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Abstract

Divergently paired genes (DPGs), also known as bidirectional (head-to-head positioned) genes, are conserved across species
and lineages, and thus deemed to be exceptional in genomic organization and functional regulation. Despite previous
investigations on the features of their conservation and gene organization, the functional relationship among DPGs in a
given species and lineage has not been thoroughly clarified. Here we report a network-based comprehensive analysis on
human DPGs and our results indicate that the two members of the DPGs tend to participate in different biological processes
while enforcing related functions as modules. Comparing to randomly paired genes as a control, the DPG pairs have a
tendency to be clustered in similar ‘‘cellular components’’ and involved in similar ‘‘molecular functions’’. The functional
network bridged by DPGs consists of three major modules. The largest module includes many house-keeping genes
involved in core cellular activities. This module also shows low variation in expression in both CNS (central nervous system)
and non-CNS tissues. Based on analyses of disease transcriptome data, we further suggest that this particular module may
play crucial roles in HIV infection and its disease mechanism.
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Introduction

Divergently paired genes (DPGs) are also known as bi-

directionally expressed and head-to-head oriented genes, which

can be further defined based on their TSS (transcription start site)

distances, such as within or beyond 1 kb between the gene pairs

[1]. DPGs accounted for ,10% of all human genes [1,2] and may

have distinct functional relevance when analyzed in a context of

interaction networks. As a highly conserved gene organization, the

two members of DPGs are most likely to share the same promoters

and play unique roles that differentiate them from other forms of

gene organization, such as head-to-tail, tail-to-tail, ncRNA-proteic

pair and random pairs [3].

Several investigations have been conducted on DPGs in recent

years, especially on those of human [1,2,4,5] and Drosophila [6,7];

most of them are focused on the sequence signatures, structural

features and functional elements of DPG promoter regions. For

instance, enrichment of certain motifs [8], predominance of CpG-

islands [9] and exclusion of nucleosomes [10]. Many of these DPG

studies have been focused on conserved sequence patterns of the

paired genes, including microsynteny across metazoan DPGs [11]

and TSS distance across diverse species [12]. We have also

pointed out that the conservation of DPGs may be very different

for arthropods and vertebrates [7]. However, the reasons and

mechanisms why DPGs are conserved and how they are involved

in functional networks remain to be elucidated in details although

the functional relevance has been pointed out repeatedly based on

co-expression and basic gene functional annotation [13]. For

instance, it has been proposed that DPGs are paired for similar

functions (such as DNA repair) and often highly correlated in

expression [14,15]. Therefore, investigation on functional connec-

tions of DPGs both within the paired genes and among the pairs

becomes necessary.

Here we report an examination of human DPGs and the

differences between DPGs and random gene pairs in their

functional connections and regulatory roles in normal tissues

and disease processes. Functional similarity of DPGs is tested

based on Gene Ontology (GO, http://www.geneontology.org/)

annotations and regulatory roles are examined based on functional

interactions or networking linked by the DPG pairs. We also

compare DPG gene expression patterns in 65 normal human

tissues and several common disease samples. We use HIV as an

example to illustrate the role of DPGs played in immune defense

mechanisms.

Results and Discussion

An overview of DPGs
There are 1,063 pairs of human DPGs recorded in the

LCGbase [16], slightly less than what has been reported in

previous studies, ranging from 1,262 to 1,446 pairs [1,7,17].

Considering the information on gene ID transformation from both

NCBI and HGNC databases, we focused our analysis on 864 pairs

of DPGs (1,728 genes), among which 682 have positive TSS
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distance (0 kb , TSS distance ,1 kb) and the remaining 182

pairs have negative TSS distance (21 kb , TSS distance ,0 kb;

Table S1). When considering both gene density and chromosome

length, we found that DPGs were enriched on chromosomes 1 and

2. We also found that DPGs was absent on chromosome Y, which

might be due to the fact that the small number of genes still

present on it. Chromosome Y is known to be fast evolving, and it

poses great challenge to preserve the genomic structure of DPGs

on this chromosome [18,19]. In particular, DPGs are under

negative selection to maintain their relative position relations to be

prevented from the neutral mutation of separating them in the

process of relatively large segmental sequence variation events of

the chromosome evolution.

Next, we conducted GO term-based functional enrichment

analysis on 1,728 DPGs using hypergeometric test. On the one

hand, consistent with previous studies [4,6,7,20], the overrepre-

sented functions include RNA process, DNA repair and cell cycle,

which are, by and large, primary cellular functions that are shared

by all eukaryotes, even unicellular ones. On the other hand, the

underrepresented functions include signal transduction, immune

response, and development process, which are secondary cellular

functions shared by animals. More specifically, DPGs on

chromosome 1 tend to function in DNA packaging and ncRNA

metabolic process, and similarly nucleosome assembly on chro-

mosome 6, translation on chromosome 9, cell cycle on chromo-

some 11, protein folding on chromosome 14, mRNA processing

on chromosome 19, and RNA splicing on chromosome 22.

Functional divergence of DPG pairs
As physically neighbouring pairs, the functional similarity within

a DPG is of great interest. We calculated the GO similarity score

of gene pairs of DPGs (details in Methods) and compared the

distribution of these scores to random pairing using Kolmogorov-

Simirnov test. Our main findings are four folds. First, DPGs are

not significantly different from random gene pairs in biological

process (BP; p value = 0.06234) but significantly different in cell

component (CC; p value = 7.44E-15) and molecular function (MF;

p value = 1.73E-11). In details, we observed the left shift of the

distribution line of BP and the right shift of those of CC and MF,

in comparison to the background (BG; Figure 1). Second, gene

pairs with paralogs in DPGs somewhat influence the result of this

similarity analysis. We can see a peak close to score 1.0 on the map

of BP but the DPG pairs attributed to this peak are largely 12 pairs

of histone genes. If we exclude these histone pairs and then

compare to the background, the p value becomes 0.2559. We also

found that these 12 gene pairs form nearly independent modules

in DPG functional networking. Third, DPGs have higher

tendency to be paired for similar cellular components. In addition

to the smaller p value and the rightward shift of the distribution,

we also found that the right peak is much higher than the left one

on the map of CC, contrary to the background. Fourth, there is no

significant correlation between TSS distance of DPGs and

functional similarity, regardless of BP, CC, or MF.

Our analysis indicates that DPG pairs are not formed randomly

as the two genes within a DPG pair tend to be involved in similar

‘‘cellular component’’ and ‘‘molecular function’’ but become

divergent in ‘‘biological process’’. We therefore propose that the

genomic arrangement of DPGs facilitate the regulation of two

biological functions that might be related. For example, none of

the 134 DPGs involved in RNA process fells in the same gene pair,

and the functions of the paired genes are mainly related to protein

localization, phosphorylation and transcription, and preferably

associated with mitochondrion, ribosome, and nucleolus. Only two

of the 73 DPGs involved in DNA repair formed a pair (SMC6 and

GEN1) and the functions of the paired genes are enriched in

energy metabolism, RNA processing, and protein localization, and

again preferably associated with mitochondrion, ribosome, and

nucleolus. In addition, this observation is further supported when

we examine individual DPG pairs and their functional networking.

So far, we had 419 out of 1,728 human DPGs annotated in

KEGG (Kyoto Encyclopedia of Genes and Genomes), among

which 120 DPGs formed 60 pairs. If excluding 12 pairs of histone

genes and 6 pairs of gene families, we only had 2 DPGs or 4 genes

involved in the same KEGG pathway; PPAT and PAICS are

enzymes that regulate the step 1 and step 6/7 of de novo purine

nucleotide biosynthetic pathway, respectively; PRKDC and

MCM4 participate in cell cycle, where PRKDC regulates DNA

double-strand break repair and recombination, and MCM4 acts as

a DNA unwinding enzyme and controls the initiation of eukaryotic

genome replication. The rest of the DPG pairs annotated in

KEGG are all involved in different pathways. Here we used

‘‘spliceosome’’ and ‘‘cell cycle’’ as examples to show the

relationships between the gene pair of a DPG. Three DPGs were

involved in the two pathways, including ORC1-PRPF38A,

CDC26-PRPF4, and THOC4-APC11 (Figure 2). This suggests

that splicing and cell cycle are two tightly linked processes through

the regulation of three DPG pairs or six genes. More specifically,

the co-regulation of ORC1 and PRPF38A functions in both

initiation of DNA replication during cell cycle and U4/U5/U6

small nuclear RNAs binding that is directly involved in pre-mRNA

splicing. Both CDC26 and APC11 are highly conserved compo-

nents of the APC complex that functions as a cell cycle-regulated

ubiquitin-protein ligase. Although only three DPG pairs are

involved in the two pathways, their functions cover DNA

replication, proteolysis, RNA splicing, and cell cycle.

One previous study by Li et al indicated that DPGs prefer

similar biological process, but using only 267 annotated DPGs

(21.15%) and Resnik’s method [17,21], and the authors also did

not consider ‘‘shallow annotation problem’’ indicated by Sevilla et

al [22] and the bias due to paralogous genes. Having examined

864 DPG pairs, we propose that DPGs do not have the tendency

to share similar functions as previously claimed. Rather, DPGs

have the tendency to reside on the same cellular component (not

necessarily to have the same function) and regulate related (not the

same) pathways.

A functional network bridged by DPGs
To clearly demonstrate relationships among cellular functions

connected by DPGs, we first constructed two network maps, an

overlap map and an interaction map (Figure S1 and S2). The

overlap map is based on the overlap of DPGs between a pair of

functional gene sets, whereas the interaction map is based on the

bridging of a pair of functional gene sets by a DPG gene pair.

When the two maps are compared, only the DNA packaging and

the cancer signaling modules show consistency. The DNA

packaging module is mainly attributed to the histone gene pairs

as described earlier, whereas the functional sets in the cancer

signaling module are mostly small gene sets and connected by only

one DPG pair. Other than the two modules, we observed that

many cellular functions are coupled by DPG pairs despite the lack

of connection on the overlap map.

We organized the interaction map in a clear layout (Figure 3)

by setting the interaction rate .0.07 to maximize the coverage of

functional sets (90 functional sets, 1,262 DPGs, relative coverage

92.86%) and to demonstrate the functional connections. Since

DPG gene pairs share the same promoter sequences, the adjacent

nodes on the interaction map are most likely to have better

correlated expression. Based on the pathway absolute score

Functional Networking of Human DPGs
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calculated from dataset GSE3526 (details in Methods), the top 10

correlated DPGs are highlighted on the interaction map (Figure
S3), all of which reside in the densely connected regions.

To better understand the functional roles of DPGs, we used

Cytoscape plugin ‘‘ClusterOne’’ and found 3 modules in the

network [23]: (1) related to histone and DNA packaging (p value

0.005); (2) related to regulation of cell cycle, gene expression,

energy, and some other functions (p value 4.908E-6); (3) related to

cancer signaling (p value 9.923E-4; Table S2). Module 1,

including 7 functional gene sets and 162 DPGs, is formed by 17

DPG pairs, among which 12 pairs are histone genes. Module 2 is

connected by 303 DPG pairs and includes 15 functional gene sets

and 1,068 DPGs. Module 3 is joined by only one DPG pair, and

therefore is not included in further statistical analysis.

We evaluated the average correlation value of DPGs within the

two main modules. Similar to what’s shown in Figure 3, the

interaction rate .0.07 was first selected to construct the interaction

map, and the DPGs that link the sets were chosen to calculate the

average correlation value of gene expression, which was shown as

‘‘inter0.07’’ (Figure 4). The ‘‘other’’ set corresponded to the

average value of all DPGs that were excluded by the cutoff. Three

other sets, ‘‘inter0.08’’, ‘‘inter0.1’’, and ‘‘inter0.2’’, corresponded to

interaction rate .0.08, 0.1, and 0.2, respectively. ‘‘Module 1’’ and

‘‘module 2’’ related to the average correlation value of DPGs

constituting module 1 and module 2, respectively. From the figure,

we can find that the average correlation value of the connecting

DPGs increased with the interaction rate. When we compared these

modules, DPGs connecting the sets of module 1 have much higher

correlation value than those of module 2. This indicates that the

functions of module 2 are much more diverse than those of module

1.

The distribution of HKGs (housekeeping genes) on the
functional network

Since DPGs and HKGs are both involved in the basic cellular

functions, a thorough examination of their relationship becomes

necessary at this point. We compared DPGs with a HKG list

curated previously based on microarray-based gene expression

profiling data [24,25,26], supplemented with a HKG list

generated by ourselves according to normal tissue data

Figure 1. Comparison of GO similarity between DPGs and random gene pairs. Frequence distributions of GO similarity score on biological
process (BP, A), cell component (CC, B), and molecular function (MF, C). The blue and red lines depict frequency distributions of DPGs and the
randomly sampled gene pairs, respectively.
doi:10.1371/journal.pone.0078896.g001
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(GSE3526 and GSE7307) [27]. The overlap with the DPG list is

198, 197, 307, and 214 genes (10.7%, 11.4%, 10.8%, and 11.8%

in the corresponding HKG list, respectively; the four datasets

include what have been reported by She et al, Tu et al, Zhu et al,

and the current study). The intersection and the union are 5 and

600 genes, respectively, and the result indicates that only 5 of the

1,728 DPGs are commonly accepted as HKGs and 600 DPGs are

potential HKGs. Interestingly, among the 600 genes, 244 are

organized as 122 DPG pairs. This is a rather high tendency for

house-keeping DPGs to cluster together although the fraction of

HKGs in DPGs are close to random selection (1/3 of the human

total genes are empirically defined as potentially house-keeping).

A more detailed functional analysis is shown in Figure 5.

The pie chart is generated by using the Cytoscape plugin

‘‘MultiColoredNodesPlugin’’ [28]. The large portion of overlap

between DPGs and HKGs include energy metabolism and RNA

processing; module 2 is the major cluster formed by both DPGs

and HKGs. Overall, although DPGs and HKGs are both involved

in the core cellular functions and conserved during evolution, the

fraction of house-keeping DPGs are restricted and clustered in a

subset of functional categories among all DPG functions.

Tissue-specific expression of DPGs
To further characterize tissue-specific functions of DPGs, we

examined the expression pattern of DPGs among different tissues.

The major microarray dataset used in this study is GSE3526,

which contains 20 CNS tissues and 45 non-CNS tissues. This

dataset was chosen because of the wide coverage of different tissue

Figure 2. The distribution of three DPGs in two KEGG pathways: cell cycle and splicesome. Three DPGs are 4998 (ORC1)-84950 (PRPF38A),
246184 (CDC26)-9128(PRPF4), and 10189 (ALYREF)-51529 (APC11). These six genes act as bridges in the regulation between DNA replication,
proteolysis, RNA splicing, and cell cycle; the figure is drawn based on KEGG pathway mapping tool.
doi:10.1371/journal.pone.0078896.g002

Figure 3. The interaction map of functional sets that linked by DPGs. We name the functional sets that linked by DPGs as interacted sets,
and the linkage is based on the situation that one gene of a DPG pair is annotated for one function and the other for another functions. The
interaction rate is related to the linked DPGs number and the set size. Interaction rate .7% is chosen to cover more functional sets. The edge color
depends on the DPGs number that linked two adjacent sets, and the edge width depends on the interaction rate between two sets. Module 1 is
related to histone and DNA packaging. Module 2 is related to regulation of cell cycle, gene expression, energy and some other functions. Module 3 is
related to cancer signaling.
doi:10.1371/journal.pone.0078896.g003
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types within one dataset for a fair comparison. Within the 20 CNS

tissues, we used cerebellum as control and other 19 CNS tissues as

cases. For the 45 non-CNS tissues, we used skeletal muscle as

control and other 44 tissues as cases. We also compared the CNS

tissues with skeletal muscle or all of the non-CNS tissues, and

compared cerebellum with skeletal muscle to reveal the difference.

The selection of controls was based on the hierarchical clustering

result by Roth et al [27]. Two types of between-tissue differences

were examined: an absolute pathway score to survey the different

expression of DPGs between tissues and a relative pathway score

to evaluate the different expression changes between DPGs and

other genes in a pair of tissues (detailed in Methods).

Among the CNS tissues, the variance of gene expression is

mostly small in modules 1 and 2, and larger variance is seen mostly

in the functional sets outside of the two main modules (Figure
S4). The most significant difference is found in corpus callosum,

medulla, and spinal cord, all of which are at the connection zone

between CNS and peripheral tissues (data not shown). For non-

CNS tissues, much higher between-tissue difference is found

(Figure S5). However, module 1 remains as the least variable,

indicating the fundamental role of chromosome maintenance in all

the tissues. The most variable functional sets among non-CNS

tissues include energy metabolism and cancer signaling gene sets,

neither is significantly variable among CNS tissues, suggesting the

critical role of energy homeostasis and tight control of cell

proliferation in CNS tissues [29]. Additionally, the cross compar-

ison between CNS and non-CNS tissues further reveals network-

wide differences between the two groups of tissues (data not

shown).

Dynamic perturbation of DPGs in the course of HIV
infection

In order to further unveil the roles of DPGs in disease

mechanism, we examined the differential expression pattern of

DPGs in several diseases including pathogen infections (HIV,

malaria, lymphoma, tuberculosis, ASLE, and Streptococcus

infection) and cancers (ATL, hepatocellular carcinoma, kidney

cancer, lung cancer, and sporadic colorectal cancer). We found

that DPGs in cancers display much higher differential expression

than that in infection diseases (data not shown). More importantly,

we found an interesting dysregulation pattern of DPGs in HIV.

The main findings based on the absolute pathway score are as

follows. First, significant differential expression is found in both

CD4+ and CD8+ T cells when comparing the acute and chronic

stages with the negative controls. The observed change of gene

expression may reflect the action of the host defense mechanism.

Second, there are no significant differences between early infection

and chronic stage in CD4+ T cell, which are attributable to the

early established HIV-1 infection [30]. Third, there are no

significant differences between long-term nonprogressor patient

and uninfected controls. Fourth, CD8+ T cells have much more

differentially expressed genes (DEGs) and higher level of

differential expression than CD4+ T cells, which is interpreted

as a possible artifact of microarray analysis methods, or higher

heterogeneity in CD4+ T cells.

Distinct contribution of DPGs can be revealed based on the

relative pathway score and the changes of perturbation during

infection process can be observed (Figure S6 and S7). Although

there is no significant difference on DEGs between the acute and

chronic stages, DPGs seem to play more active role in many

functional categories. First, DPGs display no significant difference

from non-DPGs in module 2 for both CD4+ and CD8+ T cells,

indicating coordinated perturbations of all the genes (both DPGs

and non-DPGs) in module 2. Second, DPGs display higher

perturbation relative to non-DPGs at the acute stage in CD8+ T

cells, while they display higher perturbation at the chronic stage in

CD4+ T cells. This different perturbation pattern of DPGs

between CD4+ and CD8+ T cell is likely due to their different

roles in the immune response. Almeida et al suggested that CD8+
T cells function as the superior control of DNA replication of

HIV-1 virus in CD4+ T cells [31].

For long-term non-progressors, we found that DPGs show higher

perturbation than non-DPGs. Similar situation is found in the

comparison of HIV-1 elite controllers and negative controls from

the dataset GSE23879. In contrast to long-term non-progressors,

Figure 4. The average correlation value of DPGs. The average correlation value of DPGs is calculated between the pairs that linked two
functional sets and without the linkage. The absolute correlation value is used, and the average correlation value is calculated based on the quartiles.
Similar to Figure 3, the interaction rate .0.07 is first selected to form the interaction map, and then the DPGs which linked the sets are chosen to
calculate the average correlation value, which is shown in this figure as ‘‘inter0.07’’. ‘‘Other’’ indicates the value of other DPGs. ‘‘inter0.08’’, ‘‘inter0.1’’,
and ‘‘inter0.2’’ shows the corresponding interaction rate .0.08, .0.1, and .0.2. ‘‘Module 1’’ and ‘‘Module 2’’ display the correlation value of DPGs
that form module 1 and module 2. Correlation value is calculated based on GSE3526 and GSE2109.
doi:10.1371/journal.pone.0078896.g004
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elite controllers maintain the level of HIV-1 replication that is

undetectable by standard commercial assays and do not have acute

and chronic stages [32,33]. For both elite controllers and long-term

non-progressors, DPGs with the functions of ‘‘chromosome’’, ‘‘cell

death’’ and ‘‘gene expression’’ present higher perturbation than

non-DPGs. In addition, high relative scores in ‘‘RNA processing’’,

‘‘energy metabolism’’, ‘‘cell cycle’’, especially ‘‘nuclear lumen’’ and

‘‘intrinsic to membrane’’ are observed in elite controllers. It is

evident that every functional set in module 2 displays difference

while very few functional sets in modules 3 and 4 show any

differences (Figure 6). This suggests that perturbation of DPGs in

module 2 may be linked to the HIV resistance mechanism.

Conclusion

In this work, we have conducted comprehensive analysis on the

functional connection of DPGs that are special form of gene

organization and cover a broad range of functions including core

cellular and environmental response related functions. An interest-

ing finding is that DPG pairs tend to be partitioned into different

pathways and thus enable simultaneous control or connecting of

two or more pathways by a single promoter. Most CNS tissues have

similar DPG expression patterns, while the patterns are more

diverse for non-CNS tissues. Based on detailed evaluations, we

suggest that DPGs may contribute to HIV resistance mechanisms,

and based on their overall conservation across species and lineages

and involvement in diverse functional networks, we propose that

DPGs may be a class of genes evolved to create coordination for

both conserved core house-keeping and tissue-specific functions.

Methods

DPG information
The human DPG information was obtained from LCGbase

[16]. We also used gene annotations from both NCBI (ftp://ftp.

ncbi.nlm.nih.gov/) and HGNC databases (http://www.genenames.

org)[34] and gene ID conversion tool from DAVID (http://david.

abcc.ncifcrf.gov/conversion.jsp). The dataset contains 864 DPGs.

GO similarity
The evaluate of GO similarity was based on the R package

GOSemSim, which implements four information content (IC)- and

Figure 5. Cross comparison of House-keeping Genes (HKGs) functional categories with the DPG network. This figure shows the
distribution of HKGs on the network connected by DPG pairs. The HKG lists are collected from three different studies.
doi:10.1371/journal.pone.0078896.g005
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a graph-based methods, and made the comparison among the

methods easily [35]. The Schlicker’s methods were finally used for

calculating GO similarity score, as it corrected the ‘‘shallow

annotation problem’’ [36,37]. To acquire comprehensive relation-

ships among DPGs, we considered the IEA evidence code in GO

terms [37] and used the method of ‘‘rcmax.avg’’ in GOSemSim to

combine semantic similarity scores of multiple GO terms. We also

randomly sampled 100,000 gene pairs as background from genes

with consistent Ensembl ID and record in LCGbase.

Network construction
We clustered 1,728 (864 paris) human DPGs into functional

categories based on the Biochart analysis by DAVID [38], with

annotations from disease (genetic_association_db_disease [39]),

pathway (Reactome [40], biocarta http://www.biocarta.com/,

and KEGG or Kyoto Encyclopedia of Genes and Genomes

http://www.genome.jp/kegg/ [41]), and Gene Ontology (BP,

CC) [42]. We used category size .5 and overlap ,80% as criteria

to filter the chart results and obtained 114 representative

categories which contained 1,299 human DPGs (total coverage

75.23%; since only 1,359 DPGs were annotated in these datasets,

the relative coverage was 95.58%). Therefore, these nodes

basically covered all the functions of DPGs. Of all the genes in

these categories, DPGs often constituted 10,20% of each

category (average 22.3% for KEGG, 20.5% for Reactome,

23.54% for Biocarta, 13.78% for Disease, 11.96% for GO BP,

and 10.79% for GO CC). Three representative categories were

non-homologous end-joining in KEGG (46.15%, 6 of 13 genes),

telomere maintenance in Reactome (37.5%, 21 of 56 genes), and

RNA polymerase in KEGG (35.7%, 10 of 28 genes) (more details

in Table S2).

In order to reproducibly build functional network connected by

DPGs, we first constructed two network maps: an overlap map

and an interaction map. Since most genes were annotated by more

than one term, overlaps were common among the functional gene

sets and were displayed in the overlap map. Similarly, DPG pairs

tended to be separated into two related pathways, so they can be

organized by the interaction map. When the two types of maps led

to different network topologies, only the interaction map was kept.

The interaction rate .0.07 was chosen as the cutoff to retain as

many functional sets as possible (90 functional sets, 1,262 DPGs,

relative coverage of 92.86%). The modules on the network were

Figure 6. The perturbation pattern of DPGs in HIV elite controllers based on the dataset GSE23879. The relative pathway scores are
used and the different colors represent different perturbation levels.
doi:10.1371/journal.pone.0078896.g006
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automatically generated by the Cytoscape plugin ‘‘Cluster-

ONE’’[23] and the parameters of ‘‘Multi-pass’’ and ‘‘Simpson

coefficient’’ were used for our analyses.

Microarray data collection
Datasets for gene expression profiling were downloaded from

GEO database (http://www.ncbi.nlm.nih.gov/gds). We retrieved

datasets for normal tissue (GSE3526) [27], aging (GSE16487) [43],

and various diseases, which included HIV: GSE6740, GSE9927,

GSE18233, GSE23879; malaria: GSE5418; tuberculosis:

GSE19491; ATL (adult T-cell leukemia/lymphoma): GSE14317;

ASLE (human active and latent tuberculosis): GSE19491;

Streptococcus infection: GSE19491; multiple cancer: GSE2109;

breast cancer: GSE27562; hepatocellular carcinoma: GSE14520;

kidney cancer: GSE15641; lung cancer: GSE18842; and sporadic

colorectal cancer: GSE23878) [17,30,33,44,45,46,47,48,49,50,51,52].

Absolute and relative pathway scores
We used two measures to reflect the perturbation of the 90

functional categories under different conditions: an absolute

pathway score and a relative pathway score. The absolute score

was focused on differential expression of DPGs in each functional

set. We calculated p value of differential expression for every gene

between the case and control groups using an R package Limma

[53]. The control for CNS tissues was cerebellum and for non-

CNS it was skeletal muscle, the selection of which was based on

the hierarchical clustering result by Roth RB et al. [27]. We

converted this p value to a score.

Sg~{ log (Pg)

The pathway score was the average of quartiles (Q1, Q2 and

Q3) of DPG genes in a pathway.

Sp~(Q1zQ2zQ3)=3

We defined the categories with the score less than 1.301 as no

perturbation, corresponding to the –log(p value = 0.05), while

scores at 1.301–2, 2–3, 3–4, 4–6, and 6– were assigned to level 1 to

5 differential expressions, corresponding to the p value of 0.05–

0.01, 0.01–1E-3, 1E-3–1E-4, 1E-4–1E-6, and 1E-6–, respectively.

The relative score was focused on the differential perturbation

patterns between DPGs and all genes, which reflected the

difference between DPGs and non-DPGs. The details were similar

to previous study [54], and ten thousand random permutations

were performed.

Sg~{ log (Pg)

Sp~
X

Sg

The significant of Sp depended on the frequency of comparing

with randomly sampled genes. Then we calculated a score for

every category (score = frequency/permutation), which was

further converted to level 0 to 5 differential expressions (score

,0.5, 0.5–0.6, 0.6–0.7, 0.7–0.8, 0.8–0.9, and 0.9–1).

Supporting Information

Figure S1 The overlap pattern of 114 functional DPG sets. Only

overlap rate .30% is included to leave the layout cleaner. The

edge color depends on the number of overlaps between sets and

the edge width on the overlap rate between sets. The overlap and

interaction patterns are both considered when laying out these 114

sets. The linkages with both higher overlap and interaction rates

are circled in red.

(TIF)

Figure S2 The interaction pattern of 114 functional DPG sets.

Only interaction rate .7% is included to make the layout cleaner.

The edge color depends on the number of interacting gene pairs

between the sets and the edge width on the interaction rate

between the sets. The overlap and interaction pattern are both

considered when laying out the 114 sets. The linkages with both

higher overlap and interaction rates are circled in red.

(TIF)

Figure S3 The distribution of top 10 correlated functional sets.

Different node colors are used to distinguish the correlation, and

the nodes with same color indicate higher correlation.

(TIF)

Figure S4 Variance of DPG expression among CNS tissues.

Different colors represent different range of variance (green for

0.4–0.5, yellow for 0.5–0.7, red for .0.7).

(TIF)

Figure S5 Variance of DPG expression among non-CNS tissues.

Different colors represent different range of variance (green for

0.4–0.5, yellow for 0.5–0.7, red for .0.7).

(TIF)

Figure S6 The change of perturbation pattern of functional set

during HIV process in CD4 T cell. The relative pathway score

and perturbation level are used. The different colors represent the

change direction of the set; the color deepness is related to the

intensity of the change. The infection process includes acute stage,

chronic stage and long-term nonprogressor stage.

(TIF)

Figure S7 The change of perturbation pattern during the HIV

infection process in CD8+ T cell. The relative pathway score is

used. Different colors represent different patterns; the color

deepness is related to the intensity of the change. The infection

processes include acute, chronic, and long-term nonprogressor

stages.

(TIF)

Table S1 Information on Human DPGs.

(XLS)

Table S2 Detailed information on the functional categories of

gene networks.

(XLS)
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