ELM), the photoreceptor
inner segment and outer segment (IS+OS) thickness, measured
between the ELM and retinal pigment epithelium (RPE), and the total
central foveal thickness.
doi:10.1371/journal.pone.0079447.g003
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cones were visible but had not been labeled, the observer manually

labeled the areas where cones were visible and entered this area

into the computer software program.

As has been reported for similar systems [11–31], we found that

our system did not always allow clear visualization of individual

cones within much of the central fovea. However, we could clearly

distinguish individual cones .0.2 mm from the center of the

fovea. Therefore, we obtained an estimate of cone density in areas

0.5 mm and 1.0 mm from the foveal center by instructing the

computer software to divide the number of cones in each imaging

area by the size of the area. The center of the fovea, defined here

as the center of the foveal avascular zone, was determined from

the montage of AO-SLO images. We measured cone density in

each of 4 directions (superior, lower, nasal, and temporal), and the

mean density was calculated from the densities in all 4 directions.

To obtain accurate scan lengths, we corrected the magnification

effect in each eye using the adjusted axial length method reported

by Bennett et al [37].

To assess the spatial organization of the cone mosaics, the

nearest-neighbor distances (NNDs) and Voronoi domains associ-

ated with the cones in each mosaic were examined (Fig. 2).

Voronoi domains were constructed for each cell by defining points

Figure 4. Retinitis Pigmentosa Case (Case 8). Images of the left eye of a 33-year-old man with RP (Case 8). Snellen equivalent best-corrected
visual acuity (BCVA) was 20/15. (A) Fundus photograph shows attenuation of retinal vessels and mottling and granularity of the retinal pigment
epithelium. (B) FAF image shows hypofluorescenct lesions outside the macula, but normal within the macula. (C) Infrared image with green arrows
indicating the directions of scans shown in D and E, and a white box indicating the area scanned by AO-SLO. (D) Total deviation of Humphrey Field
Analyzer (10-2 SITA standard program). Blue box indicates the central 4 points. (E) Horizontal SD-OCT line scan through the fovea. (F) Vertical SD-OCT
line scan through the fovea. Blue arrowheads indicate 0.5 mm from the center of the fovea, and yellow arrowheads indicate 1.0 mm area from the
center of the fovea. IS ellipsoid is remaining in the area between arrows. Red double-headed arrows indicate the area corresponding to the area
scanned by AO-SLO.
doi:10.1371/journal.pone.0079447.g004
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in the regions that were closer to that cell than to any other cell in

the mosaic. The ratio of hexagonal Voronoi domains is supposed

to express the regularity of cellular arrangement. The NNDs were

determined by calculating the minimum distances from the center

of that cell to the centers of every other cell in the mosaic.

Expected NND was calculated as the expected value for a perfectly

hexagonally packed mosaic with a density equal to that in each

location [38].

Cone density, ratio of hexagonal Voronoi domain, and average

NND/expected NND were determined as the mean value of two

independent graders. If the values were significantly different

between the graders, a third grader was invited and the value

closest to that determined by the third grader was selected. Images

with poor image quality were excluded from analysis. If both eyes

were eligible, one eye was selected randomly for analysis.

Spectral-Domain Optical Coherence Tomography:
Photoreceptor Layer Features and Retinal Thickness
Measurements

We used the Spectralis HRA+OCT system (Heidelberg

Engineering, Dossenheim, Germany) to perform SD-OCT in all

patient eyes. We obtained and evaluated horizontal and vertical B-

scan images (30 degrees) through the fovea of each eye. At each

location of interest on the retina, 100 SD-OCT images were

acquired and averaged to reduce speckle noise. The Spectralis

HRA+OCT has a built-in digital caliper to measure thickness or

length. We measured the thickness of the outer nuclear layer

(ONL; the distance between the vitreoretinal interface and

external limiting membrane [ELM]), thickness of the inner

segment (IS)+outer segment (OS) (the distance between the ELM

and the inner border of the RPE), and the total foveal thickness

(the distance between the vitreoretinal interface and the inner

border of the RPE) at the center of the fovea (Fig. 3). ONL,

Figure 5. Adaptive Optics Scanning Laser Ophthalmoscopy Image of Case 8. (A) OCT image in a high magnification view of horizontal scan
corresponding to the area scanned by AO-SLO. (B) OCT image in a high magnification view of vertical scan corresponding to the area scanned by AO-
SLO. Blue arrowheads indicate 0.5 mm from the center of the fovea, and yellow arrowheads indicate 1.0 mm area from the center of the fovea. (C)
AO-SLO montage image. The images show cones with a mostly regular mosaic pattern with small dark areas. Small dark areas are seen even in the
area where the IS ellipsoid is continuous on SD-OCT (Fig. 4). (D) A high-magnification image at 0.5 mm in the nasal direction from the center of the
fovea. (E) A high-magnification image at 0.5 mm in the inferior direction from the center of the fovea. (F) A high-magnification image at 1.0 mm in
the inferior direction from the center of the fovea. The asterisk indicates the foveal center.
doi:10.1371/journal.pone.0079447.g005

Macular Cone Abnormalities in Retinitis Pigmentosa
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IS+OS, and total foveal thickness were determined as the mean

value of the measurements made by 2 independent graders. To

assess the reproducibility of these measurements, the values

obtained by both graders were compared. Features of the status

of IS ellipsoid at 0.5 mm from the center of the fovea in each of 4

directions (superior, lower, nasal, and temporal) on SD-OCT

images were evaluated by an observer who was masked to the AO-

SLO results.

Humphrey Field Analyzer (10-2 SITA standard program)
We used the Humphrey Field Analyzer (HFA; Carl Zeiss

Meditec, Inc. Dublin, CA) to evaluate macular sensitivity. We used

not only mean deviation (MD) but also mean total deviation of the

central 4 points for analysis; mean total deviation of these central

4 points reflects central sensitivity at a 2u62u area centered at the

fovea [39].

Figure 6. Retinitis Pigmentosa Case (Case 14). Images of the right eye of a 35-year-old female with RP (Case 14). Snellen equivalent BCVA was
20/15. (A) Fundus photograph shows attenuation of retinal vessels and mottling and granularity of the retinal pigment epithelium. (B) FAF image
shows swirls of hyperautofluorescence in the macula. (C) Infrared image with green arrows indicating the directions of scans shown in E and F, and a
white box indicating the area scanned by AO-SLO. (D) Total deviation of Humphrey Field Analyzer (10-2 SITA standard program). Blue box indicates
the central 4 points. (E) Horizontal SD-OCT line scan through the fovea. (F) Vertical SD-OCT line scan through the fovea. Blue arrowheads indicate
0.5 mm from the center of the fovea, and yellow arrowheads indicate 1.0 mm from the center of the fovea. Note that the IS ellipsoid is almost
continuous in each scan. Red double-headed arrows indicate the area corresponding to the area scanned by AO-SLO.
doi:10.1371/journal.pone.0079447.g006
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Statistical Analysis
Best-corrected visual acuity measured using the Landolt chart

was expressed as the logarithm angle of resolution (logMAR). We

compared age, logMAR, axial length, cone density, and NND and

Voronoi parameters using the Mann-Whitney U test. The inter-

observer interclass correlation coefficients (ICCs) were calculated

for measuring cone density, ratio of hexagonal Voronoi domain

and average NND/expected NND. The inter-observer ICCs were

also calculated for measurements of total foveal thickness, ONL,

and IS+OS obtained by SD-OCT. We calculated the Spearman

rank correlation coefficient to determine associations between

cone density and logMAR, remaining IS ellipsoid size, retinal

thickness, retinal sensitivity, and NND and Voronoi parameters.

Statistical analyses were performed using SPSS software version

19.0 (SPSS, Inc., Chicago, IL). P values less than 0.05 were

considered statistically significant.

Results

The groups of patients and volunteers in this study did not

statistically differ in age (42.6612.5 y for patients; 38.266.8 y for

volunteers; P = 0.211, Mann-Whitney U test), logMAR BCVA

(20.1160.07 for patients; 20.1760.06 for volunteers; P = 0.538,

Mann-Whitney U test), or axial length (24.361.3 mm for patients;

25.160.7 mm for volunteers; P = 0.213, Mann-Whitney U test).

Reduced flicker response was observed on full-field ERG or focal

macular ERG in all patients (Table 1). However, the amplitude

did not decrease below the threshold level (1 mV for flicker ERG

according to ISCEV protocol and 0.05 mV for focal macula ERG)

in any eyes. Six eyes had mean deviation (MD),210 dB, and 8

eyes had MD$210 dB. However, mean total deviation (TD) of

central 4 points was 22.75 dB (range, 213.25–0 dB) (Table 1).

This study included no instance of unreliable HFA results

(fixation-loss scores $20% or false-positive or false-negative errors

$33%).

Figure 7. Adaptive Optics Scanning Laser Ophthalmoscopy Image of Case 14. Images of Case 14. (A) OCT image in a high magnification
view of horizontal scan corresponding to the area scanned by AO-SLO. (B) OCT image in a high magnification view of vertical scan corresponding to
the area scanned by AO-SLO. Blue arrowheads indicate 0.5 mm from the center of the fovea, and yellow arrowheads indicate 1.0 mm area from the
center of the fovea. (C) AO-SLO images of Case 14. The images show cones with patchy dark areas representing cone loss. Dark areas are seen even in
the area where the IS ellipsoid is continuous on SD-OCT (Fig. 6). (D) A high-magnification image at 0.5 mm in the inferior direction from the center of
the fovea. (E) A high-magnification image at 0.5 mm in the temporal direction from the center of the fovea. (D) A high-magnification image at
1.0 mm in the temporal direction from the center of the fovea. The asterisk indicates the foveal center.
doi:10.1371/journal.pone.0079447.g007
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In all healthy volunteers, there was no abnormal FAF. In eyes

with RP, FAF revealed hyperautofluorescence rings in the macula

area in 8 eyes, hypoautofluorescent rings outside hyperautofluor-

escence in the macula area in 2 eyes, swirls of hyper-autofluor-

escent in the macula area in 1 eye, and no remarkable

abnormalities in the macula area in 3 eyes.

In 3 eyes (21.5%) with RP and preserved central vision, cones

formed a mostly regular mosaic pattern with small patchy dark

areas (Figs. 4 and 5). In 10 eyes (71.5%), the cone mosaic patterns

were less regular, and large dark regions with missing cones were

apparent (Figs. 6–9). Only one eye (7.0%) demonstrated a normal,

regular cone mosaic pattern.

The inter-observer ICCs were 0.955 for measurements of cone

density, 0.811 for the hexagonal Voronoi domain, and 0.951 for

the ratio of average-to-expected NND in normal eyes (Table 2).

The inter-observer ICCs were 0.980 for measurements of cone

density, 0.697 for the hexagonal Voronoi domain, and 0.923 for

the ratio of average-to-expected NND in eyes with RP (Table 2).

As shown in Tables 3 and 4, cone density decreased with

increasing distance from the center of the fovea in both normal

eyes and eyes with RP and preserved central vision; however, cone

Figure 8. Retinitis Pigmentosa Case (Case 12). Images of the left eye of a 63-year-old female with RP (Case 12). Snellen equivalent BCVA was 20/
15. (A) Fundus photograph shows attenuation of retinal vessels and mottling and granularity of the retinal pigment epithelium. (B) FAF image shows
a hyperautofluorescent ring surrounded by a hypoautofluorescent ring in the macula. (C) Infrared image with green arrows indicating the directions
of scans shown in E and F, and a white box indicating the area scanned by AO-SLO. (D) Total deviation of Humphrey Field Analyzer (10-2 SITA
standard program). Blue box indicates the central 4 points. (E) Horizontal SD-OCT line scan through the fovea. (F) Vertical SD-OCT line scan through
the fovea. Blue arrowheads indicate 0.5 mm from the center of the fovea, and yellow arrowheads indicate 1.0 mm from the center of the fovea. The IS
ellipsoid is remaining in the area between arrows. Red double-headed arrows indicate the area corresponding to the area scanned by AO-SLO.
doi:10.1371/journal.pone.0079447.g008
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Figure 9. Adaptive Optics Scanning Laser Ophthalmoscopy Image of Case 12. Images of Case 12. (A) OCT image in a high magnification
view of horizontal scan corresponding to the area scanned by AO-SLO. (B) OCT image in a high magnification view of vertical scan corresponding to
the area scanned by AO-SLO. Blue arrowheads indicate 0.5 mm from the center of the fovea, and yellow arrowheads indicate 1.0 mm area from the
center of the fovea. (C) AO-SLO montage images of Case 12. The images show a large dark annular lesion (arrows) where cones are missing, which
corresponds to the area where IS ellipsoid is disrupted on SD-OCT (Fig. 8). (D) A high-magnification image at 0.5 mm in the superior direction from
the center of the fovea. (E) A high-magnification image at 0.5 mm in the inferior direction from the center of the fovea. (F) A high-magnification
image at 1.0 mm in the temporal direction from the center of the fovea. The asterisk indicates the foveal center.
doi:10.1371/journal.pone.0079447.g009

Table 2. The inter-later reliability of intraclass correlation coeffients for the two observers on AO-SLO measurements.

Intraclass correlation coeffients

The inter-later reliability 95% confidence interval

Normal Cone density (cones/mm2) 0.955 0.931–0.971

Ratio of hexagonal Voronoi domain(%) 0.811 0.712–0.876

Average NND/expected NND 0.951 0.909–0.971

RP Cone density(cones/mm2) 0.980 0.966–0.988

Ratio of hexagonal Voronoi domain(%) 0.697 0.520–0.809

Average NND/expected NND 0.923 0.834–0.959

NND: nearest-neighbor distance, RP: retinitis pigmentosa.
doi:10.1371/journal.pone.0079447.t002
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density was significantly lower in eyes with RP in each area at

0.5 mm and 1.0 mm from the center of the fovea compared to

normal eyes (all P values,0.05, Mann-Whitney U test) except for

temporal side 1.0 mm from the center of the fovea.

Figure 2 and Table 3 show the results of the Voronoi and NND

analyses for normal eyes and eyes with RP. At 0.5 mm from the

center of the fovea, 44.2% of cones in normal mosaics had 6

neighbors (indicating a regularly packed mosaic), while 39.9% of

cones in eyes with RP had 6 neighbors (P = 0.002, Mann-Whitney

U test). At 1.0 mm from the center of the fovea, 46.8% of cones in

normal mosaics and 40.4% of cones in eyes with RP had 6

neighbors (P = 0.002, Mann-Whitney U test). The ratio of

observed average NND for each subject divided by expected

NND (computed assuming a perfectly hexagonal lattice of cones

with a density equal to that observed for a given subject) was

significantly lower for eyes with RP than for normal eyes at

0.5 mm and 1.0 mm from the center of the fovea (P,0.001 for

both, Mann-Whitney U test).

Comparison of AO-SLO and SD-OCT images in eyes with RP

showed that large dark regions in the AO-SLO images

corresponded to areas in the SD-OCT images where the line

representing the IS ellipsoid was disrupted (Figs. 8 and 9). In eyes

with RP, greater decrease in cone density 0.5 mm from the center

of the fovea was related to disruption of the line representing the

IS ellipsoid on SD-OCT images (P = 0.044, Mann-Whitney U test;

Table 5). However, small patchy dark regions were seen on AO-

SLO even in areas with continuous IS ellipsoid on SD-OCT

(Figs. 4–7).

For SD-OCT measurements, the inter-observer ICCs were

0.999, 0.996, and 0.980 for measurements of total foveal thickness,

ONL, and IS+OS, respectively (Table 6).

In eyes with RP with preserved central vision, cone density did

not correlate with HFA results (Table 7). However, decreased cone

density correlated thinner ONL (P = 0.029) and thinner IS+OS

(P = 0.011), and thinner total foveal thickness (P = 0.008) on SD-

OCT (Table 8).

Discussion

Retinal degeneration in RP is characterized by slowly progres-

sive death of rod and cone photoreceptors. Studies using OCT

images obtained in eyes with RP have revealed structural

abnormalities in these eyes, including disruption of the line

representing the IS ellipsoid, intraretinal cystic spaces, and

thinning of the OPL/ONL and the IS+OS thickness [6–

Table 3. Cone density and arrangement in eyes with retinitis pigmentosa vs. normal eyes.

Eyes with RP (14 eyes
of 14 patients)

Normal eyes (12 eyes of
12 volunteers) P*

Age (y) 42.64612.46 38.1766.84 0.211

logMAR VA 20.1160.07 20.1760.06 0.538

0.5 mm Cone density (cones/mm2) 16,20063,683 22,23761,900 ,0.001

Ratio of hexagonal Voronoi domain (%) 39.963.1 44.262.9 0.002

Average NND/expected NND 0.6760.03 0.7260.02 ,0.001

1.0 mm Cone density (cones/mm2) 13,37662,840 15,97561,040 0.021

Ratio of hexagonal Voronoi domain (%) 40.463.4 46.864.9 0.002

Average NND/expected NND 0.6660.04 0.7360.02 ,0.001

*Mann-Whitney U test.
VA: visual acuity, NND: nearest-neighbor distance, RP: retinitis pigmentosa.
doi:10.1371/journal.pone.0079447.t003

Table 4. Cone density in each region in eyes with retinitis pigmentosa vs. normal eyes.

Distance from central fovea/hemisphere
Eyes with RP (14 eyes of 14 patients)
(cones/mm2)

Normal eyes (12 eyes of 12 volunteers)
(cones/mm2) P*

0.5 mm

Superior 15,11563,857 22,19564,056 ,0.001

Nasal 18,12364,413 22,87062,741 0.006

Inferior 15,22164,828 21,92161,680 0.002

Temporal 16,86864,555 21,96362,950 0.003

1.0 mm

Superior 13,31962,658 15,52661,245 0.023

Nasal 13,46663,573 16,74261,370 0.007

Inferior 11,99462,948 14,22961,405 0.024

Temporal 14,62963,444 17,42863,059 0.099

*Mann-Whitney U test.
RP: retinitis pigmentosa.
doi:10.1371/journal.pone.0079447.t004
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8,10,40–43]. However, these studies have not ascertained how

individual cones are damaged in RP.

Several researchers have reported the observation of abnormal

cone patterns using AO-imaging devices in eyes with forms of

inherited retinal degeneration, including cone-rod dystrophy,

T8993C mitochondrial DNA mutation, Stargardt disease, and

RP [17–21,44]. These eyes demonstrated large areas devoid of

cones within atrophic regions and patchy cone mosaics due to

photoreceptor dropout. Talcott et al included 4 eyes with RP with

BCVA of 20/20 or better [21]. Unfortunately, the report did not

include the individual AO imaging data for each patient. Choi et

al included 2 eyes with rod-cone dystrophy with BCVA of 20/20

or better [18]. Cone density was 74% and 59% at 2u temporal

from the fovea. Duncan et al. included 5 eyes from 5 patients with

RP, 4 of which had BCVA of 20/20 or better [19]. At 1u from the

fovea, the mean cone spacing was 20% greater among the RP

patients as compared to normal subjects; this difference was even

greater in several eyes with BCVA of 20/20 or better. These

results are quite similar to our findings, although these studies

included limited sample sizes. Our cross-sectional case series,

which included and focused on a larger number of patients with

RP with BCVA of 20/20 or better, have demonstrated the clinical

relevancy of these findings.

Voronoi and nearest-neighbor analyses are widely used to assess

the regularity of cellular mosaics in the retina [36,45]. In the

current study, a smaller number of cones in eyes with RP had 6

neighbors compared to cones in normal eyes, indicating an

irregularly shaped mosaic. In addition, the ratio of observed mean

NND to expected NND was significantly lower for eyes with RP

than for normal eyes, suggesting a marked departure from perfect

arrangement of the cone mosaic. Thus, the regularity of the spatial

arrangement of the cone mosaic is disrupted in eyes with RP, even

when visual acuity and foveal sensitivity are good.

In the current study, we further compared AO-SLO findings

with SD-OCT findings in eyes with RP. We found a correlation

between SD-OCT evidence of a disrupted IS ellipsoid and AO-

SLO findings of disruption of the cone mosaic pattern, as

indicated by dark regions. In eyes with RP, greater decrease in

cone density was related to a larger area of disruption in the line

representing the IS ellipsoid in SD-OCT images. These results are

consistent with the results of previous studies of eyes with macular

microholes, resolved central serous chorioretinopathy, or idio-

pathic macular telangiectasia, in which the dark area seen in the

AO images corresponded with the areas where the line

representing the IS ellipsoid or the cone outer segment tip was

disrupted in corresponding SD-OCT images [25,28]. In contrast,

Voronoi and nearest-neighbor analyses did not differ regardless of

IS ellipsoid status. Thus, in eyes with RP, IS ellipsoid irregularities

or disruptions on SD-OCT do not suggest cone disarrangement

but rather cone loss.

The small patchy dark regions were also seen on AO-SLO, even

in areas with continuous IS ellipsoid as revealed by SD-OCT. We

believe our inability to detect the small patchy dark regions seen in

AO-SLO using SD-OCT results from resolution differences. The

small dark regions we saw using AO-SLO, which has a lateral

resolution of ,5 mm, were approximately 5–20 mm across,

whereas the lateral resolution of commercially available SD-

OCT systems, which do not have AO, is approximately 20 mm.

On the other hand, SD-OCT is more sensitive than AO-SLO. In

the current study, photoreceptor layers that could be visualized

using the SD-OCT were not reflective enough to be seen in some

AO-SLO images. Further study is needed to compare AO-SLO

montage images and IS ellipsoid maps obtained by SD-OCT.

Lower cone density on AO-SLO correlated thinner ONL and

photoreceptor layer on SD-OCT in eyes with RP. Thus, decreased

ONL and photoreceptor thickness may reflect more severe

structural disturbance of the photoreceptor layer than the IS

ellipsoid status. In fact, using SD-OCT, several researchers have

shown that ONL and photoreceptor thickness decreased with loss

of local field sensitivity in RP [8,46–49]. Wen et al. reported that

preserved cone function measured by multifocal ERG amplitude

and visual field sensitivity correlated with the remaining thickness

of the photoreceptor layer in patients with RP [10].

Natural history studies of retinal degeneration predict that

significant changes in visual function may be measured reliably

only after more than 7 years [3]. The lack of sensitive outcome

measures of disease progression may have hampered the

development of treatments for RP. However, Talcott et al.

recently reported that direct observation and analysis of cone

structure on AO-SLO images may provide a sensitive measure of

disease progression and treatment response in patients with

inherited retinal degeneration [21]. Our results also suggest that

AO-SLO is a useful tool to detect macular cone abnormalities with

greater sensitivity than standard measures of visual function in eyes

with preserved central vision. Thus, further studies of cone

Table 5. Cone density and arrangement on AO-SLO vs. photoreceptor status on SD-OCT in eyes with retinitis pigmentosa (0.5 mm
from center of the fovea).

Intact IS ellipsoid Disrupted IS ellipsoid P*

Cone density (cones/mm2) 16,78464,567 13,17062,715 0.044

Ratio of hexagonal Voronoi domain (%) 40.166.2 38.464.8 0.479

Average NND/expected NND 0.6860.04 0.6660.04 0.276

*Mann-Whitney U test.
IS: photoreceptor inner segment, NND: nearest-neighbor distance.
doi:10.1371/journal.pone.0079447.t005

Table 6. The inter-later reliability of intraclass correlation
coeffients for the two observers on SD-OCT measurements.

Intraclass correlation coeffients

The inter-later
reliability

95% confidence
interval

Total foveal thickness 0.999 0.996–1.000

ONL 0.996 0.591–0.999

IS+OS 0.980 0.919–0.994

ONL: outer nuclear layer, IS: photoreceptor inner segment, OS: photoreceptor
outer segment.
doi:10.1371/journal.pone.0079447.t006
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structure using AO-SLO are needed to evaluate the effect of

experimental treatments such as neurotrophic factors, especially

during the stage of preserved central vision.

Our study has several limitations. (1) Although our AO imaging

equipment has better lateral resolution than commercially

available SD-OCT, it was still unable to clearly show individual

cone photoreceptors in the foveal center, which made it difficult to

identify a correlation between cone density and visual acuity.

Recently, Dubra et al visualized rods and foveal cones using an

improved AO-SLO system [50]. These technological improve-

ments may reveal anatomical changes that underlie RP pathology,

such as the relationship between foveal cone damage and visual

acuity. (2) Most of the healthy subjects were men. However, cone

density has not been reported to differ between sexes, though it

may vary with distance from the fovea, age, axial length, and

reflective error [45,51,52]. (3) Gene mutation associated with RP

was confirmed in none of the patients included in the study.

Despite these limitations, our study shows that AO-SLO imaging

is a sensitive and quantitative tool for detecting photoreceptor

abnormalities in eyes with RP and preserved central vision. We are

therefore planning prospective longitudinal studies using AO-SLO

to learn more about cone abnormalities in the progression of RP,

with the hope that this knowledge will point the way to better

management of this disease.
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