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Abstract

A method was developed and applied for monitoring two types of fast-start locomotion (feeding and escape) of a cruiser
fish, Japanese amberjacks Seriola quinqueradiata. A data logger, which incorporated a 3-axis gyroscope, a 3-axis
accelerometer and a 3-axis magnetometer, was attached to the five fish. The escape, feeding and routine movements of the
fish, which were triggered in tank experiments, were then recorded by the data logger and video cameras. The locomotor
variables, calculated based on the high resolution measurements by the data logger (500 Hz), were investigated to
accurately detect and classify the types of fast-track behaviour. The results show that fast-start locomotion can be detected
with a high precision (0.97) and recall rate (0.96) from the routine movements. Two types of fast-start movements were
classified with high accuracy (0.84). Accuracy was greater if the data were obtained from the data logger, which combined
an accelerometer, a gyroscope and a magnetometer, than if only an accelerometer (0.80) or a gyroscope (0.66) was used.
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Introduction

Monitoring the locomotion and behaviour of animals is

important for understanding their energy budgets and life

histories. Especially, feeding and escape are two of the key

behaviours for animals in terms of their survival. In aquatic

animals, it has been demonstrated that many fish use fast-start (FS)

locomotion, which involves a brief, sudden acceleration and

turning for their escape and/or feeding; consequently, this type of

locomotion has received significant attention in laboratory-based

studies that use high-speed cameras [1–4]. However, the field

measurements of feeding and escape behaviours have been usually

challenging. Monitoring such behaviours in the field will reveal

important insights into the physiological adaptation of animals to

different environments and their survival strategies in a complex

natural habitat, as well as the identification of ecologically

important habitat (e.g. feeding ground).

The bio-logging method, which utilises data loggers attached to

animals, has proven effective for the measurement of locomotion

and behaviour of animals in the wild [5,6]. In particular, data

loggers with a 3-axis accelerometer and, in some cases, a 3-axis

magnetometer have been used to monitor the attitude (pitch, roll

and yaw) and dynamic acceleration of aquatic animals [7–9]. This

type of information can be used to classify animal behaviour into

categories such as swimming, resting, gliding, spawning, mating

[9–13] and feeding [14,15]. Recently, Bröell et al. [16] showed

that different types of fast-start behaviours (feeding and escape) of

a sit-and-wait predator Myoxocephalus polyacanthocephalus can be

detected and identified with high accuracy (80%), using multiple

locomotor variables obtained using accelerometers, given that its

sampling frequency is sufficiently high (e.g. 100 Hz) to capture

such agile movements [17]. Thus, data loggers can be useful for

monitoring the fast-track behaviour of animals in the wild once the

appropriate connection between the behaviour and the data logger

measurements is established.

Fast-track behaviour of animals typically involves rapid turning

and agile rotational movements [2–4]. Although many studies

have used accelerometers to monitor the activity of animals in the

wild [12,13,15,16], this instrument alone is not sufficient to

document the detailed 3D movements of animals because it is

difficult to accurately differentiate gravity-based acceleration

(which can be converted to pitch and roll) from dynamic

acceleration [18,19]. In addition, the accelerometer measurements

do not provide rotational information, such as angular velocity

and the direction of movement. Angular velocity can be directly

measured with high temporal resolution (e.g. 100 Hz to 1 kHz) by

a gyroscope. Therefore, using the gyroscope, if the initial attitude

is known, any new attitude (hence, the gravity-based acceleration

that would be measured by the accelerometer) can be estimated

using initial attitude and the estimated attitude change calculated

from the gyroscope measurements. An accelerometer and a

magnetometer can be used in addition to a gyroscope to determine

initial attitude and to correct the error when estimating attitude

associated with the accumulation of noise from a gyroscope. In
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fact, it was shown that a novel gyroscope data logger (hereafter,

gyro logger), which incorporates a 3-axis gyroscope, a 3-axis

accelerometer and a 3-axis magnetometer (for a total of 9 axes),

can reconstruct the fine-scale dynamic acceleration, gravity-based

acceleration and attitude of animals (e.g. sea turtles), which have

not been accurately measured in previous studies that only used an

accelerometer (and occasionally a magnetometer) [19]. Therefore,

a gyro logger may be more suitable for monitoring the fast-track

behaviour of animals because this instrument can measure fine-

scale dynamic acceleration and the angular velocity.

FS behaviour of fish has been intensively investigated in

laboratory-based studies. In fish, there are various types of species

which employ different locomotor modes (e.g. cruiser, saltatory,

and sit-and-wait) and body forms (e.g. tunniform, carangiform,

and anguilliform) adapted for their food search, predation and

escape success in a complex natural habitat [20,21], Obrie-

n1990AS. These suggest that important locomotor variables for

monitoring feeding and escape behaviours are different depending

on the types of fish. While there is much research that investigated

the locomotion of fish during their feeding and escape (e.g.[1–4]),

little research has been conducted for cruiser fish [22,23], that

move continuously through their environment, searching con-

stantly for their prey [21]. We have focused on cruiser fish, for

which it may be difficult to identify the types of FS behaviour. It is

unclear what kind of locomotor variables characterize the feeding

and escape behaviours of cruiser fish, and which variables can be

used for the identification of the behaviours using the measure-

ments of their movements.

Given these considerations, the present study utilised a novel

gyro logger for one of the cruiser fish, Japanese amberjacks Seriola

quinqueradiata and investigated the following three questions; 1) Is it

possible to use data logger measurements to accurately identify

escape, feeding and routine movements (RM) of the fish? 2), If so,

what types of locomotor variables obtained from the gyro logger

measurements characterize the escape and feeding behaviours of

the fish? 3) Is the accuracy better with the combined information

from the gyroscope, accelerometer and magnetometer than with

the information obtained using only an accelerometer or a

gyroscope?

Materials and Methods

Ethics Statement
The care and sampling protocol for the tagging surgery and live

predator-prey experiments in this study were approved by the

Animal Research Committee of Kyoto University (permit number:

Informatics 25-7).

Study Animals
Five Japanese amberjacks [N = 5, fork length (FL): 65.9 6

0.45 cm, body mass (BM): 4.08 6 0.78 kg] (Table 1) were studied

in tanks at the Institute for East China Sea Research at Nagasaki

University in Japan. The feeding and escape movements of these

animals were monitored by gyro loggers. The fish were obtained

from a local fish hatchery (Nagasaki, Japan). The fish were

maintained in a 300 cm diameter outdoor tank with flow-through

seawater at a temperature of 19.05 6 0.84uC, a depth of 1 m and

a dissolved oxygen level of 84.89 6 3.88%. The fish were

acclimatised to the tank for at least one week prior to the initiation

of the experiments, at which point each fish was tagged. After the

fish were tagged, food was withheld to ensure a feeding response to

the presence of live, wild-caught flathead silverside, Hypoatherina

valenciennei [10 randomly selected samples; total length

(TL) = 12.28 6 0.60 cm], which were found to be one of the

preferred prey of amberjacks through preliminary food selection

trials using multiple types of natural prey.

Data Logger
A gyro logger (LP-BLKU01, Biologging Solutions Inc., Kyoto,

Japan), incorporating 3-axis accelerometer, 3-axis magnetometer

and 3-axis gyroscope, was developed and used in this study. This

data logger was cylindrical in shape (diameter: 3 cm, length:

17 cm) with a mass of 108 g in air, which included the attached

CR123A battery. The measurement ranges were 616 g, 61.0

Gauss and 61500 degree second21, for the acceleration, magnetic

field and angular velocity, respectively. The resolution of the

measurements was 16 bit (232768,+32768). The data logger

measured and stored all of the sensor outputs in an internal micro-

SDHC memory (,32 GB) at a sampling frequency of 500 Hz for

a total sample time of 10 hours. Furthermore, this device allowed

for multiple-scheduled recordings (e.g., 2 hours of recording each

day). The data logger was covered with an alumite-treated case,

which made it waterproof and pressure-proof up to a depth of

300 m. The logger could also record temperature of range of

245,80uC and depth of up to 30 bar; however, only the

measurements from the accelerometer, magnetometer and gyro-

scope were used for the analysis.

Activity Measurements
One week prior to the feeding and escape response measure-

ments, the length and mass of the fish were measured under

anaesthesia induced with phenoxyethanol (,0.05%). A plastic

plate (3618 cm2) was sutured to the dorsal musculature just above

the centre of mass (CM; 43% of the TL) using cable ties. The plate

formed the base of the data logger. The position of the CM was

determined by hanging a dead fish (different fish from those used

for the activity measurements, FL = 61.8 cm) using a suture and

needle [4]. The temporary attachment of the gyro logger to the

base plastic plate was accomplished using cable ties; the fish were

sedated using anaesthesia during this procedure. The mass of the

data logger was less than 3% of the body mass of the fish.

Although the size of the logger may be large for the fish, none of

the animals showed any signs of stress after the tagging and quickly

settled in the experimental tank.

In total, gyro loggers were attached to 5 fish. These fish were

transferred from the holding tank to an identical and adjacent

experimental tank (300 cm in diameter). The water level of the

experimental tank was maintained at 0.44 m. The transfer and

tagging time, including the time required for the anaesthesia, was

less than 5 min. The fish were allowed to acclimate to the

Table 1. Summary of fish specifications and observed FS
events.

fish ID TL (cm) FL (cm) BM (kg) Ne Nf

A 71.6 66.8 3.2 11 10

B 66.6 60.9 4.1 8 11

C 69.8 63.9 3.8 11 20

D 77.8 73.1 5.3 4 0

E 67.8 65.0 3.9 7 0

total 41 41

The total length (TL) and fork length (FL), the body mass (BM), and the number
of escape (Ne) and feeding (Nf) movements that were identified using the video
recordings of five (A–E) Japanese amberjacks.
doi:10.1371/journal.pone.0079392.t001
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experimental tank for at least 12 hours prior to the start of the

activity measurements. The data loggers were set to record the

movements of the fish from 13:00 to 15:00 for 3,5 consecutive

days. During these 2 hours, between 3 and 10 live flathead

silverside were introduced into the tank, and the fish were allowed

to feed ad libitum. After the capture of several prey fish, at least a

few hours or days were required for the fish to exhibit another

feeding response to the presence of live prey. Consequently, the

use of multiple scheduled recordings was considered appropriate

to ensure the likelihood of recording a prey capture event under

conditions of less stress to the fish. To obtain data on the escape

movements of the fish, their escape responses were triggered by

manually, randomly thrusting a PVC pole with a 100 cm64.0 cm

diameter to the bottom of the tank near the position of the fish

when the fish were at least one body length from the tank wall.

These responses were triggered at approximately 10 min intervals.

Between 4 and 11 escape responses were recorded for each fish.

RM of the fish were also recorded during the experiments.

The activities were also recorded with two video cameras that

were located 2.85 m above the bottom of the tank: a 30 Hz

standard USB webcam (HD C910, Logicool Co., Tokyo, Japan,

with H264 Webcam 3.83 software, Timhillone software Co. Ltd.,

Nanshan, China), and a 200 Hz high-speed camera (HAS-L1,

DITECT Co., Tokyo, Japan).

Analysis
To reconstruct locomotor variables from the sensor measure-

ments, the orientation filter [24] was utilised, and dynamic

acceleration and angular velocity were reconstructed [19]. The

orientation filter merges the measurements of accelerometer,

magnetometer and gyroscope to reconstruct attitude and dynamic

acceleration using a gradient-decent algorithm (the original code is

available at the author’s website; http://www.x-io.co.uk/open-

source-imu-and-ahrs-algorithms/). All of the locomotor variables

were represented on the fish coordinate frame (Fig. 1). The

programs that were used for the extraction of the data during FS

and RM, and the reconstruction of the dynamic acceleration,

attitude and locomotor variables from the data logger measure-

ments were all created on Igor Pro 6.3 (WaveMetrics, Inc., Tigard,

OR, USA). The statistical analysis was performed using R 2.15

(the R Foundation for Statistical Computing).

Characterization of FS behaviour recorded by the data logger

was divided into two stages: 1. detection of the FS event and 2.

classification of the type of FS movement (i.e., escape or feeding).

The goal of this study was to establish the variables that can be

used to accurately detect and classify the different types of FS

behaviours.

The FS events that were monitored involved a large change in

acceleration and angular velocity, which is very different from the

changes that were observed in RM of the fish. Standard deviation

(SD) of the magnitude of the acceleration (MA, vector summation

of the acceleration in the x-, y- and z-directions) and the

magnitude of the angular velocity (MG, vector summation of the

angular velocity in the x-, y- and z-directions) were considered to

detect the FS events. To investigate whether the differences

between the FS and RM were statistically significant, some of the

RM events of 1 s were extracted for each fish such that the total

number of escape and feeding events and the number of RM were

the same for each fish. Within each RM period, dash movements,

observed in the video analysis, were selected as the RM dataset. All

of the measurements of the escape and feeding responses were

extracted for 1 s such that the maximum peak of the MA mapped

to the centre of the duration. If both data of the RM and FS

dataset were found to be normal by the Anderson-Darling test,

Welch’s t test was used to determine the statistical significance of

the difference between the RM and FS dataset; if the data were

not normal, the Wilcoxon signed-rank test was used. Then, a

sliding window analysis using the time-window of 1 s was applied

to the entire recording dataset to calculate the SD of the MA and

MG values for the period, and the optimal threshold value of each

variable for detecting the FS events were established by a decision-

tree algorithm (described later).

The classification of the escape and feeding movements was

then studied (example profiles of the raw measurements by the

gyro logger are shown in Fig. 2, and the data are available as

datasets S1 and S2). First, the video images from a high-speed

camera recording during the escape and feeding movements were

observed to investigate the mechanical differences in the

movements (sample movies are available as Movies S1 and S2).

After detecting the FS events, the locomotor differences between

the escape and feeding behaviour were then explored by using the

values of the locomotor variables that were obtained through the

gyro loggers. Two types of locomotor variables were calculated

from the extracted 1 s FS dataset: axis-specific metrics and inter-

axis metrics. Because the axis-specific variables were easier to

interpret but may have been more affected by other factors, such

as the attachment location of the data loggers on the fish, the

motivation of the fish and environmental properties (e.g.,

temperature), the inter-axis metrics was also examined. The

axis-specific metrics that were considered were the maximum,

range, mean, SD, and root mean square (RMS) of the acceleration

and angular velocity in the x-, y- and z-directions. The inter-axial

metrics were the difference in the above axis-specific locomotor

values along two different axes (e.g., x vs. y and x vs. z, which were

calculated by the subtraction of the y and z values from the x

values, respectively, and y vs. z, which was obtained through the

subtraction of the z value from the y value). For a complete list of

the variables and their abbreviations, please refer to the Table 2.

The differences in the variable values between the escape and

feeding movements were then identified, and the statistical

significance of these differences was examined. As in the previous

analysis, the normality of the data was determined using the

Anderson-Darling test; the data that were found to follow a

Figure 1. Schematic diagram of the fish coordinate frame. The
directions of the acceleration (Ax, Ay, Az) and angular velocity (Gx, Gy,
Gz) on the X-, Y- and Z-axes are shown.
doi:10.1371/journal.pone.0079392.g001
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normal distribution were then analysed using Welch’s t test, and

the data that were not normally distributed were studied using the

Wilcoxon signed-rank test.

Using the described locomotor variables and the resultant types

of behaviour events, a decision tree (C4.5 algorithm) was

constructed using a free machine learning software (WEKA 3;

http://www.cs.waikato.ac.nz/ml/weka/) for the detection and

Figure 2. Example profiles of raw measurements by the data logger on a) escape and b) feeding. Measurements by the gyroscope,
accelerometer and magnetometer on the X-, Y- and Z-axes are shown.
doi:10.1371/journal.pone.0079392.g002
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classification of two types of FS movements. The threshold values

of the decision tree for the detection and categorisation of the

behaviour types were optimised (10). A ten-fold cross validation

was performed, and the accuracy (precision, recall, and F-

measure) was calculated as follows:

Accuracy~ TPzTNð Þ= TPzFPzTNzFNð Þ ð1Þ

Precision~TP= TPzFPð Þ ð2Þ

Recall~TP= TPzFNð Þ ð3Þ

F{measure~ 2|precision|recallð Þ

= precisionzrecallð Þ
ð4Þ

where TP, FP, TN, and FN signify true positive, false positive, true

negative, and false negative, respectively.

For the discrimination of the escape and feeding behaviour, to

enhance the generalisability of the decision tree, it is important to

select the minimum number of variables that can explain the

differences between the movement types and can thus be used for

the accurate classification of these different types. Therefore, the

locomotor variables that had significantly different values

(a = 0.05) between the escape and feeding behaviours, as was

determined through a t test or Wilcoxon signed-rank test, were

first selected. A CFS attribute subset evaluator [25], which is a

correlation-based filter method, was used to select those variables

that were highly correlated to the class attribute but exhibited a

low correlation to each other. The final set of variables was

selected by manually removing some of the variables until the

highest accuracy was achieved.

The accuracy of the classification of the type of FS movement

using different datasets was assessed. The datasets that were tested

were the following: only accelerometer-derived variables (hereaf-

ter, acc-only); only gyroscope-derived variables (hereafter, gyro-

only); and the combined variables, which were collected through

the novel gyro method with an accelerometer, a magnetometer

and a gyroscope (hereafter, all-combined). In the acc-only dataset,

the gravity-based acceleration, which was simultaneously recorded

with the dynamic acceleration in the accelerometer measurements,

was not removed because its removal involves either the

smoothing [26,27] or low-pass filtering [28,29] of the data, which

induces variability in the values of the accelerometer-derived

variables according to the level of smoothing or the filter limits

selected [19].

Results

A total of 41 escape (N = 11, 8, 11, 4 and 7 from 5 different fish)

and 41 feeding events (N = 10, 11, 20, 0 and 0 from 5 different fish)

was used in the analysis (Table 1). A total of 82 RM (21, 19, 31, 4

and 7 from 5 fish) was extracted for the statistical analysis between

the RM and FS.

Detection of FS Movements
Both of the SD values of the MA and MG were significantly

higher (p,0.0001 for the MA and p,0.0001 for the MG) during

the FS movements (11.7760.53 m s22 for the MA, and

229.2269.30 deg s21 for the MG) than during the RM

(2.4760.12 m s22 for the MA, and 64.2763.97 deg s21 for the

MG). Standard deviation of MA were able to detect the FS events

with the precision rate of 0.98 and the recall rate of 0.96 using a

threshold value of 5.16 m s22. The SD of the MG were able to

detect the FS events with the precision rate of 0.78 and the recall

rate of 0.92 using a threshold value of 129.32 deg s21. The

precision and recall rate were higher using the SD of the MA than

the SD of the MG.

Classification of the Types of FS (Escape or Feeding)
Movements

Video images. The video images showed that the fish

typically bent their caudal fins at a larger angle and more rapidly

during escape movements than during feeding (Fig. 3, for full

videos, please see Movies S1 and S2). The feeding movements of

Table 2. Summary of the inter-axial variables (and their
respective abbreviations) for classifying the types of FS
behaviour (i.e., escape or feeding).

variable between abbreviation

difference of max acceleration (m s22) Ax v.s. Ay DiffMaxAxAy

Ay v.s. Az DiffMaxAyAz

Ax v.s. Az DiffMaxAxAz

difference of range of acceleration (m s22) Ax v.s. Ay DiffRangeAxAy

Ay v.s. Az DiffRangeAyAz

Ax v.s. Az DiffRangeAxAz

difference of mean acceleration (m s22) Ax v.s. Ay DiffMeanAxAy

Ay v.s. Az DiffMeanAyAz

Ax v.s. Az DiffMeanAxAz

difference of SD of acceleration (m s22) Ax v.s. Ay DiffSDAxAy

Ay v.s. Az DiffSDAyAz

Ax v.s. Az DiffSDAxAz

difference of RMS of acceleration (m s22) Ax v.s. Ay DiffRMSAxAy

Ay v.s. Az DiffRMSAyAz

Ax v.s. Az DiffRMSAxAz

difference of max angular velocity
(deg s21)

Gx v.s. Gy DiffMaxGxGy

Gy v.s. Gz DiffMaxGyGz

Gx v.s. Gz DiffMaxGxGz

difference of range of angular velocity
(deg s21)

Gx v.s. Gy DiffRangeGxGy

Gy v.s. Gz DiffRangeGyGz

Gx v.s. Gz DiffRangeGxGz

difference of mean angular velocity
(deg s21)

Gx v.s. Gy DiffMeanGxGz

Gy v.s. Gz DiffMeanGyGz

Gx v.s. Gz DiffMeanGxGz

difference of SD of angular velocity
(deg s21)

Gx v.s. Gy DiffSDGxGy

Gy v.s. Gz DiffSDGyGz

Gx v.s. Gz DiffSDGxGz

difference of RMS of angular velocity
(deg s21)

Gx v.s. Gy DiffRMSGxGy

Gy v.s. Gz DiffRMSGyGz

Gx v.s. Gz DiffRMSGxGz

doi:10.1371/journal.pone.0079392.t002
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the fish typically involved several tail undulations, which allowed

the fish to place themselves in the direction of the evading target

prey.

Axis-specific variables. The previously described difference

in the escape and feeding movements from the video observation

was reflected in the axis-specific variables collected through the

gyro loggers (Tables 3 and 4). The accuracy of the classification of

the type of FS behaviour was highest when the maximum

acceleration in the x-direction from the all-combined dataset (0.84)

was used (Table 5, Fig. 4). The maximum acceleration in the x-

direction and the mean acceleration in the y-direction from the

acc-only dataset (0.78) and the maximum angular velocity in the z-

direction (yaw direction) from the gyro-only dataset (0.62)

Figure 3. Example image sequences of typical a) escape and b)
feeding movements. Full videos are available as the supporting
information (Movies S1 and S2).
doi:10.1371/journal.pone.0079392.g003

Table 3. Summary of the means (sem) of the axis-specific
variables derived from the all-combined or gyro-only datasets
for classifying escape (N = 41) or feeding (N = 41) movements.

Variables escape feeding Statisticsa

MaxAx (m s22) 89.05 (4.37) 49.04 (3.32) p,0.0001****

MaxAy (m s22) 46.99 (3.30) 32.10 (2.04) p,0.001***

MaxAz (m s22) 65.87 (3.33) 39.58 (2.34) p,0.0001****

RangeAx (m s22) 133.21 (6.01) 81.02 (5.05) p,0.0001****

RangeAy (m s22) 69.43 (4.30) 53.28 (3.51) p,0.01**

RangeAz (m s22) 112.56 (5.61) 70.27 (4.31) p,0.0001****

MeanAx (m s22) 0.05 (0.11) 0.00 (0.15) NSb

MeanAy (m s22) 0.61 (0.07) 0.58 (0.10) NS

MeanAz (m s22) 0.32 (0.05) 0.36 (0.08) NS

SDAx (m s22) 8.58 (0.46) 7.09 (0.51) p,0.01**

SDAy (m s22) 5.26 (0.31) 4.82 (0.30) NS

SDAz (m s22) 7.56 (0.36) 6.41 (0.44) p,0.05*

RMSAx (m s22) 8.60 (0.46) 7.16 (0.51) p,0.01

RMSAy (m s22) 5.31 (0.31) 4.87 (0.31) NS

RMSAz (m s22) 7.57 (0.36) 6.44 (0.44) p,0.05*

MaxGx (deg s21) 477.60 (32.84) 340.53 (17.98) p,0.001***

MaxGy (deg s21) 1298.94 (70.61) 962.76 (71.63) p,0.01**

MaxGz (deg s21) 814.68 (29.19) 530.88 (25.47) p,0.0001****

RangeGx (deg s21) 652.46 (38.29) 534.58 (26.98) p,0.05*

RangeGy (deg s21) 2367.95 (137.93) 1701.25 (132.55) p,0.001***

RangeGz (deg s21) 1145.68 (57.64) 841.51 (40.84) p,0.0001****

MeanGx (deg s21) 6.54 (2.50) 5.17 (3.66) NS

MeanGy (deg s21) 0.44 (1.22) 4.69 (2.39) NS

MeanGz (deg s21) 23.12 (6.92) 14.47 (10.59) NS

SDGx (deg s21) 63.75 (3.81) 65.29 (3.11) NS

SDGy (deg s21) 192.06 (12.20) 182.76 (16.18) NS

SDGz (deg s21) 138.78 (5.86) 139.67 (6.55) NS

RMSGx (deg s21) 65.80 (3.89) 68.89 (3.43) NS

RMSGy (deg s21) 192.16 (12.18) 183.44 (16.15) NS

RMSGz (deg s21) 146.91 (6.18) 154.53 (7.29) NS

at test or Wilcoxon singed-rank test was used.
bNS indicates no significance.
The acceleration variables were derived from the all-combined dataset, and the
angular variables were derived from the all-combined or gyro-only datasets
(which had the same values as the all-combined dataset). The statistical
differences between the values of these variables during escape and feeding
behaviours are also shown.
doi:10.1371/journal.pone.0079392.t003
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exhibited the second- and third-highest accuracy, respectively

(Table 5, Fig. 4). Note that the maximum acceleration in the acc-

only dataset included the gravity-based acceleration, which was

removed in the all-combined dataset with the aid of the gyroscope

and magnetometer measurements. Therefore, the values of the

maximum acceleration in the acc-only and all-combined datasets

were different (Tables 3 and 4, Fig. 5).

The decision trees and histograms showed that 66% and 85% of

the feeding movements had a smaller maximum acceleration in

the x-direction in the acc-only and all-combined datasets

respectively, whereas the escape movements had larger values

(Figs. 4 and 5). The mean acceleration in the y-direction of the

acc-only dataset could be used to divide the FS movements that

had a larger maximum acceleration in the x-direction into escape

and feeding movements (the feeding movements had a larger

mean acceleration in the y-direction) (Figs. 4 and 5). In addition,

the maximum angular velocity in the z-direction of the gyro-only

dataset was larger during 44% of the escape movements (Figs. 4

and 5).

Inter-axial variables. The difference in the escape and

feeding movements was also reflected in the inter-axial variables

(Tables 6 and 7). The accuracy of the classification of the types of

FS movements was highest (0.84) when the difference of the range

of the acceleration between the x- and y-directions and the

difference of the maximum angular velocity in the x- and z-

directions from the all-combined dataset were used (Table 8,

Fig. 6). The differences in the range of the acceleration in the x- and

y-directions and in the mean acceleration in the y- and z-directions

Table 4. Summary of the means (sem) of the axis-specific
variables derived from the acc-only dataset for classifying
escape (N = 41) or feeding (N = 41) movements.

variables escape feeding Statisticsa

MaxAx (m s22) 87.82 (4.39) 50.40 (3.30) p,0.0001****

MaxAy (m s22) 46.65 (3.26) 33.33 (2.13) p,0.01**

MaxAz (m s22) 65.98 (3.11) 44.21 (2.24) p,0.0001****

RangeAx (m s22) 135.41 (6.11) 83.16 (5.09) p,0.0001****

RangeAy (m s22) 69.98 (4.26) 53.38 (3.54) p,0.01**

RangeAz (m s22) 114.17 (5.66) 70.43 (4.32) p,0.0001****

MeanAx (m s22) 22.16 (0.31) 20.92 (0.38) p,0.05*

MeanAy (m s22) 20.08 (0.11) 0.75 (0.24) p,0.01**

MeanAz (m s22) 28.72 (0.07) 28.45 (0.11) NSb

SDAx (m s22) 8.89 (0.46) 7.48 (0.53) p,0.01**

SDAy (m s22) 5.41 (0.30) 5.16 (0.31) NS

SDAz (m s22) 7.71 (0.36) 6.46 (0.44) p,0.01**

RMSAx (m s22) 9.41 (0.43) 8.02 (0.49) p,0.01**

RMSAy (m s22) 5.45 (0.30) 5.43 (0.31) NS

RMSAz (m s22) 11.77 (0.25) 10.88 (0.28) p,0.01**

at test or Wilcoxon singed-rank test was used.
bNS indicates no significance.
The statistical differences between the values of these variables during escape
and feeding behaviours are also shown.
doi:10.1371/journal.pone.0079392.t004

Table 5. Summary of the classification rate of escape and feeding movements using the axis-specific variables.

variable
type category accuracy precision recall F-measure variables

acc-only escape 0.78 0.76 0.83 0.79 MaxAx MeanAy

feeding 0.81 0.73 0.77

gyro-only escape 0.62 0.63 0.61 0.62 MaxGz

feeding 0.62 0.63 0.63

all-combined escape 0.84 0.83 0.85 0.84 MaxAx

feeding 0.85 0.83 0.84

The variables used for the classification are also shown.
doi:10.1371/journal.pone.0079392.t005

Figure 4. Decision trees for classifying escape or feeding
movements by axis-specific variables. Three types of axis-specific
variables were used to classify escape (E; N = 41) or feeding (F; N = 41)
movements: a) acc-only, b) gyro-only, and c) all-combined datasets. The
numbers in the box of the categories of FS indicate the percentage of
events that were categorised into each type of movement and the
percentage of these events that were miscategorised (after the
diagonal).
doi:10.1371/journal.pone.0079392.g004
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from the acc-only dataset (0.80) and the difference in the maximum

angular velocity in the x- and z-directions from the gyro-only

dataset (0.66) exhibited the second- and third-highest accuracy,

respectively (Table 8, Fig. 6). Since the all-combined dataset

produced the highest accuracy, overall accuracy, combining the

detection rate of the FS behaviour using the SD of the MA and the

identification rate of the type of FS behaviour using the all-

combined variables, was evaluated as (the number of accurately

classified instances of feeding and escape)/(the number of instances

detected as the FS behaviour) and (the number of accurately

classified instances of feeding and escape)/(the number of instances

of the FS behaviour), which were 0.83 and 0.83 respectively.

The decision trees and histograms showed that 78% and 68% of

the escape movements in the acc-only and all-combined dataset

respectively had a larger difference in the range of the acceleration

in the x- and y-directions, which meant that the range of

acceleration in the x-direction was usually larger than the

acceleration in the y-direction during escape movements (Figs. 6

and 7); consequently, this difference was smaller during feeding

movements (Figs. 6 and 7). In the acc-only dataset, the difference

of the mean acceleration in the y- and z-directions divided the

movements into 78% of the escape movements and in only 5% of

the feeding movements, which means that mean acceleration in

the y-direction tended to be larger than in the z-direction during

the feeding movements (Figs. 6 and 7). In the gyro-only and all-

combined datasets, the difference of the maximum angular

velocity in the x- and z- directions was larger during feeding than

during escape behaviours, which meant that during escape

movements, the maximum angular velocity in the z-direction

tended to be larger than the angular velocity in the x-direction

(note that the difference of the maximum angular velocity between

Figure 5. Histograms of axis-specific variables for classifying escape or feeding movements. Three types of axis-specific variables were
used for the classification of the escape (N = 41) or feeding (N = 41) movements: a) acc-only, b) gyro-only, and c) all-combined datasets.
doi:10.1371/journal.pone.0079392.g005
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the x- and z-directions was calculated through the subtraction of

the z-direction value from the x-direction value) (Figs. 6 and 7).

Discussion

In this study, the monitoring of FS movements of a cruiser fish

by the gyro logger was attained through two processes: 1. the

detection of FS events and 2. the classification of the type of FS

behaviour (i.e., escape or feeding). The classification of whether a

FS event is part of an escape or feeding behaviour is important

because these two movements typically involve a high acceleration

and a high degree of rotation and thus have similar acceleration

and angular velocity profiles. Therefore, to accurately classify the

type of FS movement, the detailed locomotor variables that were

obtained through the gyro logger measurements during escape

and feeding movements were explored.

From the decision trees, the detection of FS movements was

possible with high precision and recall rate through the use of the

SD of the MA and with relatively high precision and recall rate

through the use of the SD of the MG because FS movements have

higher acceleration and angular velocity variations than RM. This

result showed that accelerometer alone can be used to more

accurately detect these FS movements than gyroscope alone.

Because the SD, which indicates the variation, was utilised instead

of the maximum, mean and RMS (the range value is the same as

the maximum value in this case because the minimum MA and

MG value is zero), the thresholds for the decision-tree categorisa-

tion are probably less prone to be affected by other factors, such as

the attachment location of the data logger, the motivation of the

fish, and environmental properties (e.g., temperature).

To classify escape or feeding movements, the axis-specific

variables were first investigated. The differences in the acceleration

and angular velocity variables between escape and feeding

Table 6. Summary of the means (sem) of the inter-axial variables dereived from the all-combined or gyro-only datasets for
classifying escape (N = 41) or feeding (N = 41) movements.

Variables escape feeding Statisticsa

DiffMaxAxAy (m s22) 42.06 (4.19) 16.94 (2.71) p,0.0001****

DiffMaxAyAz (m s22) 218.88 (2.86) 27.48 (2.32) p,0.01**

DiffMaxAxAz (m s22) 23.18 (3.80) 9.46 (2.52) p,0.01**

DiffRangeAxAy (m s22) 63.77 (4.64) 27.74 (3.74) p,0.0001****

DiffRangeAyAz (m s22) 243.13 (4.55) 216.98 (3.94) p,0.0001****

DiffRangeAxAz (m s22) 20.64 (4.50) 10.75 (3.72) NSb

DiffMeanAxAy (m s22) 20.57 (0.13) 20.58 (0.19) NS

DiffMeanAyAz (m s22) 0.29 (0.08) 0.22 (0.11) NS

DiffMeanAxAz (m s22) 20.28 (0.11) 20.36 (0.18) NS

DiffSDAxAy (m s22) 3.32 (0.23) 2.27 (0.27) p,0.01**

DiffSDAyAz (m s22) 22.30 (0.23) 21.59 (0.26) p,0.05*

DiffSDAxAz (m s22) 1.02 (0.27) 0.68 (0.29) NS

DiffRMSAxAy (m s22) 3.29 (0.23) 2.29 (0.26) p,0.01**

DiffRMSAyAz (m s22) 22.26 (0.23) 21.57 (0.26) p,0.05*

DiffRMSAxAz (m s22) 1.03 (0.27) 0.72 (0.29) NS

DiffMaxGxGy (deg s21) 2821.34 (60.99) 2622.23 (66.56) p,0.05*

DiffMaxGyGz (deg s21) 484.26 (66.7) 431.88 (67.71) NS

DiffMaxGxGz (deg s21) 2337.08 (34.88) 2190.35 (23.54) p,0.001***

DiffRangeGxGy (deg s21) 21715.49 (120.19) 21166.67 (120.46) p,0.01**

DiffRangeGyGz (deg s21) 1222.27 (116.58) 859.74 (125.18) p,0.05*

DiffRangeGxGz (deg s21) 2493.22 (44.59) 2306.93 (34.39) p,0.01**

DiffMeanGxGy (deg s21) 6.10 (2.44) 0.48 (5.15) NS

DiffMeanGyGz (deg s21) 222.67 (6.66) 29.78 (11.87) NS

DiffMeanGxGz (deg s21) 216.57 (5.38) 29.30 (8.71) NS

DiffSDGxGy (deg s21) 2128.31 (11.74) 2117.47 (15.65) NS

DiffSDGyGz (deg s21) 53.28 (10.25) 43.06 (14.88) NS

DiffSDGxGz (deg s21) 275.03 (5.17) 274.41 (5.15) NS

DiffRMSGxGy (deg s21) 2126.36 (11.93) 2114.54 (15.78) NS

DiffRMSGyGz (deg s21) 45.26 (10.39) 28.91 (15.28) NS

DiffRMSGxGz (deg s21) 281.11 (5.43) 285.64 (5.75) NS

at test or Wilcoxon singed-rank test was used.
bNS indicates no significance.
The acceleration variables were derived from the all-combined dataset and the angular variables were derived from the all-combined or gyro-only datasets (which had
the same values as the all-combined dataset). The statistical differences between the values of these variables during escape and feeding behaviours are also shown.
doi:10.1371/journal.pone.0079392.t006
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movements indicate the different strategies that are used in the

different behaviours. The decision trees and histograms showed

that feeding movements typically had a smaller maximum

acceleration in the x-direction than that observed in the escape

movements, which reflects the lower intensity of the beating of the

caudal fin during feeding than escape behaviour, as shown in the

video images. This difference may occur because feeding requires

a larger degree of trajectory adjusting (e.g., manoeuvrability and

accuracy) to follow the evading prey [30]; furthermore, fish do not

use a large amount of power, which may decrease the amount of

their control in the movement direction. Escape movements,

however, may require that the fish place a higher priority on its

quick separation from threats, which requires less control in the

movement direction. Although the movement and species of the

prey, the direction of refuge and stimulus, and the position of other

individuals in the school may change the direction of the

movement (reviewed by [31,32]), the manner of caudal fin

movement may be less variant depending on the context. In the

acc-only dataset, the higher mean acceleration in the y-direction

categorised the movements with a larger maximum acceleration in

the x-direction into feeding behaviour, which indicates that

feeding movements occasionally require a longer chasing period

before the final attack. In these cases, the intensity of the forward

acceleration was maintained at a high level. Since escape does not

typically involve a movement that requires a constant high

acceleration, as does chasing, these movements typically have a

smaller mean acceleration in the y-direction. In the gyro-only

dataset, the maximum angular velocity in the yaw direction was

typically larger during escape than during feeding, although there

were overlaps in the distributions. This difference may also be due

to the different strategies that are involved in the movements,

where feeding requires the adjustment of movement to capture the

evading prey, which requires a smaller change rate in direction,

whereas escape requires a considerable amount of turning, to

avoid threats.

Even though the all-combined dataset had the same variable

(maximum acceleration in the x-direction) as the acc-only dataset,

the accuracy of the classification of escape and feeding behaviour

was higher when the all-combined dataset was used. In the all-

combined dataset, the gravity-based acceleration was removed,

and the maximum acceleration reflected the accurate dynamic

acceleration [19]. The gravity-based acceleration was not removed

in the acc-only dataset because the smoothing [26,27] or low-pass

filtering [28,29] methods that would produce variability in the

acceleration variables. The ratio of the gravity-based acceleration

to the dynamic acceleration in the accelerometer measurements

can be high when the acceleration intensity is low. This gravity-

based acceleration reflects the change of attitude in roll and pitch

movements. Therefore, the maximum acceleration has different

meanings in the all-combined and acc-only datasets. An accurate

value of the maximum acceleration may be important for the

classification of these two types of movement. Furthermore, the

accuracy of the classification was highest when the all-combined

dataset was used than if the acc-only or gyro-only datasets were

utilised, which suggests that the data that can be collected using an

accelerometer or a gyroscope alone lack some information that is

required for the classification of the different types of FS

movements. Consequently, the combination of an accelerometer,

a gyroscope and a magnetometer is important.

Although the axis-specific variables were easier to interpret, the

threshold values may be affected by other factors, such as the

attachment location of the data loggers, the motivation of the fish,

and environmental properties (e.g., temperature). Therefore, the

inter-axial variables were also considered because these reflect the

relative differences of movement in the different directions (x, y

and z). As with the axis-specific variables, the accuracy of the

classification of escape or feeding movements by inter-axial

Table 7. Summary of the means (sem) of the inter-axial
variables derived from the acc-only dataset for classifying
escape (N = 41) or feeding (N = 41) movements.

variables escape feeding Statisticsa

DiffMaxAxAy (m s22) 41.17 (4.13) 17.07 (2.67) p,0.0001****

DiffMaxAyAz (m s22) 219.33 (2.78) 210.88 (2.42) p,0.01**

DiffMaxAxAz (m s22) 21.84 (3.90) 6.19 (2.54) p,0.01**

DiffRangeAxAy (m s22) 65.43 (4.70) 29.78 (3.8) p,0.0001****

DiffRangeAyAz (m s22) 244.19 (4.69) 217.05 (3.96) p,0.0001****

DiffRangeAxAz (m s22) 21.24 (4.58) 12.73 (3.71) NSb

DiffMeanAxAy (m s22) 22.08 (0.31) 21.67 (0.43) NS

DiffMeanAyAz (m s22) 8.64 (0.12) 9.20 (0.22) p,0.05*

DiffMeanAxAz (m s22) 6.56 (0.33) 7.52 (0.43) NS

DiffSDAxAy (m s22) 3.48 (0.24) 2.32 (0.28) p,0.01**

DiffSDAyAz (m s22) 22.30 (0.23) 21.29 (0.25) p,0.01**

DiffSDAxAz (m s22) 1.18 (0.28) 1.03 (0.31) NS

DiffRMSAxAy (m s22) 3.95 (0.22) 2.60 (0.26) p,0.0001****

DiffRMSAyAz (m s22) 26.32 (0.21) 25.45 (0.21) p,0.01**

DiffRMSAxAz (m s22) 22.37 (0.31) 22.85 (0.34) NS

at test or Wilcoxon singed-rank test was used.
bNS indicates no significance.
The statistical differences between the values of these variables during escape
and feeding behaviours are also shown.
doi:10.1371/journal.pone.0079392.t007

Table 8. Summary of the classification rate of escape and feeding movements using the inter-axial variables.

variable type category accuracy precision recall F-measure variables

acc-only escape 0.80 0.82 0.78 0.80 DiffRangeAxAy DiffMeanAyAz

feeding 0.79 0.83 0.81

gyro-only escape 0.66 0.88 0.37 0.52 DiffMaxGxGz

feeding 0.60 0.95 0.74

all-combined escape 0.84 0.89 0.78 0.83 DiffRangeAxAy DiffMaxGxGz

feeding 0.80 0.90 0.85

The variables used for the classification are also shown.
doi:10.1371/journal.pone.0079392.t008
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variables was highest when the all-combined dataset was used.

The variables in the all-combined dataset were also utilised by the

acc-only and gyro-only datasets. The difference in the range of the

acceleration in the x- and y-directions was typically larger during

escape movements. This may be because feeding requires the

adjustment of trajectories to capture the evading prey, which

involves an increased amount of wiggle movements and a smaller

change in the lateral direction by the beating of the caudal fin.

This would result in the smaller difference in the range of

acceleration in the x- and y-directions, as described with the axis-

specific variables. Escape movements, however, may require a

larger degree of caudal fin beating to quickly increase the distance

from threats; consequently, these movements exhibit a larger

lateral acceleration in both the positive and negative directions,

which results in a greater degree of acceleration in the x-direction

than in the y-direction. The difference in the mean acceleration in

the y- and z-directions showed that a few feeding events have a

large difference in the acceleration in the y- and z-directions,

which may reflect the duration of the chase during which the

forward acceleration is maintained at a higher level than the

vertical acceleration. The difference in the maximum angular

velocity in the x- and z-directions showed that the maximum

angular velocity in the z-direction (yaw) was larger than in the x-

direction (pitch) during escape movements, whereas this difference

was closer to zero in feeding movements. This result may indicate

that escape movements involve responses that have a higher

maximum angular velocity in the z-direction (i.e., turning) and

that the change in the pitch direction is not important during this

type of movement. Because feeding may require the adjustment of

the movement direction to follow the movement of the prey, the

rate of change in the yaw direction is expected to be lower than

during escape movements, whereas the change in the pitch

direction is more important in these cases.

We have established locomotor variables and the threshold

values to detect and identify the escape and feeding behaviours of

a cruise fish in laboratory experiments. It is possible that the

movement signatures of fish in a controlled condition may be

different from those in the field [33]. In this regard, it would be

ideal to have the locomotor variables and especially the threshold

values calibrated in the field using animal-borne motion sensors

and video cameras simultaneously, if these experiments are

feasible. Nevertheless, our study in laboratory settings will be

useful for future research in the open water. In the open water,

where the fish is not restricted in its depth movements, it may swim

Figure 6. Decision trees for classifying escape or feeding movements by inter-axial variables. Three types of inter-axial variables were
used for the classification of the escape (N = 41) or feeding (N = 41) movements: a) acc-only, b) gyro-only, and c) all-combined datasets. The numbers
in the box of the categories of FS indicate the percentage of events that were categorised into each movement type and the percentage of these
events that were miscategorised (after the diagonal).
doi:10.1371/journal.pone.0079392.g006
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at steep angles and significantly change swimming angles.

However, it should move along the principal axes of its coordinate

frame while the fish coordinate frame simultaneously changes in

the earth coordinate frame when the fish changes its posture.

Therefore, if the change rate of angle and translational movement

(i.e. angular velocity and dynamic acceleration) is utilized and

represented in the fish coordinate frame (not the earth coordinate

frame), it is unlikely that the movement signatures are affected by

the steep angle of posture during their depth change. For the

experiment in the open water, a data logger can be recovered from

the tagged fish using the time-scheduled release system [34].

The method developed in this study can be used to monitor

feeding and escape behaviours, or even other complicated

bahaviours, of other animals with a high accuracy, by recording

the detailed movements with a high sampling frequency through a

gyro logger. While the relationship between the sampling

frequency and the accuracy of identifying the fast-start behavior

is not the focus of this study, 500 Hz sampling frequency as used in

our experiments may be unnecessary. However, sufficiently high

sampling frequency (e.g. 100 or 200 Hz) is needed to avoid a

serious temporal aliasing in the data of fast-track movements that

usually last only a fraction of a second [16]. Since the sampling

frequency is related to the longevity of recording hours with

limited battery and memory (and even the size of the data logger),

the sampling frequency should be adjusted to objective behaviours.

In the future, it will be important to develop a smaller gyro logger

that can be implanted in the body cavity of animals to remove the

hydrodynamic drag of the devices. At the same time, implemen-

tation of on-board processing, to boot the device and start

recording only when important events are happening, will be

needed to create a device that can monitor long-term behaviours

[35]. To achieve that, important movement variables and the

Figure 7. Histograms of the inter-axial variables for classifying escape or feeding movements. Three types of inter-axial variables were
used for the classification of the escape (N = 41) or feeding (N = 41) movements: a) acc-only, b) gyro-only, and c) all-combined datasets.
doi:10.1371/journal.pone.0079392.g007
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thresholds for monitoring specific behaviours must be firstly

identified as done in our study.

Supporting Information

Dataset S1 Raw measurements of escape movement by
the gyro logger.

(TXT)

Dataset S2 Raw measurements of feeding movement by
the gyro logger.

(TXT)

Movie S1 Escape movie. Each frame obtained through the

200 Hz high speed camera was recombined to produce a 10 Hz

movie (One second in the video time corresponds to 0.05 s in a

real time).

(MOV)

Movie S2 Feeding movie. Each frame obtained through the

200 Hz high speed camera was recombined to produce a 10 Hz

movie (One second in the video time corresponds to 0.05 s in a

real time).

(MOV)
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