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Abstract

Our goal in these analyses was to use genomic features from a test set of primary breast tumors to build an
integrated transcriptome landscape model that makes relevant hypothetical predictions about the biological and/or
clinical behavior of HER2-positive breast cancer. We interrogated RNA-Seq data from benign breast lesions, ER+,
triple negative, and HER2-positive tumors to identify 685 differentially expressed genes, 102 alternatively spliced
genes, and 303 genes that expressed single nucleotide sequence variants (eSNVs) that were associated with the
HER2-positive tumors in our survey panel. These features were integrated into a transcriptome landscape model that
identified 12 highly interconnected genomic modules, each of which represents a cellular processes pathway that
appears to define the genomic architecture of the HER2-positive tumors in our test set. The generality of the model
was confirmed by the observation that several key pathways were enriched in HER2-positive TCGA breast tumors.
The ability of this model to make relevant predictions about the biology of breast cancer cells was established by the
observation that integrin signaling was linked to lapatinib sensitivity in vitro and strongly associated with risk of
relapse in the NCCTG N9831 adjuvant trastuzumab clinical trial dataset. Additional modules from the HER2
transcriptome model, including ubiquitin-mediated proteolysis, TGF-beta signaling, RHO-family GTPase signaling,
and M-phase progression, were linked to response to lapatinib and paclitaxel in vitro and/or risk of relapse in the
N9831 dataset. These data indicate that an integrated transcriptome landscape model derived from a test set of
HER2-positive breast tumors has potential for predicting outcome and for identifying novel potential therapeutic
strategies for this breast cancer subtype.
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Introduction

Approximately 15% of all invasive breast tumors, at
presentation, overexpress the EGFR family member HER2
[1–3]. Clinically, this subset of breast tumors is defined by high
level expression of HER2 on the plasma membrane of >10% of
the cells within a tumor, assessed by immunohistochemistry,
and/or by amplification of the ERBB2 gene, as evidenced by
fluorescent in situ hybridization. High level HER2 expression is
associated with decreased overall survival [3,4]. Several large

clinical trials have shown that patients with such HER2-positive
tumors benefit from HER2-targeted therapies. The initial
targeted trials were done with the humanized HER2
monoclonal antibody trastuzumab (Herceptin®), first in the
metastatic and then in the adjuvant setting [5–12]. Such
targeted therapy in the adjuvant setting has resulted in a
dramatic increase in survival of patients with HER2 breast
cancer, as first firmly established by clinical trials such as
NCCTG N9831 and NSABP B31 [13], which have helped
define the standard of care for such patients. Additional trials
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have been carried out (or are in progress) using other HER2
monoclonal antibodies (pertuzumab, trastuzumab-emtansine)
as well as small molecule receptor tyrosine kinase inhibitors
(lapatinib) that target HER2 signaling activity.

Although tremendous strides have been made in
management of patients with HER2-positive tumors, a number
of important questions remain to be answered about this
clinical subtype of breast cancer. Although there is abundant
evidence that HER2-positive tumors manifest distinct patterns
of gene expression, alternative splicing, and somatic mutation
[14] [15] [16] [17] [18], the basic biology of this tumor subtype is
not well understood. We do not fully understand the processes
that are activated downstream of HER2 gene amplification and
overexpression. It is likely that these HER2-associated
processes affect the manner in which tumors respond to
HER2-targeted therapy and/or to conventional chemotherapy in
combination with HER2-targeted therapy; so identification of
key processes that are critical to the establishment and
maintenance of HER2-positive tumors may inform novel
therapeutic strategies to overcome primary or acquired
resistance to HER2-targeted therapies or lead to the
development of alternative therapeutic strategies that are less
expensive than trastuzumab, which is in many cases beyond
the means of patients in underdeveloped countries.

We reasoned that the key to understanding the clinical
behavior of HER2-positive tumors lies within networks of
interacting genes that affect the activity of biological processes
that are essential to establishment and maintenance of the
HER2-transformed phenotype. Thus, our analyses were
motivated by the central concept that the clinical/biological
properties of the tumors will be defined not by individual genes
but by the processes that are controlled by multiple interactive
genomic features. To evaluate this hypothesis we interrogated
total (polyA+) RNA sequence (RNA-Seq) data from a test set
that consisted of benign breast tissue samples plus ER+, triple
negative, and HER2-positive primary invasive breast tumors.
We identified genes that are differentially expressed,
transcripts that are alternatively spliced, and genes that
express novel, non-synonymous single nucleotide
polymorphisms. We integrated these genomic features to
model the interactions between such HER2-associated
genomic features in our test set. This model was comprised of
12 highly interconnected genomic modules, each of which
corresponds to a distinct functional process. The generality of
this model was tested by interrogation of gene expression data
from TCGA breast cancer samples, and the ability of the model
to make relevant biological predictions was evaluated using
data from the Cell Line Encyclopedia as well as clinical
outcomes data from an adjuvant trastuzumab trial (N9831). Our
results reveal that novel functions related to integrin signaling,
ubiquitin-mediated proteolysis, M-phase progression, RHO-
family GTPase signaling, and TGF-beta signaling are linked to
drug response and to clinical outcome in HER2-positive
tumors.

Materials and Methods

Samples
Polyladenylylated RNA was isolated from epithelial cells

derived from excisional biopsies of 8 breast lesions that were
subsequently determined to be free of DCIS or invasive cancer.
These samples will hereinafter be called “benign”. RNA was
also prepared from 8 fresh-frozen tissues of ER+ (estrogen
receptor positive), 8 HER2+ (HER2-enriched), and 8 triple
negative (TN – estrogen receptor negative, HER2 negative,
and progesterone receptor negative) tumors (all infiltrating
ductal carcinoma). Clinical/pathological characteristics of these
tumors are given in Table S1. RNA quality of the samples was
determined using Agilent Bioanalyzer and all samples had a
RIN value > 7.9. cDNA libraries were prepared and sequenced
(2 X 50nt paired ends) by the Mayo Clinic Genome Facility
using the Illumina Genome Analyzer II (GAIIx). The RNA
sequence data used in this manuscript have been previously
used to call fusion transcripts from tumor samples [19]. All
patients gave full written consent for these studies. Protocols
for tissue collection (MC09-001909) and sequence analysis
(MC09-000035) were approved by the Mayo Clinic Institutional
Review Board. Data used in this study are deposited in the
Gene Expression Omnibus web site at GSE45419.

Databases and software used for analyses
FASTQ files from RNA sequencing were aligned to the

human genome build NCBI 37.1 (GRCh37), which corresponds
to human genome assembly hg19 in UCSC [20]. BWA [21] and
TopHat [22] alignment software were used to align paired-end
RNA-Seq reads. The 1000 Genomes Project (1000g 2011May)
and 5400 exome sequencing data were obtained for filtering
single nucleotide variants from UCSC genome browser. Germ-
line single nucleotide variants were filtered using dbSNP
version 135 (http://www.ncbi.nlm.nih.gov/SNP/). Functional
annotation of SNVs was performed using the ANNOVAR
software [23]. A variety of statistical packages from R
programming language were used for computing and
generating some plots, including JMP 9.0 (http://
www.jmp.com/) and Partek6.6 (http://www.partek.com/). A
Microsoft SQL server database was used to store and query
nucleotide positions to call SNVs. PERL and R programming
language was used to write subroutines for data analysis.

Alignment
Paired-end RNA-Seq reads were aligned to both genome

and exon-exon boundary databases using BWA to obtain gene
counts. BWA is a fast and accurate short read aligner [21].
Reads with more than two mismatches in first 32 bases in each
alignment and reads that mapped to multiple genomic locations
(alignment score less than 3) were discarded. In order to make
confident single nucleotide variant calls from RNA-Seq data,
we have used two aligners (BWA and Bowtie). Bowtie is an
ultrafast and memory-efficient short read aligner that does not
allow gaps. TopHat is a fast splice junction mapping software
that uses Bowtie alignment to align RNA-Seq reads [22,24].
Binary Alignment/Map (BAM) format files from BWA and
TopHat were obtained for each sample. Gene counts were
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derived from both TopHat and BWA aligners using BED tools
from UCSC to count reads corresponding to a known gene.
The correlation between the gene counts was high from
TopHat and BWA aligners (r =0.95, range 0.94 to 0.97). Hence,
we have used BWA gene counts for gene expression analysis.
We used TopHat BAM files for both alternative splicing analysis
and SNV analysis. Consensus SNV calls were obtained for
samples if they were present from both BWA and TopHat
pileup files, as described below.

Gene Expression analysis
Figure 1 summarizes the approach to identification of HER2-

associated genomic features in our test set of tumor samples.
Gene counts for samples were summarized and annotated
using our in-house scripts developed using BamToBed utility
and UCSC refFlat annotations for further analysis. The read
counts for genes were obtained for downstream differential
gene expression analysis. There were a total of 22,323 genes
with gene count data for normalization. Individual gene count
data were normalized using mode normalization method as
previously described [25]. Genes that had a median read count

>24 (16 reads) in at least one of the four groups were used for
gene expression analysis. After removing the genes with low
expression, there were 16,195 genes considered for differential
gene expression analysis. The Dunnett-Tukey-Kramer (DTK)
package in R programming language was used for pairwise
multiple comparison tests for unequal variance and unequal
sample sizes [26]. Genes for which the HER2 tumor group had
a mean log (read+1) significantly different from the means of
the other tumor and normal groups were obtained. A HER2-
positive gene list (p<0.05) was obtained after filtering multiple
comparison values from HER2+, ER+, TN, and benign groups.

Alternative splicing analysis
BAM files after alignment were loaded into Bioconductor.

CASPER, implemented as an R package (https://
sites.google.com/site/rosselldavid/software), was used to
quantify known splicing variants. Maximum likelihood estimates
of the relative abundances of known transcripts were obtained
via the Expectation Maximization (EM) algorithm using
CASPER as previously described [25]. Genes that were
expressed (gene read count > 16) and had more than one

Figure 1.  Methods workflow for HER2 transcriptomic network.  High level analytical approach to build HER2-positive
transcriptomic landscape from paired-end RNA-Seq data analysis of breast tumor subtypes.
doi: 10.1371/journal.pone.0079298.g001
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alternatively spliced transcript were used to determine the
ratios of transcript expression values in each sample. Group
comparisons of transcripts were performed using the Dunnett-
Tukey-Kramer package, as described above for gene
expression analysis. Transcripts for which the HER2-positive
tumor group had a mean ratio significantly different from ER+,
TN, and benign cohorts were identified.

Expressed single nucleotide variant (eSNV) analysis
RNA-Seq data were used to detect expressed nucleotide

sequence variants (eSNVs), including somatic mutations. In
general, genotype calling algorithms for SNVs were designed
for germline DNA and not for RNA. Hence, the false detection
rates to call an SNV are high in RNA-Seq data from tumors.
We have developed an eSNV-Detect (expressed single
nucleotide variant detection) workflow with parallel alignment
strategies (Bowtie and BWA). The advantage of using two
aligners in eSNV-Detect is that we take complementary
strengths of two aligners and reduce the weakness of these
tools. Figure 2 shows the flowchart of the workflow for eSNV-
Detect. We have used eSNV-Detect, to call novel SNVs in
tumors using a combination of computational tools and
methods. We merged both junction and genomic alignment
reads from BWA and generated one pileup file for each sample
as previously described [25]. The pileup file generated from
each BWA BAM file was used to predict SNVs using SNVMix
software [27]. Reads with low quality (mapQ score < 20) were
filtered by SNVMix. We obtained the reference allele, number
of reads supporting reference call, alternate allele, and number
of reads supporting alternate allele, for every transcribed
position for which evidence of an alternate allele was present.
We also filtered reads for read depth <4 and ratio of alternate
allele <0.1 (ratio of alternate allele = number of reads with
alternate allele/total read depth). TopHat (Bowtie) analysis was
used to eliminate duplicate reads and multi-region hit reads
from the BAM file. We generated a pileup file from the filtered
BAM file. For each nucleotide position, we obtained the reads
supporting A+, A-, C+, C-, G+, G-, T+ and T-, where + and -
indicate the polarity of the read strand. For a position with
alternate allele evidence from BWA, we made sure that the
variant called is not due to strand bias by making use of
TopHat data. For example if the variant allele is G, we
examined the sequences of both G+ and G- data to ascertain
that the variant allele was present on both the strands and that
the ratio of alternate allele count on positive and negative
strand was >0.1. After removing the SNVs that exhibited strand
bias, we obtained the eSNV candidates that were confidently
called by two approaches. Consensus SNVs were obtained
and filtered based on annotation as shown in our eSNV-Detect
workflow (Figure 2). Only the eSNVs that were present from
two approaches and were non-synonymous were carried
further for analysis. The final eSNVs obtained from our method
were filtered for germline or known SNVs present in dbSNP
135, 1000 genome, or 5400 exome datasets. After a series of
annotation filters as shown in Figure 2 were applied, we
identified novel eSNVs for each sample. All the eSNVs
identified were stored in a MySQl database along with the
tumor type for a sample. The database was queried to obtain

eSNVs that were detected only in HER2-positive. Finally,
HER2-positive eSNVs were evaluated for 3’ or 5’ end bias
using the data from pileup files; alternate allele reads uniquely
detected at either 5’ or 3’ ends of the reads were eliminated
using VCF tools.

Network analysis
Genomic features (differential expression, alternative

splicing, and eSNVs) that were differentially detected in the
HER2-positive tumors included in the test set were compiled
for network analysis using Cytoscape [28]. Network analysis
was performed in Cytoscape using the Reactome FI feature
[29] and network analyzer [30] plug-ins to construct an
interactome model. Linker genes (not present in our list but
known to interact with our integrated gene list based on
literature evidence) were excluded from the HER2 network to
emphasize the degree of direct connectivity between and
among our HER2-positive genomic features. Comprehensive
network parameters such as number of edges for each node,
distribution of degree counts and neighborhood connectivity
were obtained using network analyzer in Cytoscape. We also
performed clustering analysis in Cytoscape to identify modules
or clusters in the HER2 network. The Pathway Enrichment
analysis tool in Cytoscape was used to identify pathways
enriched in each module of the HER2 network.

Cell Line Encyclopedia data analysis
Gene expression and pharmacodynamic data for paclitaxel

and lapatinib were obtained for cancer cell lines from the
cancer cell line encyclopedia (CCLE) data sets [31]. Of note is
that we did not include trastuzumab data, as Cell Line
Encyclopedia data for trastuzumab are not available. There
were 58 breast cancer cell lines in the encyclopedia database,
of which 20 have paclitaxel response data (EC50) and 18 have
lapatinib response data (EC50). Spearman log rank correlation
analysis was used to identify HER2 network genes that
correlated with EC50 values for these two drugs.

Analysis of association between genes in the HER2
network and clinical outcome following HER2-targeted
therapy

DASL expression array data were obtained from the NCCTG
N9831 adjuvant trastuzumab clinical trial for 1282 patients for
whom we have clinical response data [12]. All patients in the
N9831 study were randomized to receive the anthracycline
doxorubicin plus cyclophosphamide followed by paclitaxel
alone (Arm A), paclitaxel followed by trastuzumab (Arm B), and
concurrent paclitaxel plus trastuzumab (Arm C) [13]. Gene Set
Analysis [32] was carried out using data from Arm C and genes
from the HER2 transcriptome model to determine if any of the
modules within this network are associated with risk of relapse,
defined by univariable Cox Hazard ratio analysis of individual
genes from the DASL array dataset versus time to event
(distant relapse) as a continuous variable [33].

HER2 Genomic Architecture
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The Cancer Genome Atlas (TCGA) validation of
candidate pathways

Gene count data from TCGA breast tumor samples (RNA-
Seq) were downloaded from the TCGA data portal. PAM50
definitions of intrinsic subtype were used to assort samples into
HER2-enriched (n=66), basal-like (n=140), and luminal (n=604)
cohorts. DTK analysis was carried out using TCGA gene
counts for differentially expressed genes from our initial
analysis of 32 tumors. Fisher’s exact test was used to
determine if genes associated with relevant pathways were
significantly enriched in HER2 samples from TCGA. Gene copy
number and mutational data from TCGA breast tumors were
extracted from Cbioportal (www.cbioportal.org).

RT-PCR and Sanger sequencing validation
Genomic DNA from tumors was extracted from the BCT40

HER2 tumor and tumor adjacent normal tissue, and 83 eSNVs
were validated using Sanger sequencing. Primer pairs for the
eSNVs were designed using Primer3 version 4.0 software, and
were used to amplify all variants by PCR. PCR products were

purified from unincorporated nucleotides using a Millipore PCR
purification plate. A total volume of 10μl, containing 80ng of the
purified PCR product and 1.6pM of one of the primers (forward
or reverse), was used for sequencing. Electropherograms were
analyzed with SeqScape v2.5 (ABI, Applied Biosystems, Foster
City, CA, USA). Quantitative real time PCR (qPCR) was used
to verify two alternative splice isoforms of MPG transcripts
(MPG-002, MPG-201) in tumor and benign samples. Equal
aliquots of total RNA from samples were converted to cDNA
with the High-Capacity cDNA Archive kit (Applied Biosystems),
and qPCR reactions were performed in triplicate with 10ng of
cDNA and the TaqMan® Universal PCR master mix (Applied
Biosystems). Custom primer/probe sets were purchased from
Applied Biosystems: NM_001015052.1 forward primer
GGTCCGAGTCCCACGAA, reverse primer
CTGGTCGCTGCTTCTTTTGC, reporter
CCCAGTTTTGCCGACGGATG; NM_001015054.1 forward
primer GTGCCCAGTTGCTCTTCAAG, reverse primer
CTGGTCGCTGCTTCTTTTGC, reporter
CCGTCGGCAAAACTGAAAA. All amplification data were
collected with an Applied Biosystems Prism 7900 sequence

Figure 2.  The eSNV-Detect workflow.  Flow chart of the eSNV-Detect – a method to identify expressed SNVs from paired-end
RNA-Sequencing data.
doi: 10.1371/journal.pone.0079298.g002
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detector and analyzed with Sequence Detection System
software (Applied Biosystems). Data were normalized to
POLR2A, and mRNA abundance was calculated using the
ΔΔCT method.

Results

The analytical plan, outlined in Figure 3, began with paired
end (2x50nt) RNA sequence (RNA-Seq) analysis of polyA+
RNA from a survey panel of samples that consisted of 8 benign
breast tumor samples plus 8 each ER+, HER2-positive, and
triple negative (TN) primary invasive breast tumors. Sequence
alignment data are summarized in Table S2; but, briefly,
percent aligned reads ranged from 73-86%, with GeneCount-
ReadStart aligned ranging from 22M to 68M read pairs per
sample. (Note that for paired end sequencing, total aligned
50nt tags is equal to twice the number of read pairs.) Mode
normalization of gene counts was carried out as described
previously [25]. As shown in Figure S1, density plots indicated
that genes with <16 total aligned tags were near or below the
limits of detection; and these were eliminated from the
analyses. Transcripts with >16 tags aligned ranged from
14-17K per sample, with the exception of one outlier, a TN
tumor with only 11,230 transcripts (ID - BR73 in Table S2).
Principle components analysis indicated that this tumor did not
cluster with the TN tumors, or any of the other tumor cohorts
(not shown); this sample was excluded from all subsequent
analyses.

As indicated in Figure 3, the summarized RNA-Seq data
were used (as described below) to identify genes that were
differentially expressed or alternatively spliced in the HER2-
positive tumors in our test set, as well as genes that contained
expressed single nucleotide variants that were detected only in
this HER2-positive tumor cohort. Genes associated with such
features were used to build an integrated transcriptome
landscape map that identified a number of biological processes
that appear to be predominant in the HER2-positive tumors
included in this analysis.

Identification of genomic features that define the HER2-
positive tumors in our test set

Differential expression.  Mean gene expression was
compared between the tumor types using the Dunnett-Tukey-
Kramar procedure, which controls type1 error for all pair-wise
comparisons between the groups. We used mode normalized,
log2 transformed mRNA abundance of individual genes in the
four sample cohorts (HER2, ER+, TN, benign). We identified
685 genes that were differentially expressed in these HER2-
positive tumors at p<0.05 compared to each of the other breast
tumor subtypes in the test set. Nine representative genes are
shown in Figure 4, and the remainder in Table S3. Hierarchical
clustering (Figure 5) graphically illustrates the distribution of all
685 genes in the tumors analyzed in this cohort.

Alternative splicing.  The activity of a given gene is
influenced not only by changes in the abundance of the gene
product (mRNA), but also by changes in the nucleotide
sequence of the transcript. Alternative splicing can give rise to
protein products with different functions, such that differential

expression of splice variants represents one potential
mechanism to affect changes in gene activity. The CASPER
package was used to quantify known RefSeq splice variants in
the four sample cohorts. The relative abundance of each
alternatively spliced isoform was calculated as counts assigned
to an individual isoform/total counts for all transcript isoforms
for each gene. Splice variants in the four sample cohorts were
identified by Dunnett-Tukey-Kramar analysis of the relative
(fractional) abundance of the isoforms. Although CASPER
interrogates only known splice variants, we have previously
validated the utility of this tool for identifying alternatively
spliced genes in lung cancer samples [25]. Representative data
from two genes (PPM1A and MPG) that are alternatively
spliced in a pattern that was observed in the HER2-positive
tumors are shown in Figure 6. For example, PPM1A splice
variant NM_177952 is relatively abundant in our test set of
HER2-positive tumors whereas NM_021003 is relatively
abundant in the benign, ER+, and TN tumors included in this
group of samples. A total of 199 transcripts, corresponding to
102 genes, were alternatively spliced in a manner that was
uniquely associated with our HER2-positive tumors (Table S4).

Expressed single nucleotide sequence variants.   In
addition to alternative splicing, it is clear that genetic
(mutational) events play a significant role in the generation of
gene products with altered functions in tumor cells.

Figure 3.  Schematic of analytical approach.  Computational
approach to identify and characterize genomic features
associated with HER2-positive tumors.
doi: 10.1371/journal.pone.0079298.g003
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Identification of expressed single nucleotide sequence variants
(eSNVs) from RNA-Seq data has been challenging due to the
dynamic range of RNA abundance, which imposes significant
limits upon the confidence with which one can identify such
features in transcripts that are expressed at low abundance.
Additional issues related to sequence strand, exon junction,
and 5’ end bias are also common sources of false positive
detection, as discussed in the Materials and Methods section.
As described on Figure 2, we have developed a novel
analytical workflow that addresses and eliminates most of
these issues.

Using the filters described in Materials and Methods, we
identified 318 high confidence novel exonic non-synonymous
eSNVs that were expressed at >3 counts of the alternate allele
in one or more of our HER2-positive tumors but not in benign,

ER+, or TN samples or in any of the SNP databases (e.g.
dbSNP135, 1000 genome, or 5400 exome). These candidate
novel eSNVs are listed in Table S5. The HER2-associated
eSNVs correspond to 303 genes, listed in Table S6. The range
of high confidence novel eSNVs per HER2-positive tumor was
22-83, median 35 (Table S7). Median eSNVs that were unique
to our ER+ and TN tumor samples were 34 and 57
respectively, with no statistically significant differences in
eSNV/tumor for any of the subtypes.

We used an earlier version of our eSNV workflow to call
KRAS mutations in lung adenocarcinoma samples with 100%
accuracy [25]. We selected one HER2-positive tumor to
validate the current version of this analytical tool in breast
cancer. Tumor BCT40 was selected because it had the largest
number of candidate eSNVs among the HER2-positive cohort,

Figure 4.  Top 9 differentially expressed genes.  Box plot representation of nine differential expressed genes that are specific to
the HER2-positive tumors compared to other tumors in our test set, shown in log2 scale.
doi: 10.1371/journal.pone.0079298.g004
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with 83 high-confidence candidates nominated (Table S8).
Total read depth for these 83 candidates ranged from 6 to 327
reads, and alternate allele reads ranges from 4 to 93 reads.
PCR amplification followed by Sanger sequence analysis of
genomic DNA from tumor and tumor-adjacent normal tissue
confirmed 79 of these candidate eSNVs, indicating that our
false detection rate for this analysis is in the range of about 5%.
The three candidates that did not validate had minimal read
depth (4 alternate allele reads); however, 6/9 candidates with
alternate read depth = 4 validated, and all candidates with 5 or
more alternate reads were validated. We conclude that filtering
for 4 or more alternate allele reads gives us an acceptable
false detection rate on the order of 5%.

Since germ line (blood) DNA was not available for these
samples, we used tumor-adjacent normal tissue for
identification of potential somatic mutations. Among the 79
validated eSNVs, 51 were unique to the tumor genomic DNA,
whereas 28 were detected in both tumor and tumor-adjacent
normal tissue. Although all of the eSNVs were filtered to

remove known polymorphisms (present in dbSNP135, 1000
genome, and 5400 exome datasets), our data suggest that at
most 1/3 of our candidate eSNVs may be rare germ line
polymorphisms. This conclusion must be advanced with
caution, since tumor-adjacent tissue may be contaminated with
tumor cells. Be that as it may be, we conservatively predict that
at least two-thirds of our candidate eSNVs are bona fide
somatic mutations.

Sanger sequence chromatograms for two validated somatic
mutations are shown in Figures 7 and 8 to illustrate the range
of allelic frequencies that we commonly observed. MRPL3 was
nominated in tumor BCT40 as a C to G variant on chromosome
3 at coordinates 131220447 (chromosome 3: 131220447) with
53 reads supporting the reference allele (C) and 79 reads
supporting the alternate allele (G). Sanger sequence analysis
(Figure 7) confirmed this as a heterozygous D69H
(chromosome 3: 131220447) somatic mutation. In contrast, the
gene encoding transcription factor FOXA1 was called as a C to
T variant (chromosome 14:38061115) with 4 reference allele

Figure 5.  Clustering of genes uniquely expressed in HER2 tumors.  Hierarchical clustering of 685 significantly differentially
expressed genes in HER2-positive tumors compared to other tumor subtypes in our test set of tumors.
doi: 10.1371/journal.pone.0079298.g005
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reads and 6 alternate allele reads. Although this variant was
confirmed as a somatic mutation by Sanger sequence analysis
(Figure 8), the variant allele appears to be present in less than
half of the alleles in tumor genomic DNA. This observation
informs our strong supposition that RNA-Seq is a very sensitive
tool for detecting eSNVs that are expressed in a subset of
tumor cells.

Nine of the HER2-restricted eSNVs were predicted to be
nonsense mutations (“stopgain” in Table S5, column J “Exonic
Function”). This group included TP53, AMPD3, CPPED1,
KDM5C, NIF3L1, NUP214, RERE, SP110, and ZNF552. Five
of these genes have been implicated in transcriptional
regulation (TP53, KDM5C, RERE, SP110, and ZNF552);
whereas two of these genes are known to participate in
activation of cell death (TP53 and RERE). The remaining
eSNVs were non-synonymous coding variants, predicted to
alter the amino acid sequence of the protein product.

Nine of the 318 novel eSNVs were detected with high
confidence in 2 different HER2-positive tumors. We also

identified 16 eSNVs that were expressed with high confidence
in one or more tumors and with lower confidence (as evidenced
by lower depth of coverage at the cognate genomic
coordinates) in multiple tumors (Table S9). For example,
NUCB2 is an expressed non-synonymous A to G variant
(chromosome 11:17352483). This variant was detected with
very high confidence in two tumors (BCT40 with 9 alternate
reads and BCT32 with 8 alternate reads) and with reduced
confidence in a third tumor (BCT39 with 2 alternate reads). 
One non-synonymous eSNV in the MLL (KMT2A) gene
(chromosome 11:118375914) was detected in 4/8 HER2-
positive tumors, although at low read depth in 3 of these
samples. In addition to these two eSNV, 14 additional
candidates corresponding to TXLNA, HNRNPF, IQGAP2,
OTUD7B, GPN3, APS32, WNK4, ANKRD40, RIF1, RPL3,
GSK3B, RUVBL1, MRPL3 and THAP5 genes were detected
with high confidence in some samples and at low depth of
coverage in other samples (Table S9).

Figure 6.  CASPER plots for 2 genes.  Visualization of output values from CASPER splicing analysis method for PPM1A and MPG
genes. Data indicates that PPM1A and MPG transcripts are uniquely and alternately spliced in HER2-positive tumors compared to
other groups.
doi: 10.1371/journal.pone.0079298.g006
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We interrogated the TCGA exome sequence database to
determine if mutations were detected (from exome-seq data) in
any of the genes that had stopgain mutations (9 genes) or
expressed recurrent eSNVs (16 genes), as described above.
As shown in Table S10, we identified 129 TCGA tumors with
ERBB2 amplification. Considering the genes with stopgain
mutations in our test set, we identified 2 TCGA tumors with
KDM5C mutations, 2 with NUP214 mutations, 1 with RERE
mutation, 1 with SP110, and 59 with TP53 mutations. Among
the genes that expressed recurrent nonsynonymous mutations
in our test set, we detected 5 TCGA tumors with MLL (KMT2A)
mutations and 2 with RIF1 mutations. ANKRD40, HNRNPF,
IQGAP2, OTUD7B, and THAP5 mutations were detected in 1
tumor, each. Somewhat to our surprise, we noticed that many
of the tumors that were detected as eSNVs in our test set
exhibited copy number variations in TCGA breast tumors.
Strikingly ANKRD40 was amplified in 90/129 tumors. This gene
is on chromosome 17q21 and not part of the ERBB2 amplicon
at 17q12 (Table S10). OTUD7B (1q21.2) was amplified in
92/129 tumors, whereas CPPED1 (16p13.12) and WNK4

(17q21-q22, adjacent to ANKRD40) were amplified in 69/129
and 61/129 tumors, respectively. Thus, eSNV data from our
test set of HER2-positive tumors has identified a number of
genes that appear to be mutated, both at the single nucleotide
sequence and gene copy number levels, in TCGA tumors with
ERBB2 amplification.

Integrated analysis of HER2-specific genomic features
It should be emphasized that although the genomic features

described above are confined to the HER2-positive tumors
within our survey panel, we do not wish to imply that these
features are HER2-specific in any general sense or that they
may have applicability as biomarkers of HER2-positive tumors.
Rather, our goal was to define a set of genomic features that
were unique to a test set of HER2-positive tumors, to use these
features to develop a model of the genomic architecture of the
tumors within that test set, and then to test the ability of that
model to make predictions about the biological and/or clinical
behavior of HER2-positive tumors. Our analyses have

Figure 7.  Visualization of single nucleotide variant validation.  Sanger sequence validation of highly expressed novel somatic
SNVs for MRPL3 variant in the BCT40 HER2 tumor sample. RNA-Seq sequence reads shown above Sanger sequencing tracing,
with mutation shown by an arrow.
doi: 10.1371/journal.pone.0079298.g007
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identified 685 genes that are differentially expressed in a
pattern that is unique to the HER2-positive tumors in our test
set of samples. Likewise, we identified 102 genes that are
alternatively spliced and 303 genes that contain eSNVs that
are uniquely expressed in this panel of HER2-positive tumors.
Moreover, our data indicate that there is limited overlap
between these genomic features, as illustrated by the VENN
diagram in Figure 9. Only 8 of these genes were differentially
expressed (DE in Figure 9) and alternatively spliced (AS),
whereas 20 of the genes that contain eSNVs (SNV in Figure 9)
were also differentially expressed. A single gene, MPG (N-
methylpurine-DNA glycosylase; EC3.2.2.21), was differentially
expressed, alternatively spiced, and contained a non-
synonymous somatic mutation. Considering the uniqueness of
MPG, we elected to independently validate both the splice
variants and the eSNV. RNA-Seq analysis nominated a G to A
eSNV (chr16:133064) with 14 reads supporting the alternate
allele (A) and 11 reads supporting the reference allele (G).

Sanger sequencing confirmed that this is a somatic R105Q
(G314A) mutation that appears to be heterozygous in the tumor
genomic DNA (Figure 10).

RNA-Seq analysis indicated that 2 isoforms of the MPG
(NM_001015052 and NM_001015054) were expressed in
breast tumors. CASPER predicted that the NM_001015054
splice form was expressed at high levels uniquely in our HER2-
positive tumors, compared to NM_001015052, as illustrated by
the black bars in Figure 11. Overexpression of NM_0010154 in
the HER2-positive test set was confirmed using isoform-
specific qPCR primer/probes, as shown by the gray bars in
Figure 11.

The 1090 genomic features that we have identified in our
HER2 tumor panel (685 differentially expressed, 102
alternatively spliced, 303 eSNVs) correspond to 1055 genes.
We next asked whether any or all of these genes interact in a
manner that might define processes that are associated with
the HER2-positive tumors in our sample cohort. To this end we

Figure 8.  Representation of single nucleotide variant validation.  Sanger sequence validation of low expressed novel somatic
SNVs for FOXA1 in the BCT40 HER2 tumor sample. RNA-Seq sequence reads shown over Sanger sequence trace with mutation
indicated by an arrow.
doi: 10.1371/journal.pone.0079298.g008
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used the Reactome FI feature of Cytoscape to build an
interactome map that incorporates genes that encode proteins
with known functional interactions [29]. Reactome FI generated
a highly integrated network of 244 genes with 541 edges
(connections), as shown in Figure 12. To test for random
association, we ran 20 Cytoscape simulations using 1055
genes selected at random from the dataset. The mean number
of genes integrated into these random networks was 108
(standard deviation = 22) and the mean number of connections
generated at random was 175 (standard deviation = 39). Thus
the level of integration that we observed within the network
shown in Figure 12 (244 genes with 541 edges) was >5
standard deviations above the mean predicted for random

association. Bearing in mind that these edges are defined by
known interactions, and therefore likely to have functional
significance, it is notable that 80 of the nodes within the overall
network have 5 or more connections; whereas 32 nodes have
10 or more connections (Table S11).

The interactome model shown in Figure 12 is comprised of
12 functionally discrete sub-networks or modules. A high
degree of connectivity is apparent within the individual
modules, each of which is, in turn, linked to the integrated
network through multiple module to module connections.
Functional annotation of the modules is given in Table 1, and
can be broadly summarized as signal transduction and
transcription (modules 2, 3, 5, 6, 8, and 12); protein synthesis,

Figure 9.  Overlap of genes from genomic features.  Venn diagram representation of genes obtained from three genomic
features analyses.
doi: 10.1371/journal.pone.0079298.g009
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degradation, and secretion (modules 7 and 11); RNA
processing (module 4); and processes associated with G2/M
phase of the cell cycle (modules 1,9, and 10). Given that this
network accommodates a set of genomic features that are
associated with the HER2-positive tumors in our samples, we
posit that these processes represent a set of interconnected
functions that are critical to the establishment and/or
maintenance of the HER2-positive tumor phenotype.

Confirmation of pathway enrichment in TCGA samples
The genomic landscape model described above was

generated from a survey panel containing 8 HER2-positive
tumors. It is therefore relevant to ask to what extent the
pathways described above can be applied generally to HER2-
positive tumors. To address this issue, we used gene
expression data (RNA-Seq gene counts) from TCGA breast
tumors to determine if any or all of the 12 pathways described
above was enriched in HER2-positive tumors from a much
larger dataset. Initially, we summarized p-values for differential
expression, in the TCGA samples, of genes that had been

identified as differentially expressed in our study cohort. As
shown in Figure S2, we observed that these genes were
significantly enriched, based on distribution of p-values, in
comparisons of HER2 to tissue adjacent normal and to basal
tumors. A significant trend towards enrichment was observed in
the comparison of HER2 versus luminal tumors. We then used
Fisher’s exact test to determine the extent to which genes that
were incorporated in the 12 Cytoscape network pathways were
enriched in TCGA samples, relative to genes that were
identified as differential features in HER2-positive tumors, but
were not incorporated into any of the Cytoscape pathways. As
shown in Table 2, genes associated with all 12 pathways were
significantly enriched in the comparison of HER2-positive
versus normal; whereas 11 out of 12 pathways were enriched
when HER2-positive samples were compared to basal tumors.
Integrin signaling, ubiquitin-mediated proteolysis, and TGFbeta
receptor signaling were significantly enriched in the comparison
of HER2-positive versus luminal tumors. We suspect that the
relatively lower level of enrichment in the comparison with
luminal tumors (in contrast to HER2 vs basal) reflects the well-

Figure 10.  Visualization of single nucleotide variant validation.  Sanger sequencing validation of MPG eSNV in HER2 tumor.
RNA-Seq reads shown over Sanger sequence tracing with mutation indicated by an arrow.
doi: 10.1371/journal.pone.0079298.g010
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known overlap between the clinical HER2-positive definition,
which we used in our initial analysis, and the luminal intrinsic
subtype used for TCGA data. Nevertheless, genes associated
with integrin signaling, ubiquitin-mediated proteolysis, and
TGF-beta receptor signaling were significantly enriched in
HER2-positive versus normal, basal, and luminal samples from
TCGA, thereby providing supporting evidence for our
conclusion that integrin signaling has some critical role in
HER2-positive tumors, compared to the other forms of breast
cancer.

Potential clinical significance of the HER2 interactome
map

Linking the model to response to HER2-targeted therapy
in vitro.  Landscape models of the sort shown in Figure 12 can
be used to define processes that are critical to the pathology of
tumors. However, from a translational standpoint, such models
are useful to the extent that they can be linked to therapeutic
response. Initially, we asked if any of the genes from our

network modules might be associated with response to
abrogation of HER2 signaling. To this end we used our
landscape model genes to interrogate data from the recently
published Cell Line Encyclopedia [31], which includes both
gene expression (Affymetrix arrays) and sensitivity (EC50) to
the HER2 small molecule tyrosine kinase inhibitor lapatinib in
18 established breast cancer cell lines. Rank order correlation
was used to determine if expression of any of our 244 HER2-
associated genes from the interactome map correlated with
response to HER2-targeted therapy in vitro. It should be noted
that in this analysis, and those described below, we are in
some cases interrogating differences in mRNA abundance of
genes that were initially identified based on eSNV or alternative
splicing. This approach was adopted based on the rationale
that a gene that might be activated or suppressed by mutation
or alternative splicing in a given tumor might also be activated
or repressed by altered expression in a different tumor. In all of
these analyses we are asking if the pathway is important,
irrespective of the precise mechanism ascribed to individual

Figure 11.  Validation of splicing variants.  qPCR validation of the two isoforms in breast tumor samples for MPG splicing
variants. Isoform abundance by qPCR is indicated by gray bars, whereas isoform abundance determined by CASPER is shown in
black bars.
doi: 10.1371/journal.pone.0079298.g011
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Figure 12.  HER2-positive tumor interactome.  HER2 tumor interactome network developed using cytoscape and functional
reactome of 1055 genes obtained from integration analyses of genomic features. Different functional modules within the network are
color coded.
doi: 10.1371/journal.pone.0079298.g012

Table 1. Sub networks from the HER2-positive tumor interactome model.

ModulePathway

Number of
Genes in
Module

Number of
Genes in
Pathway P-value  

FDR Pathway
Enrichment Nodal Genes in Pathway

1 Aurora A signaling (N) 44 6 0 <1.00e-03 CYLD, BCL3, CHUK, RELA, TP53, BIRC2

2 Integrin signaling pathway (P) 33 10 0 <1.00e-03
CAV1, ACTG1, LAMB2, ITGAX, ARPC2, ITGAV,
COL6A2 ,FLNB, FYN, ABL1

3 Phosphatidyl-inositol signaling system(K) 33 7 0 <1.00e-03
PIP5K1C, PLCB4, PIK3CA, INPP5E, PIK3R1, DGKQ,
INPP4A

4
Transport of Mature Transcript to
Cytoplasm (R)

27 10 0 <1.00e-03
NUP214, CDC40, NUP54, RANBP2, TPR, NUP133,
NUPL2, UPF3B, NUP205, NUP107

5 Signaling by NGF(R) 24 8 0 <1.00e-03
PPP2R1B, RTN4, CREB1, FOXO1, ATF1, GSK3B,
PRKACA, AKT2

6 FOXA1 transcription factor network (N) 23 2 0.0009 2.26E-01 FOXA1, NR2F2
7 Ubiquitin mediated proteolysis (K) 17 5 0 <1.00e-03 UBE3A, ANAPC10, STUB1, UBE2D1, UBE2E1

8 Signaling by Rho GTPases (R) 9 6 0 <1.00e-03
TAGAP, PLEKHG2, RHOT2, ARHGEF17, AKAP13,
ARAP2

9 G2/M Transition (R) 9 5 0 <1.00e-03 PLK4, CEP57, CKAP5, ALMS1, TUBA1A
10 M Phase (R) 8 3 0 <1.00e-03 SMC3, STAG2, STAG1
11 Insulin Synthesis and Secretion (R) 7 3 0 1.00E-03 SRP54, TRAM1, SSR1
12 TGF-beta receptor signaling 6 4 0 <1.00e-03 SNX6, TGFBR1, YAP1, ENG

The interactome model identified 12 discrete modules or sub-networks. The total number of genes in each module as well as key nodal genes within each module are given
below.
doi: 10.1371/journal.pone.0079298.t001
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genes within the pathway. The validity of this proposition is re-
enforced by the observation that many of the genes that we
detected as eSNVs in our survey panel were overexpressed
due to gene amplification in TCGA breast samples. Using this
approach, we identified 26 genes whose expression correlated
with lapatinib response (Table 3). Monte Carlo simulation
suggest that the probability that such a correlation might occur
at random is <0.001. The most significant of these was integrin-
linked kinase (ILK, p<0.0001). Genes involved in RHO-family
GTPase signaling and M-phase progression were also
prominent in this cohort. Broadly speaking, these data suggest
that response to HER2-targeted therapy is likely to be
influenced not only by ERBB2 (the target of such therapy) but
also by the pathways that are associated with HER2-mediated
transformation. Among these pathways, our data indicate that
integrin signaling, processes associated with M-phase
progression, and RHO-family GTPase signaling are associated
with, and perhaps likely to impinge upon, the extent to which
cells respond to abrogation of HER2 signaling.

Linking the model to taxane sensitivity in-vitro.  Several
large clinical trials have demonstrated that in the adjuvant
setting, the efficacy of HER2-targeted therapy is enhanced by
concurrent treatment with taxanes [34]. We therefore asked
whether our HER2 transcriptome model might identify potential
mechanistic links between HER2 signaling and response to
therapies that target processes that are involved in
maintenance of the cytoskeletal architecture (e.g., tubulin, the
target of taxanes). Thus we used our landscape model genes
to interrogate gene expression (Affymetrix arrays) and
paclitaxel sensitivity (EC50) for breast cancer cell lines from the
Cell Line Encyclopedia dataset. Rank order correlation

identified 17 genes that correlated with p<0.05, as shown in
Table 4. Four of these genes (RAB11B, IQGAP1, TAGAP, and
PLEKHG2) are involved in RHO-family GTPase signaling and
therefore potentially involved in remodeling of the cytoskeleton.
Four other genes are also involved in regulation of the
cytoskeleton: CCT6A is a chaperon involved in tubulin folding,
whereas SON is involved in tubulin splicing; KDELR1 is
involved in vesicular transport, a process that is linked to the
tubulin cytoskeleton; and KIFIP3 is involved in cytokinesis,
which likewise depends on cytoskeletal architecture. We found
that eight-seventeenths of the HER2-associated genes that
correlate with paclitaxel sensitivity are also involved in
regulating the dynamics of the cytoskeleton. The data suggest
that a subset of HER2-associated genomic features may
contribute to the well-known therapeutic efficacy of combining
therapies that simultaneously target growth factor signaling
(trastuzumab) and cytoskeletal processes (paclitaxel). We used
Monte Carlo simulation to evaluate the possibility that the
associations which we described might arise at random.
Initially, we noted that six-seventeenths of the genes that
correlated with paclitaxel sensitivity were identified (by GO
terms) as being involved in signal transduction (GO:0007165).
We ran 1000 simulations using 244 genes selected at random
from the dataset and determined that the likelihood that any six
genes would correlate with paclitaxel sensitivity and also map
to a single broad biological process was <0.001. Based on this
observation, we conclude that the observation that 8/17 genes
have known functions related to cytoskeletal dynamics is very
unlikely to be due to random association.

Linking the model to adjuvant trastuzumab therapy in
patients.  The ultimate goal of integrated genomic analysis of

Table 2. Pathway enrichment statistics in breast cancer subtypes from TCGA.

   Differential Expression at p<0.05 in pairwise comparsions

PathNo.   Pathway Description
Genes in
Pathway   

HER2 vs Normal
Genes p-value

HER2 vs Basal
Genes p-value

HER2 vs Luminal
Genes p-value

p01 Aurora A signaling(N) 44 27 2.99E-08 25 8.46E-07 15 9.83E-02
p02 Integrin signalling pathway(P) 33 23 9.59E-09 20 2.93E-06 16 1.19E-03
p03 Phosphatidy-linositol signaling system(K) 33 23 9.59E-09 19 1.53E-05 11 2.05E-01

p04
Transport of Mature Transcript to
Cytoplasm(R)

27 18 1.27E-06 17 8.32E-06 9 2.45E-01

p05 Signalling by NGF(R) 24 20 4.36E-10 13 8.41E-04 8 2.27E-01
p06 FOXA1 transcription factor network(N) 23 14 9.59E-05 10 4.10E-02 2 1.32E-01
p07 Ubiquitin mediated proteolysis(K) 17 14 3.18E-07 11 2.67E-04 8 3.59E-02
p08 Signaling by Rho GTPases(R) 9 8 5.39E-05 6 6.43E-03 1 6.93E-01
p09 G2/M Transition(R) 9 6 6.43E-03 7 7.67E-04 4 2.24E-01
p10 M Phase(R) 8 5 1.92E-02 6 2.65E-03 3 3.96E-01
p11 Insulin Synthesis and Secretion(R) 7 5 8.85E-03 4 5.40E-02 2 6.65E-01
p12 TGF-beta receptor signaling 6 4 2.82E-02 4 2.82E-02 4 2.82E-02

Fisher’s Exact test was carried out using a 2X2 contingency table to compare the number of genes from the Ctyoscape network that were differentially expressed in TCGA
tumors compared to the remaining genes that were defined as “HER2-specific” in our analysis but were not incorporated into the Cytoscape network. The contingency table
was constructed as follows: The constants were the total number of genes (G, 1055 genes from our initial analysis), the total number of genes from this set that were
incorporated into the cytoscape network (N, 244 genes), and the total number of genes in the specific pathway to be analyzed (P). For each pathway, we compared the
number of genes within that pathway that were differentially expressed at p<0.05 in the TCGA data (m) to the remainder of genes in the candidate list (N-m) versus the
genes in the pathway that were not differentially expressed (P-m) against the number of genes that were in neither the candidate list nor the pathway (G-N-P+m).
doi: 10.1371/journal.pone.0079298.t002
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this sort is to create a model that has predictive value for
clinical management of cancer patients. We took advantage of
a recently-developed set of genomic data derived from the
NCCTG N9831 clinical trial, in which DASL microarray
technology was used to quantify mRNA abundance in 488
patients with HER2-positive tumors treated concurrently with
trastuzumab (Herceptin®) plus paclitaxel in the adjuvant setting
[12]. A manuscript describing the analysis of the N9831 data
(Perez et al. “Genomic analysis reveals that immune function
genes are strongly linked to clinical outcome in the NCCTG
(Alliance) N9831 adjuvant trastuzumab trial”) is currently under
review. Geneset Analysis [32] was used to determine if any of
the modules described in the HER2 interactome map
correlated with risk of recurrence (using time to event as a
continuous variable). As shown in Table 5, module 2 (integrin
signaling) was highly associated with risk of relapse (p=0.003,
FDR=0.04). There was a tendency for module 8 (RHO-GTPase
signaling, p=0.07) and module 12 (TGF-beta signaling, p=0.06)
to correlate with relapse.

Discussion

The studies described in this report were motivated by two
central hypotheses. The first of these was that we could

integrate multiple genomic features from RNA-Seq data to
model the genomic architecture of a test set of HER2-positive
tumors. The second hypothesis was that this model would
make relevant biological predictions about HER2-positive
tumors from other sample cohorts. We have identified over
1000 genes that potentially manifest differential activity in the
test set of HER2-positive tumors, either at the level of
expression (mRNA abundance) or nucleotide sequence
(alternative splicing or eSNV). These genomic features are
organized into distinct functional processes that appear to be
critical to establishment and maintenance of the HER2-positive
phenotype in our test set of tumors. The generality of our
model is substantiated by the observation that many of the
functional processes defined by this model are also enriched in
HER2-postive tumors from TCGA. The predictive potential of
the model is evidenced by the link between the functional
process identified in the test set and both cellular and clinical
properties of HER2-positive cells and tumors. This report
represents, to our knowledge, the first attempt to use RNA-Seq
data to develop a functional interactome map that integrates
multiple genomic features in HER2-positive breast tumors.
Having said that, it must be emphasized that this is a “first
draft” model, built using a survey panel of tumors. Development

Table 3. Correlation of genes with lapatinib response in breast cancer cell lines.

ID Gene Description Type r(Spearman)  p-value Function
ILK integrin-linked kinase DE -0.791538 9.10E-05 Integrin signaling
ALMS1 Alstrom syndrome 1 SNV 0.76677 2.00E-04 cell transport, microtubules
CDC40 cell division cycle 40 homolog (S. cerevisiae) DE 0.680083 1.90E-03 RNA processing
STAG2 stromal antigen 2 DE 0.673891 2.17E-03 M-phase
MBD4 methyl-CpG binding domain protein 4 DE 0.636739 4.49E-03 Mismatch repair
ANAPC10 anaphase promoting complex subunit 10 DE 0.622291 5.82E-03 M-phase
ATF1 activating transcription factor 1 DE 0.587203 1.04E-02 cAMP signaling
ZNF385A zinc finger protein 385A AS -0.581011 1.15E-02 unknown (transcription?)
NUP54 nucleoporin 54kDa DE 0.560372 1.56E-02 Nuclear pore comples
APPL1 adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1 SNV -0.547988 1.86E-02 RHO-GTPase signaling
NFATC3 nuclear factor of activated T-cells, cytoplasmic, calcineurin-dependent 3 DE 0.54386 1.96E-02 Calcium signaling
MCL1 myeloid cell leukemia sequence 1 (BCL2-related) AS 0.54386 1.96E-02 Apoptotic regulation
RAB10 RAB10, member RAS oncogene family DE 0.539732 2.08E-02 RHO-GTPase signaling
VBP1 von Hippel-Lindau binding protein 1 SNV 0.527348 2.45E-02 Protein folding
ARFGEF1 ADP-ribosylation factor guanine nucleotide-exchange factor 1(brefeldin A-inhibited) SNV -0.517028 2.80E-02 RHO-GTPase signaling
RFX1 regulatory factor X, 1 (influences HLA class II expression) DE 0.517028 2.80E-02 Transcriptional regulation
RAP1A RAP1A, member of RAS oncogene family DE 0.508772 3.11E-02 RHO-GTPase signaling
RRN3 RRN3 RNA polymerase I transcription factor homolog (S. cerevisiae) DE 0.506708 3.19E-02 Transcriptional regulation
UPF3B UPF3 regulator of nonsense transcripts homolog B SNV 0.504644 3.27E-02 RNA processing
UBE2E1 ubiquitin-conjugating enzyme E2E 1 DE 0.498452 3.53E-02 Protein processing
TPR translocated promoter region DE -0.494324 3.70E-02 M-phase
LAMB2 laminin, beta 2 (laminin S) DE -0.49226 3.80E-02 Extracellular matrix/adhesion
NIF3L1 NIF3 NGG1 interacting factor 3-like 1 (S. pombe) SNV 0.490196 3.89E-02 unknown (transcription?)
PRKACA protein kinase, cAMP-dependent, catalytic, alpha DE 0.479876 4.39E-02 cAMP signaling
PPP1R2 protein phosphatase 1, regulatory subunit 2 DE 0.477812 4.49E-02 Protein phosphorylation
ZNF638 zinc finger protein 638 DE 0.475748 4.60E-02 Transcriptional regulation

Correlation of gene expression with lapatinib response in breast cancer cell lines from a freely available data source (Cancer Cell Line Encyclopedia project) using the list of
genes obtained from our HER2 interactome network.
doi: 10.1371/journal.pone.0079298.t003
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of a more comprehensive model will require analysis of a much
larger panel of tumors, and this effort is currently ongoing.

From the standpoint of tumor biology, the interactome model
that we have developed makes several novel and testable
predictions about the processes that underlie the HER2
phenotype. Most obvious of these is the potential role of
integrin signaling, which has not been previously evaluated in

depth in cells derived from HER2-positive tumors. The
implications of RHO-family GTPase signaling and processes
linked to the cytoskeleton (e.g. M-phase progression) are
equally provocative. A key question, which cannot be easily
answered from a systems biology model of the sort that we
have developed, is whether these processes are activated or
repressed in HER2-positive tumor cells. The network predicts

Table 4. Correlation of genes with paclitaxel response in breast cancer cell lines.

ID Gene Description Degree   Type r(Spe-arman)   p-value Function
CCT6A chaperonin containing subunit 6A 3 SNV -0.60 5.31E-03 tubulin folding
ATN1 atrophin 1 2 DE 0.59 6.07E-03 transcriptional co-regulator
STRN4 striatin, calmodulin binding protein 4 2 DE 0.54 1.34E-02 caclium signaling

RAB11B RAB11B, RAS oncogene family 2 DE 0.52 1.79E-02
RHO-GTPase signaling and endosomal
trafficking

NR2F2 nuclear receptor subfamily 2, group F, member 2 4 AS 0.51 2.12E-02 nuclear receptor activated by retinoids
TOPORS topoisomerase I binding, arginine/serine-rich 1 DE 0.51 2.26E-02 ubiquitin ligase regulates TP53 turnover

IQGAP1 IQ motif containing GTPase activating protein 1 2 SNV 0.51 2.31E-02
RHO-GAP associated with cytoskeletal
reorganization

TGFBR1 transforming growth factor,betareceptor1 10 DE -0.50 2.61E-02 TGF-beta signal transduction
CASP3 caspase 3, apoptosis-related cysteine peptidase 10 DE -0.50 2.61E-02 apoptotic signaling
KIFAP3 kinesin-associated protein 3 2 DE,AS 0.49 2.88E-02 cytokinesis
SF3A2 splicing factor 3a, subunit 2, 66kDa 9 DE 0.49 2.99E-02 RNA splicing
MAP3K10 mitogen-activated protein kinase kinase kinase 10 2 DE 0.47 3.49E-02 activates JNK signaling
TAGAP T-cell activation RhoGTPase activating protein 1 SNV 0.46 4.20E-02 RHO-GTPase signaling
SON SON DNA binding protein 1 SNV -0.45 4.43E-02 RNA splicing, tubulin
KDELR1 KDEL endoplasmic reticulum protein retention receptor 1 2 DE 0.45 4.43E-02 vesicular transport

SMARCE1
SWI/SNF related, matrix associated, actin dependent regulator of
chromatin, subfamily e, member 1

6 DE -0.45 4.51E-02 chromatin remodeling, ER signaling

PLEKHG2 pleckstrin homology domain containing, family G member 2 1 DE 0.45 4.84E-02 RHO-GTPase signaling

Correlation of gene expression with paclitaxel response in breast cancer cell lines from Cancer Cell line Encyclopedia project using HER2 interactome genes.
doi: 10.1371/journal.pone.0079298.t004

Table 5. Gene set analysis of 12 sub-network genes with N9831 clinical trial data.

   Arm C   
Gene_set_name Pathway Score p-value   FDR pos.neg.vector
HER2.network.01 Aurora A signaling(N) -0.1 0.1756 0.571 negative
HER2.network.02 Integrin signalling pathway(P) -0.555 0.0032 0.042 negative
HER2.network.03 Phosphatidy-linositol signaling system(K) 0.0859 0.2798 0.548 positive
HER2.network.04 Transport of Mature Transcript to Cytoplasm(R) 0.0316 0.4296 0.621 positive
HER2.network.05 Signalling by NGF(R) 0.2084 0.1126 0.366 positive
HER2.network.06 FOXA1 transcription factor network(N) 0.0936 0.2948 0.548 positive
HER2.network.07 Ubiquitin mediated proteolysis(K) 0.3351 0.0344 0.366 positive
HER2.network.08 Signaling by Rho GTPases(R) -0.486 0.0739 0.48 negative
HER2.network.09 G2/M Transition(R) 0.1197 0.3491 0.567 positive
HER2.network.10 M Phase(R) -0.266 0.1583 0.571 negative
HER2.network.11 Insulin Synthesis and Secretion(R) 0.2276 0.2188 0.548 positive
HER2.network.12 TGF-beta receptor signaling 0.512 0.0611 0.366 positive
HER2.network.all   0.0936 0.366 positive

The direction of the GSA score indicates the relationship to outcome, as does the column entitled “pos.neg.vector”. Negative indicates an association with increased risk of
relapse, whereas positive indicates decreased risk of relapse. GSA was carried out using gene expression data and outcomes (relapse free survival) as continuous
variables.
doi: 10.1371/journal.pone.0079298.t005
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that these processes are important, but directionality must be
assessed in vitro.

We used two independent approaches to test the hypothesis
that these HER2-associated genomic features and processes
are informative of the manner in which HER2-positive tumors
or breast cancer cells respond to therapy. Initially, we utilized
the Cell Line Encyclopedia dataset, which contains gene
expression and drug sensitivity data for a panel of established
breast cancer cells. We initially looked for genes from our
interactome map that correlated with lapatinib sensitivity in
vitro. We appreciate that there are significant limitations to this
approach including the facts that lapatinib is not uniquely a
HER2 inhibitor, the cell lines that we interrogated were not
primarily derived from HER2-positive tumors, and the data that
were available for those cells was limited to mRNA abundance.
However, lacking a comprehensive set of data on trastuzumab
sensitivity in vitro, we asked if any of the genomic features that
were identified using HER2-positive tumors correlated with
inhibition of cell proliferation by lapatinib in vitro. We identified
26 genes including integrin linked kinase (ILK). A number of
genes linked to RHO-family GTPase and M-phase progression
were also identified, consistent with our hypothesis that HER2-
positive tumors manifest processes that impinge on
organization and function of the subcellular architecture.

The standard of care for HER2-positive tumors involves
combined HER2-targeted and microtubule-targeted therapy
with taxanes. We therefore interrogated the Cell Line
Encyclopedia data to test the hypothesis that HER2-positive
tumors manifest unique features that are associated with
sensitivity to taxanes (paclitaxel). We identified 17 HER2-
associated genes that correlate with taxane sensitivity,
including a number of genes that are linked to functions related
to the subcellular architecture (RHO-family GTPase signaling
and microtubule dynamics).

Overall, the data from cell lines are consistent with our
hypothesis that the HER2-positive tumor interactome map
identifies features and processes that predict the biological
properties of HER2-positive tumor cells, as assessed by
response to lapatinib and paclitaxel in vitro. However, the
critical test of the hypothesis is inherent in the extent to which
the processes that we have identified are informative of
therapeutic response in the clinic. To test this hypothesis, we
used gene set analysis to determine if any of the 12 modules
from the interactome map was associated with risk of relapse
in the N9831 clinical trials specimens. Integrin signaling was
associated with risk of relapse with a very high degree of
statistical significance. RHO-family GTPase signaling and TGF-
beta signaling exhibited a trend towards association with
relapse-free survival in the N9831 samples. Extension of our
findings to a larger dataset (TCGA) emphasizes the potential
significance of integrin signaling, ubiquitin-mediated
proteolysis, and TGF-beta receptor signaling in HER2-positive
breast cancer, and suggests that processes linked to M-phase
may also be of particular importance in this breast cancer
subtype.

In conclusion, we have shown that there are functional
genomic process that are consistently associated with HER2-
positive tumors, that these processes can be elucidated by an

integrated analysis of multiple genomic features, and that some
of these processes appear to predict both biological and clinical
properties of HER2 tumor cells and HER2-positive tumors. The
most striking evidence of this assertion is, perhaps, the
identification of a strong and previously unappreciated link
between integrin signaling and response to HER2-targeted
therapy. Our data suggest that surrogate markers of integrin
signaling (e.g. ILK) may be useful as predictors of therapeutic
efficacy. Two significant challenges inform our future directions.
The most obvious of these challenges is to refine the HER2-
positive tumor transcriptome landscape model using a larger
cohort of samples for which mRNA abundance, alternative
splicing, and eSNVs can be interrogated. The second
challenge is to dissect the functionally significant modules
within this model and identify new therapeutic targets that can
be developed for treatment of patients who have failed HER2-
targeted therapy. Achievement of this aim will obviously require
analysis of pre-clinical models, and studies to this end are
currently underway.
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