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Abstract

Behavioral, anatomical, and gene expression studies have shown functional dissociations between the dorsal and ventral
hippocampus with regard to their involvement in spatial cognition, emotion, and stress. In this study we examined the
difference of the multisynaptic inputs to the dorsal and ventral dentate gyrus (DG) in the rat by using retrograde trans-
synaptic tracing of recombinant rabies virus vectors. Three days after the vectors were injected into the dorsal or ventral DG,
monosynaptic neuronal labeling was present in the entorhinal cortex, medial septum, diagonal band, and supramammillary
nucleus, each of which is known to project to the DG directly. As in previous tracing studies, topographical patterns related
to the dorsal and ventral DG were seen in these regions. Five days after infection, more of the neurons in these regions were
labeled and labeled neurons were also seen in cortical and subcortical regions, including the piriform and medial prefrontal
cortices, the endopiriform nucleus, the claustrum, the cortical amygdala, the medial raphe nucleus, the medial habenular
nucleus, the interpeduncular nucleus, and the lateral septum. As in the monosynaptically labeled regions, a topographical
distribution of labeled neurons was evident in most of these disynaptically labeled regions. These data indicate that the
cortical and subcortical inputs to the dorsal and ventral DG are conveyed through parallel disynaptic pathways. This second-
order input difference in the dorsal and ventral DG is likely to contribute to the functional differentiation of the
hippocampus along the dorsoventral axis.
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Introduction

The hippocampus, well known for its critical involvement in

episodic memory and spatial navigation [1–4], also mediates the

detection of novel or unexpected stimuli, mediates changes in

hormonal regulation, and is involved in emotional responses and

anxiety [5–7]. These various functional processes have been

related to different portions along the longitudinal axis of the

hippocampus. Experimental findings indicate that dorsal or septal

portions contribute to the efficient processing of spatial informa-

tion and that dysfunction of the dorsal portion is associated with

spatial deficits. The ventral or temporal portion of the hippocam-

pus processes information related to motivation, emotion, and

homeostatic state of the animal. Dysfunction in the ventral

hippocampal region is associated with affective and psychotic

disorders [8–12].

The main connections of the hippocampus have been reported

to show a topographical organization that is in line with these

behavioral dorsoventral differences. The best documented are the

reciprocal connections of the hippocampus with the entorhinal

cortex, where it has been shown that a dorsolateral to

ventromedial entorhinal origin of projections maps onto a

dorsoventral termination of those projections. This longitudinal

organization of these inputs is characteristic of the projections to

all subfields of the hippocampus [8,13–16]. The organization of

the return projections from CA1 and the subiculum is consistent

with this topography [17–19]. Other inputs and outputs show

similar topographical organization [20]; a mediolateral axis of

origin in the medial septum, for example, is related to a

dorsoventral terminal distribution in the hippocampus [21,22]. It

has also been reported that the inputs to these two main sources of

direct input to the hippocampus, i.e., the entorhinal cortex and the

medial septum, are themselves topographically organized [23,24].

Whether these organizational patterns are in any way related,

however, is not known.

Viral tracers that can be transferred retrogradely across

synapses, such as rabies virus or pseudorabies virus, allow this

question to be addressed efficiently and with a high level of

precision [25,26]. In the present study we analyzed monosynaptic

and disynaptic inputs to the dentate gyrus (DG) in the rat by using

recombinant rabies virus vectors [27–29]. The DG is a main point

of entry to the hippocampal network, and details about the chain

of input connections to it are essentially unknown. In a recent

study, a similar approach was used to study monosynaptic and

disynaptic inputs to CA1 using the pseudorabies virus-Bartha

strain [30]. That study focused on disynaptic inputs from medial

prefrontal cortical regions such as the infralimbic, prelimbic,
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anterior cingulate, and retrosplenial cortices, which likely to be

mediated through the entorhinal cortex layer III [20] or through

midline and anterior domains of the thalamus [31]. In the present

study we used a comparable approach but focused on inputs to the

DG instead of CA1. Our study is also more elaborate in that we

examined the full extent of the entorhinal cortex, including both

lateral and medial subdivisions along their rostrocaudal extent,

and here we report both cortical and subcortical mono- and

disynaptic inputs. To compare the differences between the

multisynaptic inputs to the dorsal and ventral DG precisely, we

additionally used a dual trans-synaptic tracing method that can

label two different neural circuits in the same experiment [28,29].

Our data indicate that for most of the cortical and subcortical

inputs to DG, parallel input streams do exist in the brain, such that

cells in indirect-input areas show a clear topographical distribution

related to the final targets of the input streams in the dorsal and

ventral DG.

Materials and Methods

Surgical procedures and virus injections
A total of 19 young adult male Wistar rats weighing 200–230 g

were used in this study. All experiments with injections of

recombinant rabies virus vectors were carried out in a special

laboratory (biosafety level 2) designated for in vivo infectious

experiments. All experiments were approved by the Center for

Laboratory Animal Research, Tohoku University, and all

experiments were conducted according to the Guidelines of the

National Institutes of Health and the Tohoku University

Guidelines for Animal Care and Use.

Rats were deeply anaesthetized with ketamine (80.0 mg/kg, i.p.)

and xylazine (0.8 mg/kg, i.p.) and were mounted in a stereotaxic

frame. The skull was exposed, and a small burr hole was drilled

above the injection site. The viral vectors we used as tracers were

injected at different dorsoventral levels of the dentate gyrus, levels

based on the atlas of Paxinos and Watson [32], by means of a glass

micropipette (tip diameter = 20–40 mm) connected to a 1 ml

Hamilton microsyringe.

Nine rats received injection of either 100 nl of rHEP5.0-CVSG-

mRFP [27] (7.06108 FFU/ml) or 100–200 nl of rHEP5.0-CVSG-

EGFPx2 [29] (5.06108 FFU/ml) into the dorsal DG. Seven rats

received injection of either 100 nl of rHEP5.0-CVSG-mRFP

(7.06108 FFU/ml), 100–200 nl of rHEP5.0-CVSG-EGFPx2

(5.06108 FFU/ml), or 200 nl of rHEP5.0-CVSG-LynVenusx2

[27] (2.06108 FFU/ml) into the ventral DG. In another five rats,

100–200 nl of rHEP5.0-CVSG-mRFP (7.06108 FFU/ml) was

injected into the dorsal DG and 100–200 nl of rHEP5.0-CVSG-

EGFPx2 (5.06108 FFU/ml) was injected into the ventral DG. In

two rats, 200 nl of rHEP5.0-CVSG-mRFP (7.06108 FFU/ml)

and 200 nl of rHEP5.0-CVSG-EGFPx2 (5.06108 FFU/ml) were

injected into adjacent sites (AP 23.7 and AP 25.2) of the dorsal

DG. Each virus was injected along with 1% of pontamine sky blue

in order to mark the injection site. After the injection, at 20 nl per

minute, the pipette was left in place for another 30 minutes before

it was withdrawn. After all injections were completed, the wound

was sutured and the animal was monitored for recovery from

anesthesia before being returned to its home cage. Throughout the

survival times the rats were kept inside a small safety cabinet.

Immunohistochemistry and Analysis
After survival periods ranging from 3 to 5 days, the animals

were deeply anaesthetized with sodium pentobarbital (100 mg/kg,

i.p.) and perfused transcardinally with 10% sucrose in 0.1 M PB

followed by 4% paraformaldehyde in 0.1 M phosphate buffer.

Figure 1. Representative injection sites in the dorsal or ventral DG. A–D: Nissl-stained sections with injection either in the dorsal DG at AP
23.7 (A), AP 25.2 (B), the ventral DG and CA3 region (C), or the ventral DG (D). The injection site was marked by pontamine sky blue which was co-
injected with the viral vector (arrowhead). E–G: Photomicrograph of labeled neurons around the injection site. Small numbers of labeled neurons
were detected in the dorsal and ventral DG injection site (E, G), whereas strong labeling was seen when the injection hit the CA3 region (F). Scale bar
= 1000 mm in A (also applies to B–D) and 250 mm in E (also applies to F, G).
doi:10.1371/journal.pone.0078928.g001
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Figure 2. Distribution of retrogradely labeled neurons three days after virus injections into dorsal DG. Series of coronal sections
(organized from rostral to caudal) for a rat surviving three days after dorsal DG injection. APC, anterior piriform cortex; APir, amygdalopiriform
transition; AUD, auditory cortex; BaA, basal complex of amygdala; CeA, central amygdaloid nucleus; Cg, cingulate cortex; Cl, claustrum; CoA, cortical
amygdaloid nucleus; CPu, caudate putamen; DB, diagonal band; DMH, dorsomedial hypothalamic nucleus; DP, dorsal peduncular cortex; En,

Multisynaptic Inputs to the Dentate Gyrus
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The brains were removed from the skulls, postfixed in 4%

paraformaldehyde in 0.1 M PB for 4 hours at 4uC and then

cryoprotected in PB containing 30% sucrose for at least 48 hours

at 4uC. The brains were cut into 50 mm coronal sections on a

freezing microtome, and sections for processing were collected in

four equally spaced series.

In order to visualize the infected neurons in the single-virus

injection samples, one series of sections was immunohistochem-

ically processed for the expressed fluorescent protein (mRFP,

EGFP, or Lyn-Venus). Floating sections were washed in

phosphate-buffered saline (PBS), soaked with PBS containing 5%

normal goat serum and 0.1% Triton-X 100 for an hour at room

temperature, and then incubated overnight at 4uC with rabbit

anti-RFP antibody (1:400; Molecular Probes) or rabbit anti-GFP

antibody (1:3000; Molecular Probes) dissolved in PBS containing

5% normal goat serum and 0.1% Triton-X 100. The sections were

then incubated for 2 hours at room temperature in biotinylated

goat anti-rabbit IgG antibody (1:400; Jackson ImmunoResearch)

diluted in PBS containing 0.1% Triton X-100 (PBT), after which

they were reacted with the avidin-biotin-peroxidase complex (ABC

Elite; Vector laboratories) for another 4 hours. For visualization of

the antigen, the sections were reacted in PBS containing 0.04%

diaminobenzidine (DAB) and 0.002% hydrogen peroxide.

After washes in PBS the sections were mounted on gelatin-

coated glass slides, air-dried, dehydrated in ethanol, cleared in

xylene, and coverslipped with mounting medium (Mount Quick;

Cosmo Bio). The second series of sections was Nissl-stained with

thionin and used to establish cytoarchitectonic borders. Sections

were examined under an Olympus Provis AX70 microscope

(Olympus) and photographed using an AxioCam MRc 5 Zeiss

digital camera (Carl Zeiss) and Axiovision image processing

software (Carl Zeiss).

A double-labeling immunofluorescence procedure was used to

visualize mRFP- and EGFP-labeled neurons in the dual-virus

injection samples. After being washed in PBS, floating sections

were immersed in PBS containing 5% normal goat serum and

0.1% Triton-X 100 for an hour at room temperature and then

incubated overnight at 4uC with rabbit anti-mRFP IgG (1:400;

Molecular Probes) and mouse anti-GFP IgG (1:400; Molecular

Probes) dissolved in PBS containing 5% normal goat serum and

0.1% Triton-X 100. They were then washed and permeabilized in

PBT and incubated for 2 hours at room temperature in Cy3-

conjugated goat anti-rabbit IgG (1:400; Jackson ImmunoRe-

search) and Alexa488-conjugated goat anti-mouse IgG (1:400;

Jackson ImmunoResearch) diluted in PBT. The sections were

counterstained with Hoechst 33258 (1:1000; Dojindo), cover-

slipped, examined under a Zeiss Axiovert 200 M microscope, and

photographed using an AxioCam MRm digital camera (Carl

Zeiss) and Axiovision image processing software (Carl Zeiss). To

examine the dual-labeled neurons, images were captured at a fixed

Z-level by using a laser scanning confocal microscope (LSM 5

Exciter, Carl Zeiss).

To compare the topographical labeling patterns of neurons

innervating either the dorsal or ventral DG, the center of mass of

the labeled neurons was obtained by averaging their positions. The

results from different animals were superimposed onto a coronal

atlas by using anatomical landmarks to normalize the positions of

the labeled neurons. To examine the center of mass of labeled

neurons in the piriform cortex and endopiriform cortex along the

rostrocaudal axis, the positions of labeled neurons from four

coronal sections (AP +2.05, AP +0.40, AP 21.25, AP 22.90) were

averaged.

All numerical data are expressed as mean values 6 the SEM.

The statistical significance of differences between means along the

dorsoventral, mediolateral or rostrocaudal axes was evaluated by

using a two-tailed Student’s t-test performed using Prism

(Graphpad Software Inc., San Diego, CA).

Results

To investigate multi-synaptic input to dorsal and ventral levels

of the DG, we injected recombinant rabies virus vectors at

different dorsoventral levels of the DG. The locations of the

injections in four representative cases are shown in Figure 1. The

center of the injection site was determined by the presence of the

pontamine sky blue injected along with the viral vector. Since our

rabies viral vector does not infect glial cells or the granule cells in

the DG, labeled neurons were sparse when the injection site was in

the DG, and thus the spread of virus within the DG therefore

could not be determined (Fig. 1E, G). When the injection involved

the CA3 region, in contrast, many strongly labeled neurons were

seen there (Fig. 1F).

For the dorsal DG injections the virus was injected either at AP

23.7 (Fig. 1A) or at AP 25.2 (Fig. 1B). Although different

dorsoventral levels of the DG are known to receive inputs from

topologically different domains of the entorhinal cortex [33], the

labeling patterns in the entorhinal cortex differed little between the

two groups. Thus we put all these samples together as dorsal DG

injection samples. For the ventral DG injections the virus was

injected at the ventral pole of the DG (Fig. 1C, D). In some cases

the pontamine sky blue labeling was seen not only in the ventral

DG but also in CA3 (Fig. 1C). Since the labeling patterns in

samples with injection sites in the DG and DG/CA3 were similar,

all the data for those samples were taken together in this study.

Single-virus injection
To determine the first- and second-order projection area, we

first injected recombinant rabies virus vectors (rHEP5.0-CVSG-

EGFPx2, rHEP5.0-CVSG-mRFP, or rHEP5.0-CVSG-LynVe-

nusx2) into either the dorsal or the ventral DG and examined

the distribution of labeled neurons at different post-inoculation

survival times. With these viral vectors the optimal survival time

for labeling first-order projection neurons is three days. It takes

another 2 days for the vector to cross one synapse and infect the

second-order projection neurons [29].

Three days after an injection into the dorsal (N = 4) or ventral

DG (N = 3), many labeled neurons were seen in CA3, the

entorhinal cortex, the medial septum, the diagonal band, and the

supramammillary nucleus (Fig. 2, 3). In three out of four cases with

dorsal DG injection, a few labeled neurons were also seen in the

median raphe nucleus (Fig. 2F), interpeduncular nucleus, and

claustrum. In ventral injection samples, a few labeled neurons

were seen in the median raphe nucleus (Fig. 3F) in all three cases

endopiriform nucleus; EC, entorhinal cortex; IL, infralimbic cortex; Ins, insular cortex; IP, interpedunclular nucleus; LaA, lateral amygdaloid nucleus; LS,
lateral septum; MeA, medial amygdaloid nucleus; mHb, medial habenular nucleus; mRn, median raphe nucleus; MO, motor cortex; MS, medial
septum; MTu, medial tuberal nucleus; PAG, periaqueductal gray; PaS, parasubiculum; PER, perirhinal cortex; PL, prelimbic cortex; POR, postrhinal
cortex; PPC, posterior piriform cortex; PrS, presubiculum; PtA, parietal association cortex; RSC, retrosplenial cortex; SS, somatosensory cortex; Sub,
subiculum; SuM, supramammillary nucleus; TeA, temporal association cortex; TT, tenia tecta; VIS, visual cortex; VMH, ventromedial hypothalamic
nucleus.
doi:10.1371/journal.pone.0078928.g002
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Figure 3. Distribution of retrogradely labeled neurons three days after virus injections into ventral DG. Series of coronal sections
(organized from rostral to caudal) for a rat surviving three days after ventral DG injection. AHA, amygdalohippocampal area; PMCo, posteromedial
cortical nucleus of the amygdala. Remainder of abbreviations the same as in Figure 2.
doi:10.1371/journal.pone.0078928.g003
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Figure 4. Distribution of retrogradely labeled neurons five days after virus injections into dorsal DG. Series of coronal sections
(organized from rostral to caudal) for a rat surviving five days after dorsal DG injection. AH, anterior hypothalamic area; Mn, mammillary nucleus; Re,
reuniens thalamic nucleus; VH, ventral hypothalamic nucleus. Remainder of abbreviations the same as in Figure 2 and 3.
doi:10.1371/journal.pone.0078928.g004
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Figure 5. Distribution of retrogradely labeled neurons five days after virus injections into ventral DG. Series of coronal sections
(organized from rostral to caudal) for a rat surviving five days after ventral DG injection. For abbreviations, see list. PLCo, posterolateral cortical
nucleus of the amygdala; SNC, substantia nigra pars compacta. Remainder of abbreviations the same as in Figure 2–4.
doi:10.1371/journal.pone.0078928.g005
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and in the interpeduncular nucleus and claustrum in one case. At

five days of post-inoculation survival after a dorsal (N = 5) or a

ventral DG injection (N = 4), robust labeling was also seen in other

cortical and subcortical regions, such as the medial prefrontal

cortex, piriform cortex, endopiriform nucleus, claustrum, lateral

septum, medial habenular nucleus, interpeduncular nucleus, and

median raphe nucleus (Fig. 4, 5). Since retrograde labeling in these

areas was not present at three days, this pattern of labeling is

thought to result from trans-synaptic labeling and thus indicate

second-order projection neurons. In all samples, labeling in the

perirhinal and postrhinal cortices was sparse (Fig. 4D–F, 5D–F). In

three of the five cases with dorsal DG injection, dense labeling was

seen in the presubiculum (Fig. 4F), where labeling was not present

in samples with three-day survival (Fig. 2F). In samples with

ventral DG injection but not in samples with dorsal DG injection,

robust labeling was seen in the posterior cortical nucleus of the

amygdala (Fig. 5C). For all first-order and second-order brain

structures containing labeled cells, we saw a clear difference in the

position of the labeled cells within the cortex or nucleus depending

on whether the injection involved the dorsal or ventral DG. This

will be described in detail in the next section.

Dual-virus injection
To compare the topographical organization of mono- and

disynaptic inputs to the dorsal and ventral DG, we injected two

recombinant rabies virus vectors expressing different fluorescent

proteins into the brains of two animals. The mRFP expressing

virus (rHEP5.0-CVSG-mRFP) was injected into the dorsal DG,

and the EGFP expressing virus (rHEP5.0-CVSG-EGFPx2) was

injected into the ventral DG. After a survival time of five days, the

distribution of labeled neurons was similar to what was seen in case

of single injections in either the dorsal or ventral DG (Fig. 6).

Similar labeling patterns were also seen in animals with longer

survival time (6 days, N = 1; 7 days, N = 2; data not shown). In our

analysis of these patterns we differentiated between first- and

second-order labeled neurons by using information inferred from

the different survival times in the experiments with single-virus

injections.

First-order labeled neurons
Figure 7 illustrates in detail the labeling in the first-order

projection areas selected on the basis of the single-virus injection

cases with a survival of three days. The viral vector injected into

the dorsal DG (rHEP5.0-CVSG-mRFP) resulted in RFP-positive

neurons positioned laterally in the lateral entorhinal cortex as well

as laterally and caudally in the medial entorhinal cortex. In

contrast, the ventrally injected viral vector (rHEP5.0-CVSG-

EGFPx2) resulted in GFP-labeled neurons preferentially in medial

portions of both the lateral entorhinal cortex and the medial

entorhinal cortex (Fig. 6E–F, Fig. 7A). This pattern is similar to

that seen following injections of a single viral vector into either the

dorsal or ventral DG (Fig. 2, 4), indicating that two injections of a

viral vector into a single brain structure do not seem to change the

uptake and transport characteristics of either of the two vectors. In

the supramammillary nucleus, GFP-labeled neurons were located

more medially than RFP-labeled neurons (Fig. 7B). In the medial

septum, medially located neurons were labeled with RFP and

laterally positioned neurons were labeled with GFP. In the

diagonal band this differential pattern of labeling is apparently

reversed such that the ventrally projecting neurons are in a more

ventromedial position than those that project dorsally (Fig. 6B,

Fig. 7C).

To statistically evaluate whether these topographical labeling

patterns are consistent in the single- and dual-virus injection

samples, we performed a center of mass analysis and determined

the center of the inputs to the dorsal and ventral DG (Fig. 7D– F).

Overall, neurons innervating the dorsal DG were, compared with

neurons innervating the ventral DG, located significantly more

laterally in the entorhinal cortex (p,0.0001 by unpaired t test) and

in the supramammillary nucleus (p,0.001) and significantly more

medially in the medial septum (p,0.0001). In the diagonal band,

although the dorsal-DG innervating neurons tended to be located

more laterally than the ventral-DG innervating neurons, the

difference between the two groups was not significant (p = 0.067).

In these first-order projection areas, the GFP-labeled neurons and

RFP-labeled neurons distributed separately and the two labels

intermingled only at the border of the labeled populations.

Double-labeled neurons were sparsely observed only at this

narrow border area of overlapping labeled projection neurons

(Fig. 5G).

Second-order labeled neurons
Second-order labeling was prominent in a number of cortical

and subcortical brain areas. The distribution patterns of the two

differently labeled populations of neurons in case of all second-

order inputs showed striking conservation of the topographical

organization described for the first-order inputs. This was similar

to what was noted in case of the single-virus injections into the

DG. In the anterior part of the brain, many labeled neurons were

seen in the anterior piriform cortex, the posterior piriform cortex,

the endopiriform nucleus, the claustrum, and in the posterior

cortical nucleus of amygdala, all thought to be second-order input

areas of the DG (Fig. 6A–D, Fig. 8). In the piriform cortex, the two

populations of labeled cells showed considerable overlap but

exhibited a topographical distribution (Fig. 8). More RFP-labeled

neurons were observed in the anterior piriform cortex than in the

posterior piriform cortex. In contrast, the number of GFP-labeled

neurons increased at more caudal levels of the piriform cortex

(Fig. 8A–D). As a result, the center of mass of neurons innervating

the dorsal DG was significantly rostral to that of the neurons

innervating the ventral DG (20.2460.16 mm from Bregma for

dorsal injections; N = 7, 21.1160.12 mm from Bregma for

ventral injections; N = 6, p,0.01, Fig. 8G). In the posterior

piriform cortex, clear topographical labeling patterns were

observed along the dorsolateral-to-ventromedial axis (Fig. 8C).

Neurons innervating the dorsal DG were located dorsolateral to

the neurons innervating the ventral DG (p,0.0001, Fig. 8F). In

the endopiriform nucleus, a comparable topographical labeling

pattern was observed along the rostrocaudal axis. The majority of

RFP-labeled neurons was seen rostrally in the nucleus whereas the

number of GFP-labeled neurons increased at more caudal levels

(Fig. 8A–D). As a result, the center of mass of the dorsal DG

innervating neurons were significantly rostral to that of the ventral

DG innervating neurons in the endopiriform nucleus

(+0.1560.15 mm from Bregma for dorsal injections; N = 7,

21.0160.40 mm from Bregma for ventral injections; N = 6,

Figure 6. Distribution of retrogradely labeled neurons after dual-virus injections. Low-power fluorescence micrographs showing the
distribution of retrogradely labeled neurons after five days survival, resulting from injections of rHEP5.0-CVSG-mRFP into the dorsal DG and rHEP5.0-
CVSG-EGFPx2 into the ventral DG. A–F: Six representative coronal sections arranged from rostral to caudal. RFP-labeled cells are shown in magenta,
and GFP-labeled cells are shown in green. Abbreviations the same as in Figure 2–5. Scale bar = 1000 mm.
doi:10.1371/journal.pone.0078928.g006
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Figure 7. Distribution of retrogradely labeled neurons in the first-order projection area after dual-virus infection. A–C: Fluorescence
micrograph of labeling in the entorhinal cortex (A), the supramammillary nucleus (B), and in the medial septum and diagonal band (C). These regions
are known to have direct projection to the DG. Neurons infected by the viral vector injected to dorsal DG (RFP-labeled cells) are shown in magenta,
while neurons infected by the ventral-DG-injected vector (GFP-labeled cells) are shown in green. D–F: The center of mass of labeled neurons in the
entorhinal cortex (D), the supramammillary nucleus (E), and in the medial septum and diagonal band (F). The open circles indicate the centers of mass
for individual samples. The filled circles and the error bar indicates the mean 6 SEM across samples (N = 7 for dorsal-DG injection, and N = 6 for
ventral-DG injection). The results of the dorsal-DG injection are shown in magenta while the results of the ventral-DG injection are shown in green. G:
Fluorescence micrographs showing the labeled neurons at the border of GFP- and RFP- labeled neurons in the entorhinal cortex. Arrows indicate
double-labeled neurons. pm, principle mammillary tract. Remainder of abbreviations the same as in Figure 2 and 4. Scale bar = 500 mm in A (also
applies to B, C) and 100 mm in G.
doi:10.1371/journal.pone.0078928.g007
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Figure 8. Distribution of retrogradely labeled neurons in the piriform and amygdaloid areas after dual-virus infection. A–D: Labeled
neurons in coronal sections through the ventral portion of the hemisphere arranged from rostral to caudal (A, B, C, and D respectively show the
labeling at AP +2.05, AP 21.25, AP 22.90 and AP 24.00). Labeled neurons were seen in the anterior piriform cortex (APC), the posterior piriform
cortex (PPC), the claustrum (Cl), the endopiriform nucleus (En) and the posteromedial cortical nucleus of the amygdala (PMCo). RFP-labeled cells are
shown in magenta, and GFP-labeled cells are shown in green. E–F: The center of mass of labeled neurons in a coronal section at AP +0.40 (E), and at
AP 22.90 (F). The open circles indicate the centers of mass for individual samples. The filled circles and the error bar indicates the mean 6 SEM across
samples (N = 7 for dorsal-DG injection, and N = 6 for ventral-DG injection). The results of the dorsal-DG injection are shown in magenta while the
results of the ventral-DG injection are shown in green. G: The center of mass of labeled neurons in the piriform cortex and endopiriform cortex along
the rostrocaudal axis. The center of mass was obtained by averaging the positions of labeled neurons in four coronal sections from different position
along the rostrocaudal axis (AP +2.05, AP +0.40, AP 21.25, AP 22.90). H: Fluorescence micrographs showing the labeled neurons in the anterior
piriform cortex. Arrows indicate double-labeled neurons. lot, lateral olfactory tract. Remainder of abbreviations the same as in Figure 2, 3 and 5. Scale
bar = 500 mm in A (also applies to B–D) and 100 mm in H.
doi:10.1371/journal.pone.0078928.g008
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p,0.001, Fig. 8G). Labeling in the claustrum was also

topographically distributed such that the GFP-labeled neurons

were seen ventrally and RFP-labeled neurons were mainly seen

dorsally (Fig. 8A). This labeling pattern in the claustrum was

significant especially in the rostral sections (p,0.001 in AP +2.05,

p,0.01 in AP +0.40, p = 0.06 in AP 21.25, Fig 8E). In view of the

overlap between the populations of GFP and RFP expressing

neurons, we checked for the presence of double labeled neurons.

Throughout the rostrocaudal axis they were sparsely present in the

piriform cortex (Fig. 8H), endopiriform nucleus and the claustrum.

Many GFP-labeled neurons were also seen in the posterior cortical

nucleus of the amygdala, while RFP-labeled neurons were not

found in this region (Fig. 8D). In the remainder of the amygdala,

only very sparse labeling was seen (Fig. 8C).

At these anterior levels we further saw retrogradely labeled

neurons of both colors in the medial prefrontal cortex (Fig. 9). In

the medial prefrontal prelimbic and infralimbic cortices, more

GFP-labeled neurons were seen than RFP-labeled neurons. In the

cingulate cortex, in contrast, both types were equally present. In

these animals with two injections, labeled neurons of either color

were sparse or absent in the retrosplenial cortex, similar to what

was seen in case of the single injections. Double-labeled neurons

were not seen in the medial prefrontal cortex.

Finally, large numbers of labeled neurons were seen in the

medial raphe nucleus, the interpeduncular nucleus, the medial

habenular nucleus, and in the lateral septum. In the median raphe

nucleus, neurons in medial positions were labeled by GFP, while

more laterally positioned neurons were labeled by RFP (Fig. 10A).

In the interpeduncular nucleus, the GFP-labeled neurons were

mainly seen dorsally, while RFP-labeled ones were confined

ventrally (Fig. 10B). In the medial habenular nucleus, RFP-labeled

neurons were located medial to the GFP-labeled neurons

(Fig. 10C). In the lateral septum, again a clear topology of labeled

neurons was seen in the caudal half, where GFP-labeled neurons

were seen ventrally, while the RFP-labeled neurons accumulated

dorsally (Fig. 10D). Finally, in the tenia tecta, GFP-positive

neurons were most prominent (Fig. 10E). In the four regions that

showed marked topographically distributed labeling, significant

differences in the center of mass were observed between the dorsal

and ventral injection groups (p,0.05 in the median raphe nucleus

along the mediolateral axis, p,0.0001 in the interpeduncular

nucleus along the dorsoventral axis, p,0.0001 in the medial

habenular nucleus in mediolateral axis, p,0.01 in the lateral

septum along the dorsoventral and mediolateral axis; Fig. 10F–I).

Similar to what was seen in the first-order projection areas, only

few double-labeled neurons were seen at the border of the two

populations of GFP- and RFP-labeled neurons in these brainstem

areas. The relatively sparse presence or even absence of double-

labeled cells following injections of the two rabies vectors in the

dorsal and ventral hippocampus is taken to be caused by a

topographical organization of both first- and second-order inputs.

However, the lack of double-labeled neurons may result from

competition between the two vectors [29]. To control for this

potential bias, we looked at double labeling when injecting the two

vectors closer together in the dorsal DG. Injections of the two

vectors 1.5 mm apart in the dorsal DG resulted in clearly mixed

populations of first-order labeling for example in the lateral

entorhinal cortex and second-order labeling in the anterior

piriform cortex. Large numbers of double-labeled cells were seen

in both areas (Fig. 11).

Discussion

In this study we not only identified brain areas that provide

second-order inputs to the dentate gyrus (DG) but, more

important, found that these disynaptic inputs to dorsal and ventral

levels of the DG showed a topographical organization maintaining

that of the monosynaptic inputs to the DG [15]. We injected

recombinant rabies virus vectors into either the dorsal or ventral

pole of DG and allowed the animals to survive for either three or

five days. We have previously shown that with the then-used rabies

vectors a survival time of 3.5 to 4 days almost exclusively labeled

monosynaptic inputs to the injection site while a 6-day survival

time was long enough for labeling most if not all of the second-

order inputs [29]. In this study we used a shorter survival time

than we did in the previous study because the virus titer we used

was more than 10 times higher than that in the previous study and

the virus vectors used in this study propagated faster than the

previously used virus (rHEP5.0-CVSG-b-gal).

In both first- and second-order input areas, we mostly observed

single-labeled neurons, even if the two populations showed some

overlap. The relative sparseness of double-labeled cells is

interpreted as supporting the topographical organization of both

first- and second-order inputs. Although two viral vectors may fail

to double-infect neurons because of competition, thus resulting in

a false impression of topography [28,29], it is unlikely that our

results are biased as the result of viral competition. First, our

single-virus tracing experiments, in which no competition

occurred, showed similar topographical arrangements for both

first- and second-order labeling. Second, our control experiments

with more closely positioned injections in the dorsal DG showed

that the two viral vectors are capable of producing dual infection

of single neurons. In a previous study we reported that successful

dual infection strongly depended on the timing of the occurrence

of the two infections, which most importantly depended on the

lengths of the axonal connections and the speed of axonal

transport [29]. In case of the dorsal and ventral DG the lengths of

Figure 9. Fluorescence micrographs of retrogradely labeled
neurons in the medial prefrontal cortex. A: Rostral section
showing labeling in the prelimbic (PL), the infralimbic cortex (IL) and
in the rostral part of the cingulate cortex (Cg). B: More caudal section
showing labeling in Cg. RFP-labeled cells are shown in magenta, and
GFP-labeled cells are shown in green. Scale bar = 500 mm in A (also
applies to B).
doi:10.1371/journal.pone.0078928.g009
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Figure 10. Distribution of retrogradely labeled neurons in second-order projection areas after dual-virus infection. A–E: Fluorescence
micrograph of labeling in the median raphe nucleus (A), the interpeduncular nucleus (B), the medial habenula (C), the lateral septum (D), and the
tenia tecta (E). RFP-labeled cells are shown in magenta, and GFP-labeled cells are shown in green. F–I: The center of mass of labeled neurons in the
median raphe nucleus (F), the interpeduncular nucleus (G), the medial habenula (H), the lateral septum (I). The magenta and green open circles
indicate the centers of mass from individual samples with virus injection into the dorsal- and ventral-DG respectively. The filled circles and the error
bar indicates the mean 6 SEM across samples (N = 7 for dorsal-DG injection, and N = 6 for ventral-DG injection). ac, anterior commissure; cc, corpus
callosum; D3V, dorsal 3rd ventricle; lHb, lateral habenular nucleus; LV, lateral ventricle; ml, medial lemniscus; sm, stria medullaris thalami; tth,
trigeminothalamic tract; xscp, decussation of the superior cerebellar peduncle. Remainder of abbreviations the same as in Figure 2. Scale bar
= 500 mm in A (also applies to B–E).
doi:10.1371/journal.pone.0078928.g010
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the connectional pathways are likely to be similar and the speeds of

axonal transport of the two vectors are similar. This thus would

ensure dual infection of neurons projecting to both dentate targets.

The retrograde cell labeling that was noted in CA3, the

entorhinal cortex, the medial septum, the diagonal band, and the

supramammillary nucleus three days after injection in either the

dorsal or ventral DG probably represents direct inputs to the DG.

This conclusion is consistent with the results of tracing studies

using more conventional (i.e., chemical rather than viral)

anterograde or retrograde tracers [13–16,21,22,33–35]. A few

labeled neurons were also seen in the interpeduncular nucleus and

the median raphe nucleus three days after infection. Previous

tracing studies have shown that these areas have sparse direct

projection to the DG [36–38]. However, since considerable

numbers of labeled neurons are only seen five days after infection,

we think that most of the labeling in the interpeduncular nucleus

and the median raphe nucleus results from disynaptic labeling via

the medial septum [36,38–40]. The sparse labeling that we saw in

the claustrum after three days probably represents second-order

inputs already labeled after this shorter survival period. This

conclusion is based on the fact that the labeling is very sparse and

direct projections from this region to the DG have not been found

in any of the conventional tracing studies. The second-order

labeling in the claustrum is likely to be the result of dense

innervation of the entorhinal cortex by this subcortical structure

[41,42]. The additional labeling that was seen in the piriform

cortex and the endopiriform nucleus five days after virus injections

likely represents second-order inputs because both of these

structures have strong direct projections to the entorhinal cortex

[43,44]. The same is true for labeling seen after five days in the

cingulate, prelimbic, and infralimbic cortices because projections

from those regions to the DG have never been found in other

tracing studies, while projections to the entorhinal cortex have

been documented [45–47]. Although a weak direct projection

from the presubiculum to the DG has been indicated by

anterograde tracing [48,49], we did not see this projection labeled

three days after infection. Five-day survival, however, resulted in

clear second-order labeling in the presubiculum, probably

representing again inputs mediated by way of the entorhinal

cortex; in this case, its medial subdivision [48,50]. Unexpected is

Figure 11. Fluorescence micrographs of retrogradely labeled neurons after injection of two viruses in the dorsal DG. A–B: The
coronal atlas and the photomicrograph of the injection site. rHEP5.0-CVSG-mRFP was injected into the dorsal DG at AP 23.7 while rHEP5.0-CVSG-
EGFPx2 was injected into the dorsal DG at AP 25.2. Arrowhead shows the center of the injection site. C–D: Fluorescence micrographs showing the
labeled neurons in the entorhinal cortex (C) and in the anterior piriform cortex (D) after five days of survival. RFP-labeled cells are shown in magenta,
and GFP-labeled cells are shown in green. Arrows indicate double-labeled neurons. Scale bar = 300 mm in A (also applies to B) and100 mm in C (also
applies to D).
doi:10.1371/journal.pone.0078928.g011
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that we saw only sparse labeling in the perirhinal and postrhinal

cortices as well as the amygdaloid complex, which all have strong

projections to parts of the entorhinal cortex showing first-order

labeling [45,51]. This lack of labeling may be due to the fact that

neurons may show selectivity in their uptake of viral tracers as is

the case for DG neurons [29,52]. We find this unlikely since we

did see labeled neurons in these structures after longer survival

times (i.e. 7 days). In addition, direct injection of the same vectors

used in this study into the entorhinal cortex resulted in ample

labeling of neurons in the perirhinal and postrhinal cortices after 3

days (unpublished results). Thus a more likely explanation is that

these three inputs do not strongly innervate layer II principle cells.

This is in accordance with the preferred laminar innervation of

layer III of the entorhinal cortex by all inputs [45,51]. However,

this proposed explanation awaits further experimental evidence

since projections from the presubiculum, also known to specifically

distribute to layer III, reportedly also innervate layer II cells [53].

Other subcortical areas that according to our data send second-

order projections to the DG are the lateral septum and the medial

habenula, both structures that project to the medial septum [54–

56]. When we injected viral vectors into the ventral DG, we saw

many labeled neurons in the ventromedial and dorsal hypotha-

lamic nucleus. This is likely to be due to inputs mediated either by

way of the medial septum or the supramammillary nucleus

[57,58]. The tenia tecta, which was also labeled by the viral

vectors injected into the ventral DG, is thought to have been

indirectly labeled by way of the entorhinal cortex [44,59].

First-order topography maintained in second-order
inputs

Our most striking observation with respect to the second-order

inputs to the DG is that they all show a clear topographical

organization that seems to reflect that of the first-order projections

(Fig. 12). The first-order labeling seen in the entorhinal cortex

confirms a substantial literature indicating that the dorsoventral

axis of the DG is mapped onto a dorsolateral-to-ventromedial axis

of origin in the entorhinal cortex and holding true for both the

lateral and medial entorhinal subdivisions [20]. This axis is

reflected again in all inputs to the entorhinal cortex. In case of the

piriform cortex, the axis runs from rostral to caudal, while for the

posterior piriform cortex it maps from dorsolateral to ventrome-

dial. In the claustrum, the dorsoventral DG axis is indirectly

translated into a dorsoventral axis while for the endopiriform

nucleus the translation is into a rostrocaudal one. In case of the

posterior cortical nucleus of the amygdala our data are in line with

reports that this area projects only to the rostromedial entorhinal

cortex and not directly to the ventral DG [60]. In the medial

prefrontal cortex we did not see a striking topographical

organization. This contrasts with a recent study where such

topography was found using pseudorabies trans-synaptic tracing

[30]. In that study, cortical inputs to CA1 were described using a

trans-synaptic tracing approach similar to the one we used in this

study but the focus was on medial cortical areas such as the

prelimbic, infralimbic, cingulate, and retrosplenial cortices. In

view of the difference in injection areas, it is not surprising that

several of the inputs described in the present paper were not

reported in the CA1 study. This strongly indicates that viral

tracing allows direct and indirect synaptic inputs to cortical areas

to be studied selectively. The fact that our study did not replicate

the reported topography in the medial prefrontal cortex points to

slight differences between the organization of indirect medial

prefrontal inputs to the DG and organization of indirect medial

prefrontal inputs to CA1. This is likely to reflect a difference in the

innervation of neurons in layers II and III, which are respectively

the main sources of input to the DG and CA1. This may also

explain the overall lower number of labeled cells in the medial

cortical domains in our study, compared to the CA1 study, since

inputs from the medial cortex preferentially distribute to layer V of

Figure 12. Summary of the mono- and disynaptic inputs to the dorsal and ventral hippocampus. Topographical projection patterns to
the dorsal and ventral DG were seen in the first-order projection area and in most of the second-order projection area. Afferents of the dorsal DG are
shown in magenta, and afferents of the ventral DG are shown in green. No topographical projection patterns were seen in the cingulate cortex (Cg),
which has projection to both the dorsal and ventral DG. The prelimbic and infralimbic cortices (PL, IL), the posteromedial cortical area (PMCo), and the
tenia tecta (TT) mainly project to the ventral DG. Abbreviations the same as in Figure 2 and 3.
doi:10.1371/journal.pone.0078928.g012
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the entorhinal cortex. Layer III cells extend basal dendrites into

layer V and are therefore likely recipients of these inputs. In

contrast, layer II cells only rarely have deep extending basal

dendrites [61,62].

In the medial septum, medially located neurons project to the

dorsal DG and laterally positioned neurons project more ventrally.

In the diagonal band this projection pattern is reversed and the

neurons that project ventrally are ventromedial to those that

project dorsally. The second-order inputs mediated through the

medial septum-diagonal band complex include those originating in

the lateral septum [55,63], the medial habenula [54,56], the

median raphe nucleus [38,56], and the interpeduncular nucleus

[39,40]. In the lateral septum the dorsoventral DG axis is related

to a similarly oriented dorsoventral axis, in the medial habenula

the orientation is from medial to lateral, in the median raphe

nucleus the orientation is from lateral to medial, while in the

interpeduncular nucleus the axis has a ventrodorsal orientation.

In the supramammillary nucleus, laterally located neurons

project to the dorsal DG, while medially positioned neurons

project more ventrally. This topographical projection patterns is in

accordance with a previous study [35]. The major afferent inputs

to the supramammilllary nucleus are from the infralimbic cortex,

the dorsal peduncular cortex, the diagonal band, and the medial

and lateral preoptic nuclei [64]. Thus, labeled neurons seen in the

infralimbic cortex and the diagonal band five days after infection

may include neurons infected disynaptically by way of the

supramammillary nucleus.

Functional implications
The connectional differences along the long axis of the dentate

gyrus are complemented by connectional gradients in the

connectivity of the other hippocampal subfields as well as

differences in intrinsic connections [20]. Differences in the

percentages of principal neurons and interneurons [65,66] and

distributions of corticosteroid receptors along the long hippocam-

pal axis have been reported [67], as well as differences in gene

expression patterns [68–70]. The firing fields of place cells in the

hippocampus increase their dimensions from dorsal to ventral

[71], and the spacing of firing peaks of single grid cells in the

medial entorhinal cortex increases along a dorsoventral axis

[72,73]. There is ample experimental evidence in support of

functional differences along the long axis of the hippocampus

[74,75]. This is most strikingly shown by lesion studies in the rat,

where functional deficits caused by dorsal lesions differ from those

resulting from ventral lesions: dorsal lesions resulting in spatial

deficits and ventral lesions instead resulting in changes in fear-

related responses [10,76,77]. A comparable behavioral difference

has been reported by investigators comparing the results of lesions

in the caudolateral entorhinal cortex with those of lesions in the

rostromedial domains of the entorhinal cortex [78]. These

functional differences have often been thought to reflect the

differences in intrinsic and extrinsic wiring summarized above.

The present results clearly show that these functional differences

go beyond these primary features and include multisynaptic input

pathways.

For some of those multisynaptic routes, differences have been

reported along the axes observed in the present study. These

functional differences seem to focus around two main themes, and

for both the topographies observed in first- and second-order input

regions are in accordance with each other. First, the dorsal and

ventral hippocampus differ with respect to the firing characteristics

of neural populations in that theta power decreases from dorsal to

ventral [79]. Since the medial septum, diagonal band of Broca,

and the supramammillary nucleus play important roles in the

generation of theta rhythm, the observed topological relationships

[54,80] may be related to the differences in theta power. In the

medial septum, noncholinergic neurons are mainly located in the

medial half, whereas cholinergic neurons are mainly in the lateral

half [81]. Thus the dorsal hippocampus receives inputs from the

noncholinergic medial septal neurons and cholinergic diagonal

band neurons, whereas the ventral hippocampus receives inputs

from the cholinergic medial septal neurons [82,83]. Likewise, the

projection from the lateral region of the supramammillary nucleus

to dorsal DG originates from both GABAergic and glutamatergic

neurons, whereas the projection from the medial part of the

supramammillary nucleus to ventral DG displays a glutamatergic

phenotype [84]. Serotonergic projections from the median raphe

nucleus have been implicated in synchronizing hippocampal and

septal activity [38], but nothing is known about a functional

difference between medial and lateral raphe parts.

Second, dorsal and ventral parts of the hippocampus differ with

respect to the overall quality of the information they process. The

dorsal hippocampus apparently interacts with brain structures that

are part of the realm that processes exteroceptive information. The

ventral hippocampus, in contrast, through its first order connected

structures, is strongly implicated in motivational and reward

systems of the brain. The present data indicate that this focus is

also reflected in the second-order inputs. The medial part of

posterior piriform cortex receives strong input from the amygda-

loid complex [85], similar to the preferred connectivity of the

ventral hippocampus, thus strongly suggesting that the stream

from the medial part of the posterior piriform cortex to the ventral

DG carries olfactory information related to emotional events. The

preferred projection of the posterior cortical nucleus of the

amygdala to the ventral hippocampus fits into this pattern as well.

Along similar lines, the preferred localization of tyrosine hydrox-

ylase-positive neurons in the medial part of the supramammillary

nucleus suggests that the ventral hippocampus probably receives

stronger dopaminergic inputs than the dorsal hippocampus [86],

reflecting a preferred relation of the ventral hippocampus with the

reward system.

The topographically distributed labeling in the lateral septum

mirrors the dorsoventral distributions of hippocampal projections

to the lateral septum. This organization has been suggested to

reflect a functional relationship with functionally different

hypothalamic domains, such that the ventral hippocampus is

connected with hypothalamic nuclei involved in the modulation of

endocrine and autonomic responses, whereas the dorsal hippo-

campus is connected with hypothalamic domains relevant for

exploratory behavior and behavioral arousal [55]. To our

knowledge, the functional significance of the other second-order

input areas, such as the medial habenula, interpeduncular nucleus,

endopiriform nucleus, and the claustrum, have hardly been

studied.

In conclusion, we show that the topographical organization of

the two different connectional chains into the dorsal and ventral

DG is consistent for both first-order and second-order inputs and

fits with reported and hypothesized functional differences along

the hippocampal dorsoventral axis. Recent findings that the

dorsoventral differentiation in the hippocampus is established early

during development [87] suggests that the topographically

organized connectional chains reported here are established

during early development of the brain. Although a mechanistic

understanding is still lacking, these different connectional chains

that go beyond direct input relations may form an important

factor contributing to adult functional differences along the

hippocampal dorsoventral axes.
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