
MDR-ER: Balancing Functions for Adjusting the Ratio in
Risk Classes and Classification Errors for Imbalanced
Cases and Controls Using Multifactor-Dimensionality
Reduction
Cheng-Hong Yang1, Yu-Da Lin1, Li-Yeh Chuang2*, Jin-Bor Chen3, Hsueh-Wei Chang4,5*

1 Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan, 2 Department of Chemical Engineering and Institute of

Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan, 3 Division of Nephrology, Department of Internal Medicine, Mitochondrial Research Unit,

Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung, Taiwan, 4 Department of Biomedical Science and Environmental

Biology, Kaohsiung Medical University, Taiwan, 5 Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan

Abstract

Background: Determining the complex relationship between diseases, polymorphisms in human genes and environmental
factors is challenging. Multifactor dimensionality reduction (MDR) has proven capable of effectively detecting statistical
patterns of epistasis. However, MDR has its weakness in accurately assigning multi-locus genotypes to either high-risk and
low-risk groups, and does generally not provide accurate error rates when the case and control data sets are imbalanced.
Consequently, results for classification error rates and odds ratios (OR) may provide surprising values in that the true positive
(TP) value is often small.

Methodology/Principal Findings: To address this problem, we introduce a classifier function based on the ratio between
the percentage of cases in case data and the percentage of controls in control data to improve MDR (MDR-ER) for multi-
locus genotypes to be classified correctly into high-risk and low-risk groups. In this study, a real data set with different ratios
of cases to controls (1:4) was obtained from the mitochondrial D-loop of chronic dialysis patients in order to test MDR-ER.
The TP and TN values were collected from all tests to analyze to what degree MDR-ER performed better than MDR.

Conclusions/Significance: Results showed that MDR-ER can be successfully used to detect the complex associations in
imbalanced data sets.
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Introduction

Genome-wide association studies (GWAS) can detect the several

single nucleotide polymorphisms (SNPs) associated with genotype

frequencies of cases and controls that have significant effects on

disease susceptibility [1,2,3,4,5,6]. Although GWAS provides

representative SNPs from the entire genome, many SNPs with a

low or marginal significance are frequently excluded. However,

most SNPs discovered by GWAS still have effects on disease

susceptibility when association effects amongst SNPs are consid-

ered; they may play a role in determining disease susceptibility due

to gene-gene interaction. SNP association effects are believed to

have important implications for the human disease risk [7,8,9].

The data mining and machine learning methods employed to

gather the GWAS data pose significant computational challenges

when simultaneously trying to evaluate the complex interactions

amongst all tested SNPs. Different computational approaches have

been developed to examine epistasis in family-based and case-

control association studies [10,11,12,13,14,15,16,17,18,19,20,21].

MDR was proposed by Ritchie et al. [22]. It is a non-

parametric statistical method for the detection of high-order gene–

gene and gene–environment interactions in case-control studies

[22,23]. The idea behind MDR is to classify the multi-locus

genotypes into high-risk and low-risk groups to effectively reduce

the genotype predictors from n dimensions to one dimension.

MDR was shown to detect gene-gene interactions reasonably well

for several disease phenotypes, including hypertension [24,25,26],

bladder cancer [27], coronary artery disease [28], and autism [29].

Once an MDR attribute is constructed, it can be statistically

evaluated using any classification method, e.g., naive Bayes,

decision trees, or logistic regression [26]. Computational methods

such as bootstrapping, cross-validation, and permutation testing
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can be employed as wrappers in MDR-based constructive

induction and classification to facilitate identification of a best

set of predictors and their statistical analysis model. Other

improvements of the performance and applicability of MDR have

been proposed, e.g., OR-MDR [30], GMDR [31], MBMDR [32],

and other methods [33]. However, the majority of studies typically

considers a balanced number of cases and controls. When a

substantial imbalance is present in the data, problems arise in

MDR. MDR has its weakness in accurately assigning multi-locus

genotypes to either high-risk and low-risk groups, and does

generally not provide accurate error rates when the case and

control data sets are imbalanced. Consequently, results for

classification error rates and odds ratios (OR) may provide

surprising values in that the true positive (TP) value is often small.

In this study, we propose a classifier function based on the ratio

between the percentage of cases in case data and the percentage of

controls in control data into the MDR classifier in a method we

called MDR-ER. This method assigns multi-locus genotypes and

estimates the classification error to overcome the MDR short-

coming in imbalanced data sets. The MDR-ER method uses the

ratio between the percentage of cases in the case data and the

percentage of controls in the control data to weigh the disease risk,

so that correct classification into high-risk and low-risk groups can

be performed and the dimensionality significantly reduced. In

addition, we use the percentage of cases in case data and the

percentage of controls in control data to evaluate the classification

error rate so that MDR can accurately select the smallest error

rate amongst the SNP combinations. Hence, a reasonable true

positive (TP) and true negative (TN) value can be obtained from a

2-way contingency table by using the large imbalance of cases to

controls for each combination of genotypes.

The MDR method is briefly introduced in Section 2.1, and the

MDR-ER method elaborated on in Section 2.2. An example

giving a comparison between the MDR and MDR-ER results is

provided in Section 3 using a data set obtained from the

mitochondrial D-loop of chronic dialysis patients. A discussion

and final conclusions are offered in Section 4.

Methods

MDR Method
The objective of MDR is to change the representation of the

data space in such a way that detection of interactions can easily

be performed. This is accomplished by combining two or more

attributes into a single attribute that can be modeled using a

discrete data classifier. Table 1 illustrates the MDR pseudo-code,

and Figure 1 and File S1 illustrate the details of the MDR

procedure. In a first step, the data are divided into 10 subsets for

cross-validation (CV)–nine subsets are classified as training sets

and one subset as an independent testing set. The training and

testing sets are respectively defined as the vectors R and E, the

elements of which represent samples in the data sets. In a second

step, the value of n is designated depending on the number of

factors being considered. Then, a set of n genetic and/or

environmental factors is selected. The n factors (i.e., loci) and

their possible multifactor classes are represented in the

n-dimensional vector space.

L~fl1,l2,l3,:::,lng ð1Þ

Next, the ratio of the number of cases to the number of controls

within each multifactor class is calculated (step 2A). The black bar

in Figure 1(2A) and Figure S1 in File S1 represents the cases and

the white bar represents the controls. The ratio between cases and

controls is evaluated by Eq. 2 (step 2B and Figure S2 in File S1).

f (L)~

PP�
j~1 u(L,Pj)PN�
j~1 u(L,Nj)

ð2Þ

where

u(L,A)~
1 Vl[A

0 Vl 6[A

�
,Vl [L

where the cases are labeled P and the controls are labeled N. P*

and N* represent the sizes of case and control groups in the

training set, respectively. L is a vector of variable combinations (as

in Eq. 1). u() represents a match (given a score of ‘‘1’’) if all

parameters l in vector L match their cases or controls; a mismatch

is given the score ‘‘0’’.

Each multifactor class in the n-dimensional space is labeled ‘H’

if the ratio of the number of cases to that of the controls is equal to

or exceeds a particular threshold; otherwise it is labeled ‘L’ (step

2C and Figure S3 in File S1). Hence, we can compute the four

frequencies in a 2-way contingency table (TP, FP, TN, and FN)

(step 2D and Figure S4 in File S1). The n-dimensional space is thus

reduced to one dimension with two levels (high-risk and low-risk

groups). Usually, the threshold is determined as the ratio of the

number of cases to the number of controls in the training data set.

The threshold is equal to the one in a balanced data set. Finally, in

step 2E, the classification error is evaluated by Eq. 3.

f (C)~
FNzFP

TPzFNzFPzTN
ð3Þ

Among all the multifactor combinations, the MDR model with

the lowest number of misclassified individuals is selected. In step 3,

the model with the best misclassification error rate is selected and

the prediction error rate of the model is estimated using the

independent test data (step 3A). In addition, the best model in each

cross-validation is collected and named the cross-validation

consistency (CVC). With 10-fold cross-validation, the data are

divided into 10 equal parts and the model developed on 9/10 of

the data (i.e., the training data). After training, the remaining 1/10

of the data (i.e., the independent test data) is evaluated. This is

repeated for each possible 9/10 and 1/10 of the data, and the

resulting ten prediction error rates are averaged. Steps 1–3 are

repeated for each possible cross-validation interval. Finally, the

highest CVC with the lowest misclassification error is regarded as

the best model (step 4). If a tie between 2 or more models occurs,

then the model found first is regarded as the best model.

MDR-ER Method
MDR uses the ratio between cases and controls to detect the

high-risk and low-risk groups. Although the threshold T = 1 can be

used to distinguish high-risk genotype combinations from low-risk

genotype combinations, fault can be found with the imbalance of a

data set. Unlike MDR, MDR-ER uses the ratio between the

percentage of cases in case data and the percentage of controls in

control data to detect the high-risk and low-risk groups. The

percentages of cases and controls in data sets allow us to clearly

detect the highest ratio in the case group and in the control group.

We propose Eq. 4 to evaluate the ratio of case percentage to

Balancing Functions for Adjusting the Ratio
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control percentage.

f (L)~
N�½
PP�

j~1 u(L,Pj)�
P�½
PN�

j~1 u(L,Nj)�
ð4Þ

where

u(L,A)~
1 Vl[A

0 Vl 6[A

�
,Vl[L

In Eq. 4 we define the cases as P and the controls as N. P* and

N* represent the size of case group and the size of control group in

Figure 1. MDR flowchart.
doi:10.1371/journal.pone.0079387.g001
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the training set. L is a vector of variable combinations (as in Eq. 1).

u() represents a match (given a score of ‘‘1’’) if all parameters l in

vector L match their cases or controls; a mismatch is given the

score ‘‘0’’. For example, the first cell shows 114 cases and 342

controls. Evaluation with Eq. 4 yields a value of 1.22, which means

that the cell is assigned a low-risk label (704*114)/(193*342); P*

and N* are 193 and 704, respectively (Table S1 in File S1).

The second function modifies the classification error rate of

MDR. Eq. 5 was introduced into MDR by Velez [34]. The

function computes the classification error rate based on the

arithmetic mean of the sensitivity and specificity. Eq. 5 is

introduced so that the two classes equally account for both

positive and negative errors caused by the class imbalance. This

balanced classification error is algebraically identical to the error

rate when data sets are completely balanced.

f (C)~0:5|
FN

TPzFN
z

FP

FPzTN

� �
ð5Þ

C represents a vector in a cell that includes the parameters TP,

FP, FN, and TN. TP and FN represent the number of cases that

are assigned to the high-risk and low-risk groups, respectively. FP

and TN represent the number of controls that are assigned to the

high-risk and low-risk groups, respectively.

Table 1. MDR pseudo-code.

01: divide data into 10 subsets

02: for D = 1 to 10 subsets

03: classify D subset as the test data set and the other subsets as the training data set

04: training data:

05: for N = 1 to n-order combination of SNPs

06: for C = 1 to all combination of genotypes

07: determine the high/low risk groups in C cell

08: end C

09: compute the misclassification error

10: end N

11: choose the best combination with the minimum misclassification error

12: end training data

13: test data:

14: compute the prediction error of the best combination in the test data

15: end test data

16: collect the best combination into B;(B1, B2, …, B10)

17: end D

18: compute cross-validation consistency from B

19: choose the best combination with the minimum prediction error

doi:10.1371/journal.pone.0079387.t001

Table 2. Estimated effect (odds ratio and 95% CI) from individual SNPs of 23 steroid hormone metabolisms and signalling-related
genes on the occurrence of breast cancer in patients.

Methods Best candidate model Consistency TP TN Accuracy OR (95% CI)

2-locus

MDR-E 55, 64 100/100 19 689 0.54 5.02 (2.50–10.07)

MDR-ER 40, 56 66/100 131 307 0.56 1.63 (1.17–2.29)

3-locus

MDR-E 3, 55, 64 96/100 19 691 0.54 5.80 (2.81–11.98)

MDR-ER 21, 59, 64 26/100 111 393 0.57 1.71 (1.24–2.36)

4-locus

MDR-E 5, 17, 43, 64 33/100 22 689 0.55 5.91 (3.00–11.63)

MDR-ER 21, 59, 64, 71 64/100 108 423 0.58 1.91 (1.39–2.64)

5-locus

MDR-E 5, 17, 34, 43, 64 100/100 28 686 0.56 6.47 (3.49–11.97)

MDR-ER 8, 21, 31, 59, 64 22/100 80 538 0.59 2.29 (1.64–3.21)

doi:10.1371/journal.pone.0079387.t002

Balancing Functions for Adjusting the Ratio
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The difference between the two methods lies in the fact that

MDR-ER adjusts the amount of cases and controls from a number

to a ratio. This provides a more robust model to accurately assign

multi-locus genotypes to either high-risk or low-risk groups and

provides an accurate classification error when the class variable

has a different, i.e., imbalanced, ratio of cases to controls.

Results

Data Set
The data set was obtained from our previous chronic dialysis

association study with mitochondrial SNPs in the D-loop region

[35]. Information pertaining to the 77 SNPs in the data set are

described in the literature [35]. In order to test the methods, the

data sets were generated by random classification into n groups,

where n is the number of cross-validations in MDR. Ten-fold

cross-validation with 9/10 as a training set and 1/10 as a test set

was used.

We generated a total of 100 different data sets. Over all 100

data sets, the ratio of controls (n = 704) to cases (n = 193) was

3.65:1. In the 1000 training sets with 10-fold cross-validation, the

range of ratios of cases to controls was 3.41 to 3.95; the mean (SD)

ratio was 3.65 (0.10). In this study, each data set was used once to

test all the methods.

Detection
For 100 implementations, we summed up the frequencies of

results, which were selected based on the cross-validation

consistency (CVC) and the classification error rate in each test.

The highest frequency is shown in the best candidate model and

consistency column in Table 2. The true positive (TP), true

negative (TN), accuracy, and odds ratio (OR) were evaluated by

the best candidate model. We compare two MDR methods: (1)

MDR-E which incorporates Eq. 5 in the MDR method, and (2)

MDR-ER which uses both Eqs. 4 and 5.

This study detected associations from 2-locus to 5-locus

genotypes; all detection results are shown in Table 2. All results

are statistically significant (P,0.001). The MDR-E and MDR-ER

methods show different results in the 2-locus to 5-locus groups.

The TP and TN frequencies show that TN is clearly bigger than

TP for all implementations of the MDR-E and MDR-ER

methods. However, the TP of the MDR-E in the 2-locus to 5-

locus groups are smaller than the respective TPs in MDR-ER,

whereas the TNs of MDR-ER in the 2-locus to 5-locus groups are

a lot smaller than in MDR-E. Note that the big difference between

Figure 2. Power analysis of the four methods in 10-fold cross-
validation.
doi:10.1371/journal.pone.0079387.g002

Table 3. Analysis results of the difference between MDR-E and MDR-ER in 2-locus genotypes.

SNPs
Cell
frequencya MDR-E MDR-ER

Strategy Class TP TN Error rate Strategy Class TP TN Error rate

40, 56 0.5 0.44

114:342 0.33 Low-risk 0 342 1.20 High-risk 114 0

57:280 0.20 Low-risk 0 280 0.74 Low-risk 0 280

5:27 0.19 Low-risk 0 27 0.75 Low-risk 0 27

17:55 0.31 Low-risk 0 55 1.13 High-risk 17 0

Total 0 704 131 307

SNPs

55, 64 0.46 0.46

174:689 0.25 Low-risk 0 689 0.92 Low-risk 0 530

5:4 1.25 High-risk 5 0 4.56 High-risk 5 163

14:11 1.27 High-risk 14 0 4.64 High-risk 14 0

0:0 0 0

Total 19 689 19 689

athe left number represents the number of cases and the right number represents the number of controls.
doi:10.1371/journal.pone.0079387.t003

Balancing Functions for Adjusting the Ratio
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the total TP and the total TN is due to the imbalance of the data

sets, and the decreased TN number is due to the fact that FP grows

with the TP. Consequently, the high value for TN in MDR-E

leads to a high odds ratio value, but the 95% CI region is very

large, i.e., the accuracy of the odds ratio is poor. On the other

hand, MDR-ER has a lower odds ratio (1.63 to 2.29), but the

accuracy of the odds ratio is superior to the one of the other

methods. Overall, the accuracy of MDR-ER in the 2-way

contingency table is the highest of the four methods.

Power
The results of the test set can be used to examine the training set

as to whether the model has a statistically significant difference for

cases and controls or not. The results of the test set are usually not

deemed statistically significant (at P = 0.001) during each cross-

validation. Thus, we separate the results into two groups. The H0

group indicates that the result of the test set is the same as for the

training set (H0), and the H1 group implies that the result of the

test set is different from the training set. We use a power analysis to

represent the degree of rejection for H0, i.e., ’power’ is detection

that is statistically significant (at a= 0.05). The statistical analysis

was implemented by the G*power 3.1.5 tool. All power results are

shown in Figure 2. It displays the extremes, the upper and lower

quartiles, and the median of the power for MDR-E and MDR-ER

on the 2- to 5-locus genotypes over 100 runs. The boundary of the

box closest to zero indicates the 25th percentile, a line within the

box marks the median, and the boundary of the box farthest from

zero indicates the 75th percentile. Error bars left and right of the

boxes indicate the 90th and 10th percentiles, respectively.

All boxes clearly indicate that the power is improved for high-

locus genotypes. The power of MDR-ER is significantly higher

than that of the other methods, and the stability of the power is

good. The MDR-ER in 2- to 5-locus genotypes show a superior

degree of power compared to MDR and MDR-E. The powers of

MDR, MDR-E are usually smaller than 0.8. This means that the

results have a high probability of not being statistically significant.

Figure 2 shows the odds ratio and the 95% CI in the 2- to 5-locus

genotypes. The boundary of the box closest to zero indicates the

25th percentile and the boundary of the box farthest from zero

indicates the 75th percentile. Error bars left and right of the boxes

indicate the minimum and maximum 95% CI over 100 runs,

respectively. Comparison of the odds ratio shows that MDR-ER

has the worst odds ratio of the four methods, but the smallest

region between the upper and lower bounds of 95% CI.

Discussion

MDR is a robust non-parametric method that detects nonlinear

interactions amongst multiple discrete genetic factors. The

advantage of MDR is that the representation of the data space

can be changed so that high-order interactions can be computed

by the statistical classifiers. However, MDR may not provide a

robust enough model for the detection of nonlinear interactions

when the ratio of cases to controls is imbalanced. Resampling

techniques are usually used to improve MDR to detect epistasis in

imbalanced data sets. However, we used an under-sampling

technique to remove samples to arrive at the three different ratios

(case:control 1:1, 1:2, and 1:3), and then compared the real data

set (1:4) with these data sets. The results are shown in Tables S2 to

S4 of the File S1. The best model in the 2- to 5-locus genotypes of

both MDR-E and MDR-ER were not the same SNP combina-

tions amongst the four data sets (1:1, 1:2, 1:3, and 1:4). This means

that important information may be lost due to some samples being

removed. Two different approaches can be used to improve MDR

for classification when the data sets are imbalanced. The first is to

find the optimal threshold, T, for determining the high-risk and

low-risk in each cell, while the second approach defines a function

for the classifier. However, finding the optimal threshold needed to

train specific data sets is difficult. Defining a function for the

Figure 3. Frequency analysis of TP, TN, classification error, and numbers of high-risk and low-risk groups in 2-locus genotypes.
doi:10.1371/journal.pone.0079387.g003
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classifier is more appropriate when trying to improve MDR for

imbalanced data sets.

The objective of this study was to propose a function for

improving the classifier of MDR when the number of cases and

controls are not equal. The results show that our function

successfully improved the MDR classifier in imbalanced data sets.

We analyzed the details of the computation process to explain why

MDR-ER is suited for imbalanced data sets. Table 3 shows

detailed results obtained by running the whole data set for the 2-

locus genotypes with MDR-E and MDR-ER. The first model

shows the results (model, 55, 64) of MDR-E and the second model

shows the results of MDR-ER (model, 40, 56). In the cell

frequency column, the first number indicates the number of cases

and the second number is the number of controls in each cell. In

File S1 we show the computational process for the model SNPs

(40, 56) from the results of MDR-E and MDR-ER at 2-locus

combinations. Figure S2 in File S1 shows the sample distribution

in the SNPs (40, 56); the number of control groups in all four cells

is bigger than the number of case groups. The function, i.e., cases/

controls, always computes ratio values smaller than the threshold

T = 1 (Figure S2.A in File S1). On the other hand, Figure S2.B in

File S1 shows the results of the proposed function computing the

four cells; these results show that the numbers of high-risk (.1)

and low-risk (,1) are balanced. This means that the function can

improve the MDR classifier in imbalanced data sets.

Figure 3 illustrates the advantage of Eqs. 4 and 5 for comparing

the MDR, MDR-E and MDR-ER search processes. Figure 3

shows the 2-locus combinations with the TP, TN, error rate, and

the number of high-risk and low- risk groups. The left figure

illustrates the process of selecting the best model, and the right side

illustrates the number of high-risk and low-risk groups in each

model, respectively labeled ‘‘High’’ and ‘‘Low’’. The horizontal

axis represents the 2-locus combinations in the 100 different

models, which are selected by systematic sampling from all models

and sorted by error rate. The left and right figures show the same

100 models. The vertical axis represents the values of the above

properties, in which the left scale in the left figure represents the

log10 value for the proportions of TP and TN. For example, let the

frequency of the high-risk group in cases (i.e., TP) be 131 and the

case number 193. The proportion 67.88% is computed as 131/

1936100%, and the log10 value is 1.83. The red line represents the

error rate based on Eq. 5, denoted ‘‘Adjust Err’’. In Figure 3, error

rates of MDR in 28 models show values around 0.2; the number of

TNs is much larger than the number of TPs. The number of TPs

has increased in 28 models, but their error rates are not clearly

improved. The sensitivity of the best model in MDR is 0.062, and

the specificity is 0.993. On the other hand, MDR-E in Figure 3

clearly shows that TPs are improved by Eq. 5. However, the

number of TNs is still larger than the number of TPs in all models.

The right figure of MDR-E illustrates that the low-risk groups are

bigger than the high-risk groups in 28 models. The sensitivity of

the best model in MDR-E is 0.098, and the specificity is 0.978. For

MDR-ER in Figure 3, the number of TNs is not always higher

than the number of TPs, and thus it has good error rates which

occur when the difference in the value for TP and TN is small.

The right figure of MDR-ER illustrates that the difference

between the number of high-risk groups and the number of low-

risk groups is improved when we compare MDR and MDR-E.

The sensitivity of the best model in MDR-ER is 0.679, and the

specificity is 0.436. The distribution difference between high-risk

and low-risk groups for an imbalanced data set is shown in

Figure 3. In MDR and MDR-E, the cells are usually classified into

low-risk groups due to the case number in each cell often being

smaller than the control number. MDR-ER shows a good ratio of

the number of high-risk groups and the number of low-risk groups.

MDR-ER uses the Eq. 4 to calculate the ratio between cases and

controls in all cells and effectively overcomes the poor identifica-

tion of MDR for imbalanced data sets.

MDR-ER combines two functions to measure the low-risk and

high-risk groups and evaluate the classification error to select the

best model. Similar to the original MDR, MDR-ER is a non-

parametric method and assumes no particular genetic model.

However, the MDR-ER method has several advantages over the

MDR method when imbalanced data sets are used. These are: (1)

MDR-ER effectively classifies cells into high-risk and low-risk

groups to increase the number of TPs, (2) the best model has a low

error rate and a high sensitivity for disease prediction, (3) it only

modifies the classification evaluation formula and error rate

evaluation formula, and therefore does not increase the number of

procedures and parameters, and (4) it is based on the percentages

of case and control in data sets for each combination of genotypes

and reveals more information regarding the effect of certain

genotype combinations on a disease risk since the quantitative

value of the ratios represents better classifications results.

The general MDR method does usually not consider imbal-

anced data set. However, many real data sets show ratios of cases

and controls that are not 1:1 but often higher than 1:3. This large

difference between cases and controls results in the model being

biased and favoring low-risk groups. This larger number of low-

risk groups invariably causes the model to shift attention to the

more uninteresting aspects. Hence, the results of the general MDR

would not be used to analyze the gene-gene interactions

responsible for diseases and cancers. To overcome this problem,

this study successfully used two functions to improve the MDR

method and provide a powerful analysis tool that can investigate

multiple-locus interactions in chronic dialysis patients. The

improved performance of MDR-ER in generating significant

models can potentially be applied to determine the complex gene-

gene interactions among the huge number of SNPs involved in

genome-wide association studies when data sets are imbalanced.
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