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Abstract

RNA helicases are enzymes that are thought to unwind double-stranded RNA molecules in an energy-dependent fashion
through the hydrolysis of NTP. RNA helicases are associated with all processes involving RNA molecules, including nuclear
transcription, editing, splicing, ribosome biogenesis, RNA export, and organelle gene expression. The involvement of RNA
helicase in response to stress and in plant growth and development has been reported previously. While their importance in
Arabidopsis and Oryza sativa has been partially studied, the function of RNA helicase proteins is poorly understood in Zea
mays and Glycine max. In this study, we identified a total of RNA helicase genes in Arabidopsis and other crop species
genome by genome-wide comparative in silico analysis. We classified the RNA helicase genes into three subfamilies
according to the structural features of the motif Il region, such as DEAD-box, DEAH-box and DExD/H-box, and different
species showed different patterns of alternative splicing. Secondly, chromosome location analysis showed that the RNA
helicase protein genes were distributed across all chromosomes with different densities in the four species. Thirdly,
phylogenetic tree analyses identified the relevant homologs of DEAD-box, DEAH-box and DExD/H-box RNA helicase
proteins in each of the four species. Fourthly, microarray expression data showed that many of these predicted RNA helicase
genes were expressed in different developmental stages and different tissues under normal growth conditions. Finally, real-
time quantitative PCR analysis showed that the expression levels of 10 genes in Arabidopsis and 13 genes in Zea mays were
in close agreement with the microarray expression data. To our knowledge, this is the first report of a comparative genome-
wide analysis of the RNA helicase gene family in Arabidopsis, Oryza sativa, Zea mays and Glycine max. This study provides
valuable information for understanding the classification and putative functions of the RNA helicase gene family in crop
growth and development.
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Introduction the fact that the RNA helicases are also involved in plant growth
and development and the response to abiotic stress is not
surprising.

The RNA helicase family in plants is larger and more diverse
than in other systems [8]. In fact, the expression level of several
DEAD-box helicases has been shown to be regulated in response
to changes in specific environmental conditions, including salt
X - e : ! stress, oxygen levels, light or temperature [2,9,10]. Initially, three
energy derived from the hydrolysis of a nucleotide triphosphate to Arabidopsis DEAD-box RNA helicases, LOS%, STRSI and STRS2,
unwind  double-stranded RNAs [3]. The majority of RNA were shown to be involved in the stress responses to various abiotic

helicases belong to superfamily 2 (SF2), which consists of three stresses [11,12,13]. HUA ENHANCER?2, encoding a putative
subfamilies, known as DEAD, DEAH and DExD/H [4,5,6]. RNA DExH-box RNA helicase, was shown to be active in both B and

helicases have been shown to be involved in every step of RNA

Helicases have been identified in organisms ranging from
Escherichia coli to humans, viruses and plants. The helicases from all
of these organisms represent a large gene family that may have a
predominant role in modulating environmental responses. These
proteins can be grouped into families based on sequence
homologies [1,2]. The RNA helicases are enzymes that use

> ¢ ! Ve ._ C pathways in the flower and to affect vegetative and inflorescence
metabolism, including nuclear transcription, pre-mRINA splicing, development in Arabidopsis [14]. A plastid DEAD-box RNA
ribosome biogenesis, nucleocytoplasmic transport, translation,

- helicase VDL gene in tobacco was reported to play an important
RNA decay, and organellar gene expression [3,4,7]. Based on

. i k . role in chloroplast differentiation and plant morphogenesis [15].
the multiple functions of these genes in cellular RNA metabolism, The Arabidopsis DExH box helicase CAF/DICER-LIKE 1 has
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been shown to be critical for the biogenesis of microRNAs and
plant development [16,17]. In Jea mays, MA16, fibrillarin, and
ZmDRHI may be part of a ribonucleoprotein complex involved
in ribosomal RNA metabolism [18]. Arabidopsis TEBICHI has been
shown to be required for the regulation of cell division and
differentiation in meristems [19], and ISE2, which is localised to
cytoplasmic granules, has been shown to be involved in
plasmodesmata function during embryogenesis in Arabidopsis
[20]. OsBIRHI, the rice homolog of RH50, exhibited RNA
helicase activities in vitro and helped to confer plant resistance
against various stresses [21]. Another RNA helicase, PUTATIVE
MITOCHONDRIAL RNA HELICASEZ, is involved in group II
intron splicing in mitochondria [22]. Additionally, SLOW WALK-
ER3 has been shown to be essential for female gametogenesis as a
putative DEAD-box RNA helicase in Arabidopsis [23]. Previously,
we reported that the DEVH-box RNA helicase AtHELPS
participates in the regulation of potassium-deprivation tolerance
[24]. Recently, rice API5 has been shown to couple with two
DEAD-box RNA helicases (API1 and API2) in regulating PCD
during tapetum degeneration in rice [25]. A DExH-box RNA
helicase, ABO6, was shown to mediate mitochondrial reactive
oxygen species production and also mediate crosstalk between
ABA and Auxin signalling [26]. Cumulatively, these investigations
indicate that the RINA helicases may play an important role in
building resistance to abiotic stresses and in plant growth and
development.

Despite the diversity of their biological functions and the wide
range of organisms in which these proteins have been identified,
high sequence conservation has been maintained in the large
group of helicases, suggesting that all the helicase genes evolved
from a common ancestor. Hence, signature sequences can be used
efficiently for the detection and the prediction of new helicases in
the genome databases [27]. After a thorough analysis of all the
sequence data, 32 different DEAD-box RNA helicases have been
identified and named from AtRH1 to AtRH32 [27]. Subsequent-
ly, the analysis of RNA helicase genes in Escherichia coli have been
identified and studied extensively, including 5 DEAD-box and 13
DExH-box RNA helicase genes [28,29]. Recently, the complete
analysis and classification of the RNA helicase gene family in
Arabidopsis and Orpza sativa, which contain 113 and 115 RNA
helicase genes, respectively, has been reported [2].

These studies added more evidence of the role of RNA helicase
genes in development and response to abiotic stresses in different
species, but related genome-wide resources are limited in two
other important crops, maize and soybean. In addition, several
whole-genome analysis studies in Arabidopsis and rice have been
performed in the past ten years, focused on categories such as the
RING-finger, receptor-like kinase gene family, MAPK and
MAPKK gene family, KT/HAK/KUP potassium transporters
gene family, NAC proteins and siRNAs [30,31,32,33,34,35,36,37].
Recently, genome-wide analysis in maize has identified and
analysed most of the cyclins, MuDR-related transposable elements,
beta-glucosidase gene family, auxin response factor (ARF) gene
family and two-component signal system (TCS) genes
[38,39,40,41,42]. So far, no genome-wide information on the
RNA helicase gene family is currently available in Jea mays or
Glycine max. Extensive genome-wide comparative in silico analysis
of the RNA helicase gene family in the completed genomes of Jea
mays and Glycine max could identify numerous known or novel gene
families associated with defence, photomorphogenesis, gene
regulation, development, metabolism, transportation and/or stress
tolerance.

In this study, we identified a total 161, 149, 136 and 213 RNA
helicase genes in the Arabidopsis, Oryza sativa, Lea mays and Glycine
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max genomes, respectively, by genome-wide comparative in silico
analysis. Each of the different subfamilies, such as DEAD-box,
DEAH-box or DExD/H-box, has different rate of alternative
splicing in each species. The chromosome location analysis
showed that the RNA helicase protein genes were distributed
across all chromosomes with different densities in the four species.
The phylogenetic tree analyses identified the relevant homologs of
DEAD-box, DEAH-box and DExD/H-box RNA helicase pro-
teins in each of the four species. Additionally, microarray
expression data showed that many of these predicted RNA
helicase genes were expressed in different developmental stages
and different tissues under normal growth conditions. Finally, real-
time quantitative PCR analysis showed that the expression levels
of 10 RNA helicase genes in Arabidopsis and 13 RNA helicase genes
in Jea maps were In close agreement with the microarray
expression data. To our knowledge, this is the first report of a
comparative genome-wide analysis of the RNA helicase gene
family in Arabidopsis, Oryza satwa, Zea mays and Glycine max. The
comparative genome-wide analysis provides valuable information
for understanding the classification and putative functions of the
RNA helicase gene family and new insight into the organisation,
evolution and functions of the RNA helicase gene family in crop
growth and development.

Results

The Identification of the RNA Helicase genes in
Arabidopsis, Oryza sativa, Zea Mays and Glycine Max

To identify the members of the RNA helicase gene family in
Arabidopsis, Oryza sativa, Zea mays and  Glycine max, we used
bioinformatic methods to gather extensive information regarding
this family. A total of 161 genes that encode 217 RNA helicase
proteins were identified as potential members of the RNA helicase
superfamily within the Arabidopsis genome (http://www.tair.org/),
whereas 149 genes encoded 199 RNA helicase proteins were
identified in the Oryza sativa genome (http://www.phytozome.net/
) (Table S1). Our predicted number of RNA helicase proteins in
the two species was greater than the number found in Arabidopsis
(113) or rice (115) [2]. So far, predicted members of the RNA
helicase gene family in Glycine max and Lea mays have not reported
in detail. In our results, we identified a total of 136 and 213 RNA
helicase genes in the ea mays and Glycine max genome (http://
www.phytozome.net/), respectively (Table S1).

Based on the characteristics of the conserved motifs, the RNA
helicase genes were classified into three subfamilies: DEAD-box
(50/51/757/87 genes), DEAH-box (40/33/31/48 genes) and
DExD/H-box (71/65/50/78 genes) in the four species Arabidopsis,
Oryza satwa, Zea mays and Glycine max (Table 1), respectively for
cach subfamily. In addition, the results revealed that Arabidopsis,
Oryza satia, Zea mays and Glycine max have 56, 50, 79 and 35
alternative splicing in whole RNA helicase gene family, respec-
tively (Table 1). In Jea mays, there are two particular genes whose
different alternative splicing products belong to different RNA
helicase subfamilies. GRMZM2G010085_T01 and
GRMZM2G010085_T02 belong to the DEAH-box and DExD/
H-box subfamilies, respectively. Moreover,
GRMZM2G420865_T02 and GRMZM2G420865_T03 belong
to DEAD-box and DExD/H-box, respectively.

The Chromosome Localization of the RNA Helicase Gene
Family in Arabidopsis, Oryza sativa, Zea Mays and Glycine
Max

Using the Perl-based program MapDraw and Photoshop tools,
the RNA helicase genes were then mapped onto the chromosomes

November 2013 | Volume 8 | Issue 11 | 78982



Genome-Wide Analysis of RNA Helicase Gene Family

Table 1. The number of the DEAD-box, DEAH-box and DExD/H-box RNA helicase genes in Arabidopsis, Oryza sativa, Zea mays,
Glycine max.

Species DEAD-box DEAH-box DExD/H-box Total Alternative Splicing Alternative Splicing (%)
Arabidopsis 50/66 40/52 71/99 161/217 56 25.81
Oryza sativa 51/79 33/41 65/79 149/199 50 25.12
Zea mays 57/86 31/44 50/85 136*/215 79 36.74
Glycine max 87/101 48/55 78/92 213/248 35 14.11

doi:10.1371/journal.pone.0078982.t001

of different species and named with their own Gene ID. In all four
species, all predicted RNA helicase genes could be conclusively
matched to a chromosome (Figure 1 and Figure 2). The
chromosomal locations of 161 Arabidopsis RNA helicase protein
genes were analysed first in our study. The chromosomes locations
analysis showed that the Arabidopsis RNA helicase protein genes
were distributed across all 5 chromosomes with different densities
from 9.9% (chromosome 4) to 30.4% (chromosome 1) (Figure 1A).
Second, we found a similar distribution pattern on Omza sativa
chromosomes from 2.0% (chromosome 12) to 19.5% (chromo-
some 1) (Figure 1B). Only 3 genes were mapped on chromosome
12. In addition, the Zea mays and Glycine max RNA helicase protein
genes were mapped on the chromosomes from chromosomes 1 to
10 and from chromosomes 1 to 20, respectively. In Jea mays,
chromosome 5 encompassed the most RNA helicase protein genes
with 23 (16.9%), while chromosomes 6 and 9 contained 7 RNA
helicase protein genes (5.1%) (Figure 2A). Compared with the
preceding three species, relatively low densities of RNA helicase
protein genes were observed on the 20 Glycine max chromosomes,
with the densities from 1.9% (chromosome 6 ) to 10.8%
(chromosome 8) (Figure 2B). To detect possible relationships
between RNA helicase genes and potential genome duplication
events, we mapped 35, 27, 25 and 62 paralogous gene pairs of
RNA helicase genes in Arabidopsis, Oryza sativa, {ea mays and Glycine
max, respectively (Figure 1 and Figure 2). It is noteworthy that the
percentage of the paralogous gene pairs of RNA helicase genes in
Glycine max was higher than the other three species, indicating that
segmental and/or tandem duplications might more frequently
occurred in Glycine max.

The Phylogenetic Tree Analysis of the RNA Helicase Gene
Family in Arabidopsis, Oryza Sativa, Zea Mays and Glycine
Max

To determine their evolutionary relationship, the phylogenetic
relationship of each subfamily of the RNA helicase proteins was
examined by aligning their amino acid sequences and implement-
ing the neighbour-joining method in MEGA 5.0. The phyloge-
netic tree analyses showed that the whole of DEAD-box (332),
DEAH-box (192) and DExD/H-box (355) RNA helicase proteins
in four species, respectively (Figure 3). We also performed the
orthologs/paralogs relationship among the RNA helicase genes
family in four species (Figure S1, Figure S2, Figure S3 and Figure
S4). Three Arabidopsis DEAD-box RNA helicases, LOS4, STRSI
and STRS2, were shown to be involved in responses to multiple
abiotic stresses [11,12,13]. These investigations indicate that
DEAD-box RNA helicases may play an important role in building
resistance to abiotic stress during plant growth and development.
Figure 3A shows that Glymal8g32190, Glymal9g03410 and
LOC_0Os03g6220 have high homology to Arabidopsis LOS4
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Note: In front of diagonal not include the number of alternative splicing; in the back of diagonal include the number of alternative splicing.
*In Zea mays, there are two especial genes with different alternative splicing belongs to different RNA helicase subfamilies.

(At3G53110). In addition, the phylogenetic tree analyses showed
that STRSI (AtlG31970) has a high level of identity to
Glyma01g01390, Glyma09g34390, LOC_Os07g20580 and
GRMAZM2G076484. An analysis of the DEAH-box RNA
helicase proteins showed that this subfamily could be further
classified into nine subgroups (Figure 3B), whereas the other two
subfamilies, DEAD-box and DExD/H-box RNA helicase pro-
teins, could be further classified into more than ten subgroups
(Figure 3A and Figure 3C). ISE2 and AtHELPS, encoding DExD/
H-box RNA helicases, were shown to be involved in plasmodes-
mata function during embryogenesis and potassium deprivation
responses and tolerance in Arabidopsis thaliana, respectively [20,24].
As shown in Figure 3C, we identified the relevant homologs of
ISE2 (AT1G70070) and AtHELPS (AT3G46960) as LO-
C_0s02g50560 and Glymal8g07510, respectively. At the same
time, the phylogenetic tree analyses revealed that OsBIRHI
(LOC_0Os03g01830) has a higher homology to Arabidopsis
AT3G06980, which is in accord with preceding research [21].

The Expression Profile During Different Development
Stage and Different Tissues of the RNA Helicase Genes in
Four Species Under Normal Growth Conditions

To investigate the potential functions of the RNA helicase
proteins in crop development, we analysed microarray expression
data from various datasets in the Gene Chip platform of
Genevestigator. We found that not all of the predicted genes
were expressed in different plant developmental stages and
different tissues under normal growth conditions. As shown in
Figure 4, among the 161 predicted genes in Arabidopsis, 144 genes
(89.4%) were expressed in at least one of the development stages
tested. More than half of the predicted RNA helicase genes were
expressed in ten different development stages with various
expression levels, including senescence, mature siliques, flowers
and siliques, developed flower, young flower, bolting, developed
rosette, young rosette, seedling and germinated seed. AT2G44980,
AT3G19760, AT3G53110 (LOS4), AT4G18465, AT5G11200 and
AT5G51280 were highly expressed in senescence stage. Our results
showed that the most RNA helicase genes were expressed in more
than 20 tissues in Arabidopsis with different expression levels and
many predicted Arabidopsis RNA helicase genes were expressed in
primary cell, seedling, inflorescence, silique, shoot and roots.
Forty-four genes were highly expressed in sperm cells and
AT5G10370 and AT5G61140 were only highly expressed in
primary root tissue (Figure 4).

During the nine Oryza sativa development stages, including the
dough stage, milk stage, flowering stage, heading stage, booting
stage, stem elongation stage, tillering stage, seedling and germi-
nation, 135 genes (90.6%) were expressed in at least one of the
development stages tested and several genes had high expression
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Figure 1. The chromosomal mapping of the RNA helicase gene family. (A) Arabidopsis, (B) Oryza sativa. The scale bar represents a 10.0 Mb
chromosomal distance. The chromosome number is indicated at the top of each chromosome. To simplify the presentation, we named the putative
RNA helicase genes with their own Gene ID. The subfamily of each RNA helicase gene was shown in parentheses. The paralogous sister pairs of RNA
helicase genes were connected by light blue line, which had very strong bootstrap support (>90%). The positions of centromeres were marked with

the black dot.
doi:10.1371/journal.pone.0078982.g001

levels in the flowering stage (Figure 5). Notably, the expression
levels of the RNA helicase in all tested Orpza sativa tissues were
higher in primary cell, internode and primary root (Figure 5).

Approximately 109 Zea mays genes were expressed with various
expression levels in the tested development stages, including dough
stage, fruit formation, anthesis, inflorescence formation, stem
elongation, seedling stage and germination (Figure 6). In addition,
the expression of these genes exhibited similar profiles and showed
higher expression level than in Arabidopsis and Oryza sativa
development stage (Figure 6).

Approach to half of the Glycine max RNA helicase genes were
expressed highly in fruit formation and bean development stage.
For another, about half of the genes were expressed in main shoot
growth and germination at lower levels. Moreover, approximately
15 genes were most highly expressed in the flowering stage
(Figure 7). Many genes exhibited higher expression levels in the
primary cell, leaf cell, shoot apex, axillary meristem, shoot apex
and unspecified root type of soybean (Figure 7). Taken together,
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these data suggest that the highly expressed RINA helicase genes
may play an important role in the regulation of four species’
growth and development, and these analyses further aid the
understanding of the basal functions of many RNA helicase
proteins in crop growth and development.

The Expression Profile of the RNA Helicase Genes in
Various Tissues as Determined by gRT-PCR Analyses in

Arabidopsis and Zea Mays

We performed the expression analysis of 10 RNA helicase genes
in Arabidopsis under normal growth conditions in six different
tissues: root, rosette leaf, stem, cauline leaf, flower and silique.
Basically in accord with Genevestigator analysis, qRT-PCR results
showed that 9 predicted genes were expressed in all of the tested
tissues in Arabidopsis (Figure 8). Only one gene (A75G43530)
displayed tissue-specific expression patterns, which was not
detected in rosette leaf and cauline leaf (Figure 8). Intriguingly,
relatively higher expression levels of these helicase genes were
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Figure 2. The chromosomal mapping of the RNA helicase gene family. (A) Zea mays, (B) Glycine max. The scale bar represents a 10.0 Mb
chromosomal distance. The chromosome number is indicated at the top of each chromosome. To simplify the presentation, we named the putative
RNA helicase genes with their own Gene ID. The subfamily of each RNA helicase gene was shown in parentheses. The paralogous sister pairs of RNA
helicase genes were connected by light blue line, which had very strong bootstrap support (=>90%). The positions of centromeres were marked with
the black dot.

doi:10.1371/journal.pone.0078982.g002
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Figure 3. Phylogenetic tree analysis of RNA helicase in Arabidopsis, Oryza sativa, Zea mays and Glycine max. (A) The DEAD-box RNA
helicase proteins in four species. (B) The DEAH-box RNA helicase proteins in four species. (C) The DExD/H-box RNA helicase proteins in four species.
The amino acid sequences of the RNA helicase proteins were aligned with ClustalX, and the phylogenetic tree was constructed using the neighbour-
joining method in MEGA 5.0 software. Each node is represented by a number that indicates the bootstrap value for 100 replicates. The scale bar
represents 0.05, 0.1 and 0.1 substitutions per sequence position, respectively.

doi:10.1371/journal.pone.0078982.g003

observed in flower and silique, indicating that RNA helicase
activities might be closely related with reproductive processes in
Arabidopsis (Figure 8).

We also analysed the expression of 13 RNA helicase genes in
maize under normal growth conditions in ten different tissues:
primary root, pericarp, internode, adult leaf, silk, culm, seedling,
endosperm, embryo and tassel. All of the 13 predicted genes were
expressed in at least one of the ten tissues in maize (Figure 9). The

results showed that {M2G113267, IM2G026371, XM2G415491

PLOS ONE | www.plosone.org

and {M2G415538 were primarily expressed in the seedlings and
adult leaf, while they were barely expressed in the other eight
tissues. KM2G368658 and IM2G030768 were especially abundant
in the embryo and tassel, respectively, and were expressed at
relatively low levels in other nine tissues. M2G071025,
M2G133764,  IM2G138125,  AC235535,  ZM2G010085,
M2G106732 and ZMZ2G076484 were detected in all tested
tissues, whereas SM2G071025 and AC255535 in the embryo,
KM2G138125 in the endosperm, IM2G010085, ZM2G106732

November 2013 | Volume 8 | Issue 11 | 78982
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Figure 4. The expression profiles of 145 RNA helicase genes in Arabidopsis. The expression profiles of 145 RNA helicase genes in different
development stages (above) and tissues (below) in Arabidopsis. The deep and light blue shading represents the relative high or low percent potential
expression levels, respectively, of the helicase genes in different development stages and different tissues. The DEAD-box, DEAH-box and DExD/H-

box RNA helicase genes are indicated by the red triangle, circle and square, respectively.

doi:10.1371/journal.pone.0078982.g004

and IM2G076484 in the endosperm and embryo were weakly
expressed (Figure 9). These results, also in accord with
Genevestigator analysis, suggest that the tested 13 RINA helicase
genes might be involved in tissue development in maize. Taken
together, these results imply that the tested RNA helicase genes
might play roles in regulating the development of different tissues.

Discussion

RNA helicases are found in various organisms, ranging from
prokaryotes to mammals, and have become a focus of interest in
recent years due to their participation in diverse cellular processes
[8,43,44]. In the past ten years, although the RNA helicases have
been intensively studied in plant growth and development and
response to various stresses
(8,10,11,12,13,16,17,19,20,24,45,46,47], only a few members
have been identified in the regulation of crop plant growth and
development. While Arabidopsis and Oryza sativa RNA helicase
families have been partially predicted from The Arabidopsis

Stage o
dough stage St U

Information Resource (TAIR) database (http://www.arabidopsis.
org/) and the Rice Genome Annotation Project (RAP) database
(http://rice.plantbiology.msu.edu/) [2,48,49], the characteristics
of the gene family and the function of RNA helicase proteins is
poorly understood in Lea mays and Glycine max. Therefore, the
biological functions of a majority of the crop RNA helicases
require further investigation.

In this study, we presented a complete analysis of the RNA
helicase gene family in Arabidopsis and other crop species genomes
by genome-wide comparative in silico analysis, including the gene
classification, chromosomal locations, phylogenetic tree and
expression profiles in different tissues and development stages
under normal growth conditions.

The RNA helicase gene family has 113 members in Arabidopsis
and 115 members in rice [2]. In this study, we identified a total of
161 and 149 RNA helicase genes in Arabidopsis and rice,
respectively. We speculate that this phenomenon may be due to
continual updates of the TAIR and RAP database. In addition, we
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Figure 5. The expression profiles of 138 RNA helicase genes in Oryza sativa. The expression profiles of 138 RNA helicase genes in different
development stages (above) and different tissues (below) in Oryza sativa. The deep and light blue shading represents the relative high or low percent
potential expression levels, respectively, of the helicase genes in different development stages and different tissues. The DEAD-box, DEAH-box and
DExD/H-box RNA helicase genes are indicated by the red triangle, circle and square, respectively.

doi:10.1371/journal.pone.0078982.9005
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Figure 6. The expression profiles of 54 RNA helicase genes in Zea mays. The expression profiles of 54 RNA helicase genes in different
development stages (above) and different tissues (below) in Zea mays. The deep and light blue shading represents the relative high or low percent
potential expression levels, respectively, of the helicase genes in different development stages and different tissues. The DEAD-box, DEAH-box and

DEXD/H-box RNA helicase genes are indicated by the red triangle, circle and square, respectively.

doi:10.1371/journal.pone.0078982.g006

also identified a total of 136 RNA helicase genes in maize and 213
members in soybean. Compared with Arabidopsis (genome size
125 Mb) [50] and rice (genome size 480 Mb) [51], the size of the
RNA helicase gene family is smaller in maize (genome size
2500 Mb) [52,53] and soybean (genome size 1115 Mb) [54]. But
compared with the number of all genes in four species genome
(25,500 genes in Arabidopsis genome, 37,500 genes in rice genome,
50,000 genes in maize genome and 66,000 genes in soybean
genome), the percentage of the RNA helicase gene family is similar
in four species (0.631% in Arabidopsis, 0.397% in rice, 0.272% in
maize and 0.323% in soybean), except higher in Arabidopsis.
Although the genome and the total genes number in four species is
very different, it still not show differ greatly in the size of RNA
helicase gene family. The presence of a large helicase gene family
in four species suggests the RNA helicases play important roles in
diverse processes. We further compared the number of RNA
helicase genes in different subfamilies among Arabidopsis, Oryza
satwa, Zea mays and Glycine max (Table 1). As showed in Table 1, we
founded that the number of the DEAD-box and DExD/H-box
RNA helicase genes have many more members than the DEAH-
box RNA helicase genes in the four species. The key difference is
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that the number of the alternative splicing products (35) was much
smaller in Glycine max than in Arabidopsis (56), Oryza sativa (50), and
Lea mays (79), rather than the number of different genes in each of
the subfamilies.

Among the total RNA helicase genes in the four species, the
percentage of alternative splicing is lowest in soybean (14.11%)
and highest in maize (35.81%). The data showed that the
phenomenon of alternative splicing of RNA helicase genes is
more common in dicot than in monocot. The regulation of
alternative splicing is a key step in the control of gene expression,
as splicing variants have different biological functions and
regulatory features. Alternative splicing is one of the most complex
cellular processes in eukaryotes, where information must be
processed differently at different times (such as different develop-
ment stages) or a very high level of diversity is required. Only a
small number of alternative splicing events have been reported in
plants. Recent progress has occurred in characterising the splicing
signals in plant pre-mRNAs, in identifying the mutants affected in
splicing and in discovering new examples of alternatively spliced
mRNAs. Furthermore, although data from both animals and
plants suggest tissue-specific and temporal regulation of alternative

Figure 7. The expression profiles of 99 RNA helicase genes in Glycine max. The expression profiles of 99 RNA helicase genes in different
development stages (above) and different tissues (below) in Glycine max. The deep and light blue shading represents the relative high or low percent
potential expression levels, respectively, of the helicase genes in different development sages and different tissues. The DEAD-box, DEAH-box and
DExD/H-box RNA helicase genes are indicated by the red triangle, circle and square, respectively.

doi:10.1371/journal.pone.0078982.9g007
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Figure 8. QRT-PCR analysis of 10 helicase genes in different tissues of Arabidopsis. Error bars indicate standard deviations (n=3). 1, root; 2,
rosette leaf; 3, stem; 4, cauline leaf; 5, flower; 6, silique.
doi:10.1371/journal.pone.0078982.g008

splicing [55,56,57,58], the mechanisms that regulate alternative in the production of different protein isoforms, thereby affecting
splicing in plants remain unknown. Alternative splicing can result transcriptome and proteome diversity, and, ultimately, the
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Figure 9. QRT-PCR analysis of 13 helicase genes in different tissues of Zea mays. Error bars indicate standard deviations (n=3). 1, primary
root; 2, pericarp; 3, internode; 4, adult leaf; 5, silk; 6, culm; 7, seedling; 8, endosperm; 9, embryo; 10, tassel.

doi:10.1371/journal.pone.0078982.g009

regulation of protein function and gene expression [59,60,61].
Recent genome-wide experiments have shown that >40% of
Arabidopsis thaliana and rice genes can produce multiple diverse
mRNA molecules by alternative splicing [62,63,64,65]. In our
results, the percentage of alternative splicing of RNA helicase
genes in Arabidopsis thaliana and rice (>25%) was less than the
average alternative splicing frequency of whole genome. Our data
concerning the alternative splicing frequency of RNA helicase
genes in different crop species will not only provide information on
mechanisms of gene regulation through alternative splicing in
future but also facilitate our understanding of the regulation of
RNA helicase genes in crop growth and development. To our
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knowledge, this is the first report of a genome-wide analysis of the
crop RNA helicase gene family. The different gene subfamilies
and alternative splicing frequency of the RNA helicases might
mirror the diverse functions of these genes in RNA metabolism.
We also utilised a Genevestigator analysis to gain insight into
the expression profiles of the RNA helicase genes during different
development stages and in different tissues under normal growth
conditions. We found that under normal growth conditions,
among the all of the predicted genes in Arabidopsis, rice and maize,
more than 80% RNA helicase genes were expressed in at least one
of the development stages and tissues tested (Figure 4, 5, 6). In
addition, about half of the predicted RNA helicase genes were
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expressed in at least one of the development stage and tissues
tested in soybean (Figure 7). Therefore, we speculated that the
highly expressed RNA helicase genes may play a role in the
regulation of crop growth and development. However, more
research will be needed to determine the functions of the RNA
helicase genes in these four species. In addition, the results also
showed that the percentage of different subfamilies in different
development stage and tissues changed dissimilarly. The DEAH-
box RNA helicase genes higher proportion of the development
stages and tissues in Arabidopsis, Oryza sativa and Lea mays (Figure 4,
5, 6). Taken together, we speculate that the RNA helicase proteins,
specifically the DEAH-box RNA helicases, might play an
important role in different development stages of crops and the
growth of different tissues.

To our knowledge, this is the first report of a comparative
genome-wide analysis of the RINA helicase gene family in
Arabidopsis and Oryza sativa, Lea mays and Glycine max. This study
provides valuable information for understanding the classification
and putative functions of the RNA helicase gene family in crop
growth and development.

Materials and Methods

The Identification of the Helicase Genes in Arabidopsis,
Oryza Sativa, Zea Mays and Glycine Max

To identify the members of the helicase gene family in
Arabidopsis, Oryza sativa, Zea maps and Glycine max, two different
approaches were performed [66]. First, the genome of the four
species were downloaded from the database with different genome
sizes, including Arabidopsis (genome size 125 Mb, 25,500 genes),
rice (genome size 480 Mb, 37,500 genes), maize (genome size
2500 Mb, 50,000 genes) and soybean (genome size 1115 Mb,
66,000 genes) [51-54]. All known Arabidopsis helicase gene
sequences, which were downloaded from the Arabidopsis genome
TAIR 9.0 release (http://www.arabidopsis.org/), were used as
query sequences to perform multiple database searches against the
proteome and genome files downloaded from the Phytozome
database (http://www.phytozome.net/). Stand-alone versions of
BLASTP and TBLASTN (http://blast.ncbi.nlm.nih.gov), which
are available from the NCBI, were used with an e-value cutofl set
to 1e-003 [67]. All of the protein sequences derived from the
collected candidate helicase genes were examined using the
domain analysis programs PFAM (http://pfam.sanger.ac.uk/)
and SMART (http://smart.embl-heidelberg. de/) with the default
cutoff parameters [68,69]. Second, we analysed the domains of all
of the peptide sequences using a Hidden Markov Model (HMM)
analysis with protein family (Pfam) searching (http://pfam.sbe.su.
se/). Then, we obtained the sequences with the PF00271 Pfam
number, which contained a typical helicase domain, from the
genome sequences using a Perl-based script. Finally, all of the
protein sequences were compared with known helicase sequences
using ClustalX (http://www.clustal.org/) to verify the sequences
were candidate helicases [70].

The isoelectric points and molecular weights of the proteins
were obtained with the help of the proteomics and sequence
analysis tools on the ExPASy Proteomics Server (http://expasy.
org/) [71]. The chromosomal locations and the exon/intron
information were obtained from the Phytozome database using a
Perl-based program.

The Chromosomal Location of the Helicase Genes

The chromosomal locations were retrieved from the genome
data downloaded from the Phytozome database (http://www.
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phytozome.net/) using a Perl-based program and mapped to the
chromosomes using the MapDraw and Photoshop tools.

Sequence Alignment and Phylogenetic Analysis

The helicase sequences were aligned using the ClustalX
program with BLOSUMS30 as the protein-weight matrix. The
MUSCLE program (version 3.52) was also used to perform
multiple sequence alignments to confirm the ClustalX results
(http://www.clustal.org/) [72]. Phylogenetic trees of the helicase
protein sequences were constructed using the neighbour-joining
(NJ) method of the MEGAS program (http://www.megasoftware.
net/) using the p-distance and complete deletion option param-
eters [73]. The reliability of the obtained trees was tested using a
bootstrapping method with 1000 replicates. The images of the
phylogenetic trees were drawn using MEGADS.

Expression Analyses of the Helicase Genes in Arabidopsis,
Oryza Sativa, Zea Mays and Glycine Max

Microarray expression data from various datasets were obtained
using Genevestigator (https://www.genevestigator.com/gv/) with
the Arabidopsis (ATH1:22 k array), Omza sativa (OS_51 k: Rice
Genome 51 k array), {ea mays (ZM_84 k: Nimblegen Maize 385 k)
and Glycine max (GM_60 k: Soybean Genome Array) Gene Chip
platform. Then, the identified helicase-containing gene IDs were
used as query sequences to perform searches in the Gene Chip
platform of Genevestigator.

Plant Materials and Growth Conditions

Arabidopsis thaliana (Col-0) seeds were surface-sterilized and sown
on MS plates. Seeds were stratified at 4°C for 2 days and then
transferred to 22°C for 2 weeks. One month-old plants grown
under a 16-h-light/8-h-dark photoperiod at 22°C with cool white
light (120 mmol photons m™ 2 s~ ') were used for sampling. For
RNA extraction, the different tissues were frozen and stored in
liquid nitrogen immediately after harvest.

For maize inbred line Qi 319 (from Shandong Academy of
Agricultural Sciences), embryos 25 days after pollination was
harvested from greenhouse-grown plants in sand under 16 h of
light (25°C) and 8 h of dark (20°C), and eight-week-old seedling
tissues and organs were harvested for expression analysis. Samples
were collected and were immediately frozen in liquid nitrogen for
further use. Two biological replicates were performed for each
sample.

RNA Isolation and Real-time Quantitative RT-PCR
Expression Analysis

Total RNAs were extracted using Trizol according to the
manufacturer’s instructions (Invitrogen, Carlsbad, CA, USA) from
leaves of maize seedlings with different treatments. The first strand
cDNAs were synthesised using First Strand cDNA Synthesis kit
(Fermentas, USA).

Real-time quantification RT-PCR reactions were performed in
Bio-RAD MyiQ™ Real-time PCR Detection System (Bio-Rad,
USA) using the TransStart Top Green qPCR  SuperMix
(TransGen, China) according to the manufacturer’s instructions.
Each PCR reaction (20 pL containing 10 puL. 2 xreal-time PCR
Mix (containing SYBR Green I), 0.5 uL. of each primer, and
appropriately diluted cDNA. The thermal cycling conditions were
95°C for 30 s followed by 45 cycles of 95°C for 15 s, 55°C —60°C
for 30 s, and 72°C for 15 s. The Jmactin gene was used as an
internal reference for all the qRT-PCR analysis. Each treatment
was repeated three times independently. Relative gene expression
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was calculated according to the delta-delta Ct method of the
system. The primers used are described in Table S2.

Supporting Information

Figure S1 Phylogenetic tree analysis of RNA helicase in
Arabidopsis. From left to right are the DEAD-box, DEAH-box
and DExD/H-box RNA helicase proteins, respectively. The scale
bar represents 0.2, 0.2 and 0.2 substitutions per sequence position,
respectively. Sister pairs of paralogous helicase genes were
indicated by red shadow, which had very strong bootstrap support
(>90%).

(TTF)

Figure S2 Phylogenetic tree analysis of RNA helicase in
Oryza sativa. From left to right are the DEAD-box, DEAH-box
and DExD/H-box RNA helicase proteins, respectively. The scale
bar represents 0.2, 0.2 and 0.2 substitutions per sequence position,
respectively. Sister pairs of paralogous helicase genes were
indicated by red shadow, which had very strong bootstrap support
(>90%).

(TTF)

Figure S3 Phylogenetic tree analysis of RNA helicase in
Zea mays. Irom left to right are the DEAD-box, DEAH-box
and DExD/H-box RNA helicase proteins, respectively. The scale
bar represents 0.2, 0.2 and 0.2 substitutions per sequence position,
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