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Abstract

Computational inference of novel therapeutic values for existing drugs, i.e., drug repositioning, offers the great prospect for
faster and low-risk drug development. Previous researches have indicated that chemical structures, target proteins, and
side-effects could provide rich information in drug similarity assessment and further disease similarity. However, each single
data source is important in its own way and data integration holds the great promise to reposition drug more accurately.
Here, we propose a new method for drug repositioning, PreDR (Predict Drug Repositioning), to integrate molecular
structure, molecular activity, and phenotype data. Specifically, we characterize drug by profiling in chemical structure, target
protein, and side-effects space, and define a kernel function to correlate drugs with diseases. Then we train a support vector
machine (SVM) to computationally predict novel drug-disease interactions. PreDR is validated on a well-established drug-
disease network with 1,933 interactions among 593 drugs and 313 diseases. By cross-validation, we find that chemical
structure, drug target, and side-effects information are all predictive for drug-disease relationships. More experimentally
observed drug-disease interactions can be revealed by integrating these three data sources. Comparison with existing
methods demonstrates that PreDR is competitive both in accuracy and coverage. Follow-up database search and pathway
analysis indicate that our new predictions are worthy of further experimental validation. Particularly several novel
predictions are supported by clinical trials databases and this shows the significant prospects of PreDR in future drug
treatment. In conclusion, our new method, PreDR, can serve as a useful tool in drug discovery to efficiently identify novel
drug-disease interactions. In addition, our heterogeneous data integration framework can be applied to other problems.
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Introduction

Drug repositioning is known as the ‘old drug, new disease’

paradigm. It aims to find new diseases to cure for existing drugs

and thus offers the possibility for faster, safer, and cheaper drug

development. Given the huge search space and the rapid

accumulation of drug related data at molecular level, computa-

tional approaches are highly desired to narrow down the gap

between medical indications and elucidation of drug effects [1]. In

addition to their low cost and time-efficiency predictions,

computational methods have the advantage in understanding the

mechanisms of drug actions.

Drug takes effect via its protein targets in cell to cure disease.

Thus, many previous studies in computational drug repositioning

focused on the drugs with known downstream target proteins in

disease-specific molecular networks [2–4]. However, low-through-

put data limits the applications in small scale. Recent accumulated

high-throughput data for both drugs and diseases provide

possibilities to uncover novel statistical associations between drugs

and diseases in a large-scale manner. Many methods have been

developed in this direction, including: (i) matching drug indications

by their disease-specific response profiles based on the Connec-

tivity Map (CMap) dataset [5] and (ii) predicting novel associations

among drugs and diseases by the ‘Guilt and Association’ (GBA)

approaches [6]. Every method has its pros and cons. CMap

approach relies on the dynamic gene expression datasets generated

under different conditions and suffers from low precision [5]. GBA

[6] approach takes advantage of disease associations with the same

drug, but it is only applicable in the case that some indications for

the drug in question are already known and complete.

Integrative analysis is one way out [7]. Recently, a novel

integrative method was proposed for drug-disease association

prediction [8]. This method heuristically summarized multiple

drug-drug and disease-disease similarity measures from various

aspects and repositioning was done based on the observation that

similar drugs tend to treat similar diseases. The authors reported

high specificity and sensitivity (AUC=0.9). This approach applied

logistic regression to integrate multiple drug-drug and disease-

disease similarity metrics to collect the evidence for a strong

association. This scheme provides a machine learning framework,
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and there is still much room to improve both from more general

data collecting and accurate predicting.

In this paper, we construct a universal Predictor for Drug

Repositioning (PreDR) to dissect drug-disease associations in a

large-scale manner. We notice the rapid development of high-

throughput technologies and ever-increasing accumulation of

genome-wide datasets. On one hand, high-quality drug-disease

networks have been constructed as the gold-standard to learn. On

the other hand, drug’s functional roles in cell can be depicted from

different aspects. For example, drug’s chemical structure provides

information by the ‘structure determines function’ paradigm.

Target protein provides the direct effect at molecular level, and

side effect hints the unwanted effect at phenotype level. One

straightforward idea is to learn understandable rules from these

existing data and to predict novel drug-disease relationships. We

demonstrate that drugs with similar chemical structures, target

proteins, or side-effects will indicate similar diseases. Then we

integrate heterogeneous chemical structures, target proteins, and

side-effects information sources. Specifically, drug and disease are

characterized by their similarity-based profiles, and kernel

function is then defined to correlate drug with disease. Finally

the potential drug-disease interactions are inferred by a machine

learning model, i.e., support vector machine (SVM), which is

motivated by statistical learning theory [9,10] and has been proven

successful on many different classification problems in bioinfor-

matics [11]. PreDR provides an efficient way to overcome the

main difficulty that these data sources are from three different

levels and are extremely heterogenous.

PreDR is validated on a well-established drug-disease network

with 1,933 interactions between 593 drugs and 313 diseases. By

cross-validation, we find that all chemical structures, drug targets,

and side-effects are predictive in different power. Combining these

heterogenous properties predicts more drug-disease associations

supported by literature and disease pathway database. Moreover,

some novel predictions are supported by clinical trials database.

Materials and Methods

We design a novel algorithm, named PreDR, to predict drug

repositioning by associating known drugs with potential disease

labels based on kernel fusion of heterogenous data sources. The

schematic illustration of PreDR is shown in Figure 1A. The

functional role of drug is characterized by its molecular structure,

molecular activity, and phenotype data. PreDR aims to optimally

integrate these three data sources and to connect drug with disease

more accurately.

We treat drug-disease interaction prediction as a binary

classification problem, i.e., determining whether a give pair of

drug and disease is associated or not. We introduce SVM-based

algorithm to cope with this task. The algorithm works in three

phases (Figure 1): (Phase I) Collecting known drug-disease

interactions as gold-standard positives in a bipartite graph. (Phase

II) Modeling drug-drug and disease-disease similarity metrics.

Drug similarity is derived from chemical structure, target protein,

and side-effects. Disease similarity is based on semantic similarity

of disease phenotypes [12]. (Phase III) Fusing the similarity among

drugs and similarity among diseases by kernel methods, and

applying SVM algorithm to predict the unknown relationships

between drugs and diseases.

Given two drug-disease pairs, we consider to construct a kernel

function which potentially correlates with their similarity. Since

the kernel function represents the similarities among the training

samples in some sense [13], we focus on the similarities among

drugs and similarities among diseases. Therefore, we try to

construct the similarity profile to represent drug and disease,

respectively, in the following subsections.

Figure 1. The summary of our method: PreDR. Subfigure A: The schematic plot for the PreDR method. Subfigure B: Collecting known
interactions between drugs and diseases as gold standard positives in a bipartite graph. Subfigure C: Calculating the drug-drug and disease-disease
similarity metrics. Subfigure D: Relating the similarity among drugs and similarity among diseases by kernel function, and applying SVM-based
algorithm to predict unknown relationships among drugs and diseases.
doi:10.1371/journal.pone.0078518.g001

Drug Repositioning Based Kernel Fusion
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Collecting Structure, Activity, and Phenotype Data for
Drugs

Chemical structure data. It is generally believed that drugs

with similar chemical structure would carry out common

therapeutic function, thus likely treat common diseases. So here,

drugs are firstly represented by its chemical structure similarity

profile.

PubChem database (http://pubchem.ncbi.nlm.nih.gov/) has

defined 881 chemical substructures based on fingerprint search.

Then a given drug can be represented by an 881 dimensional

binary vector x. Each element of x is encoded as 1 or 0, which

means the presence or absence of corresponding PubChem

substructure. The description of these 881 chemical substructures

is available at PubChem’s website. There are 107,292 associations

between drugs and chemical substructures in the dataset, and each

drug has 120.8 substructures on average [14]. The similarity

between two drugs d and d ’ is evaluated by the weighted cosine

correlation coefficient [15] as follows

Schem(d,d ’)~

PK
i~1

wkxkx’kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i~1

wkx
2
k

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
i~1

wkx’
2
k

s , ð1Þ

where wk is the weight function for the k-th substructure, and

defined as

wk~exp({f 2k =s
2h2), ð2Þ

where fk is the frequency of the k-th substructure, and K is the

total number of substructures, s is the standard derivation of

ffkgKk~1, and h is a parameter and set to 10 in this study. The

weight function puts more emphasis on rare substructures rather

than frequent ones across different drugs, because rare substruc-

tures are more informative than common ones for specific

function.

Suppose that we have nc drugs in total, a matrix Schem[Rnc|nc is

then constructed to represent the chemical structure similarity

Figure 2. The relationship analysis between drug disease similarity profile and drug molecular structure, activity, and phenotype
similarity profiles. Subfigure A: Scatter plot relating drug structures (yellow circles), targets (blue diamonds), side-effects (red stars) similarity with
disease profile similarity. It shows that drug disease profile similarity is better correlated with its side-effect similarity, that is, drugs with similar side-
effects similarity tends to cure similar diseases. Subfigure B: Barplot of the PCCs between structures, targets, side-effects similarity and disease profile
similarity. All the p-values are smaller than 1e-2.
doi:10.1371/journal.pone.0078518.g002
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matrix. Each row (or column) of this matrix is the chemical

structure similarity profile for a single drug.

Drug-target interaction data. Drugs sharing common

targets often possess similar therapeutic function. So there are

many drug-target prediction studies for drug function. In our case,

drugs interacting with the same targets are assumed to treat

common diseases.

In this subsection, we represent drug-drug similarity by their

target protein similarity. The high-quality drug-target interactions

can be manually constructed from the KEGG BRITE [16],

BRENDA [17], SuperTarget [18], and DrugBank [19]. In

addition, the drug target interactions are well-studied for some

specific protein families in previous studies [15,20–23]. Here, we

mainly collected drug-targets data from DrugBank [19], and

defined drug similarity by target proteins’ sequence similarity.

That is, given two drugs d and d ’, the similarity among them can

be calculated as follows

simtarget(d,d ’)~ max
gi[T(d),gj[T(d ’)

sim(gi,gj), ð3Þ

where T(d) and T(d ’) are the sets of target proteins, sim(gi,gj) is

Figure 3. The performance of predictions are shown as ROC curves. Subfigure A: The ROC curves for three data sources (‘‘Chem’’: chemical
structure, ‘‘Inter’’: target protein, ‘‘Side-effect’’: side-effect based similarity and ‘‘Comb’’: integration of ‘‘Chem’’, ‘‘Inter’’, and ‘‘Side-effect’’). ‘‘Side-effect’’
is general more predictive for more experimentally observed drug-disease associations. Subfigure B shows the ROC curves with false positive rate
(FPR) less than 0.05. ‘‘Chem’’ obtains the highest true positive rate (TPR) when FPR is very small.
doi:10.1371/journal.pone.0078518.g003

Table 1. The performance comparison for different data
sources.

Data
source AUC Acc Sn Sp Pre F-measure

Chem 0.834 0.763 0.737 0.792 0.781 0.763

Inter 0.889 0.812 0.824 0.799 0.804 0.811

Side-effect 0.894 0.813 0.826 0.799 0.804 0.812

Comb 0.902 0.823 0.847 0.799 0.808 0.822

The best predictions are highlighted in bold.
doi:10.1371/journal.pone.0078518.t001

Drug Repositioning Based Kernel Fusion

PLOS ONE | www.plosone.org 4 November 2013 | Volume 8 | Issue 11 | e78518



sequence similarity among protein gi and gj , which is calculated

by a normalized version of Smith-Waterman scores [20,24].

The matrix Starget[Rnc|nc is then constructed to represent the

compound target similarity matrix. Each row (or column) of this

matrix is the target protein similarity profile for a single drug.

Unlike chemical structure similarity matrix Schem, target protein

similarity matrix Starget may not be a positive semidefinite matrix

and needs the following normalization step

Q
{1

2StargetQ
{1
2, ð4Þ

where Q is diagonal matrix. The k-th diagonal element of Q is

Q(k,k)~
Pnc

i~1 Starget(k,i).

Side-effect data. Drug side-effects, or adverse drug reactions,

is one of the main causes of drug development failure and drug

withdrawal from the market [14]. This high level phenotype data

for drugs indicates the malfunction by off-targets. Thus side-effects

data is useful to infer whether two drugs share similar target

proteins [25]. In this study, drug side-effects are utilized to drug

repositioning as some previous studies did [26,27]. Similar to

structure and target data, drug side-effects information is also

applied to construct the drug similarity profile.

There are a total of 1,450 side-effect annotations in the SIDER

database (http://sideeffects.embl.de/) for 888 approved drugs.

Then each drug can be represented as an 1,450 dimensional

binary vector y. Each element of y is encoded as 1 or 0 to indicate

the presence or absence of corresponding side-effect. Drugs

similarity under their side-effects metric is assessed by the weighted

Figure 4. Leave one drug out cross-validation. Subfigure A: The procedure for leave one drug out cross-validation. Subfigure B: The AUCs
obtained from leave one drug out cross-validation (‘‘Chem’’: chemical structure, ‘‘Inter’’: target protein, ‘‘Side-effect’’: side-effect, and ‘‘Comb’’:
integration of ‘‘Chem’’, ‘‘Inter’’, and ‘‘Side-effect’’). It further shows that all three data sources can uncover new diseases for a novel drug, and
integration works even better.
doi:10.1371/journal.pone.0078518.g004

Drug Repositioning Based Kernel Fusion
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cosine correlation coefficient between y and y’ as follows

Sside{effect(d,d ’)~

PM
i~1

wkyky’kffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i~1

wky
2
k

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPM
i~1

wky’
2
k

s , ð5Þ

where wk is the weight function for the k-th side-effect

wk~exp({f 2k =s
2h2), ð6Þ

where fk is the frequency of the k-th side-effect in the data, and M

is the total number of side-effect, s is the standard derivation of

ffkgMk~1, and h is a parameter (set to be 10 in this study).

The matrix Sside{effect[Rnc|nc then represents the drug

similarity matrix by their side-effects similarity. Each row (or

column) of this matrix is the side-effect similarity profile for a single

drug.

Characterizing Disease Similarity by Phenotype Data
Similar to drug similarity profile, we used the disease similarity

profiles to represent diseases. The disease-disease similarities were

measured by their semantic similarity of disease phenotypes [12].

Text mining techniques were utilized to classify over 5,000 human

phenotypes contained in the Online Mendelian Inheritance in Man

(OMIM) database [12]. Thephenotype similarity data are accessible

through website at http://www.cmbi.ru.nl/MimMiner/. As a

result, the similarity between two diseases D and D’ can be

calculated as follows

Figure 5. Comparison with previous method. Subfigure A: An example for ‘indirect drug-disease association’. The candidate drug disease
association is revealed utilizing the drug ‘Benztropine’ as a bridge to connect drug ‘Eletriptan’ and drug ‘Orphenadrine’. Subfigure B: The overlap of
predictions by our method PreDR and previous method.
doi:10.1371/journal.pone.0078518.g005

Drug Repositioning Based Kernel Fusion
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SDisease(D,D’)~simphenotype(D,D’), ð7Þ

where simphenotype(D,D’) is semantic similarity of disease phenotype

D and D’, which is calculated by text mining approach in [12].

The matrix SDisease represents the similarities for all pairwise

diseases. Each row (or column) is the phenotype similarity profile

for a single disease.

Kernel Fusion
With the representation of drugs and diseases by their similarity

profiles, the similarity between two drug-disease pairs dADA and

dBDB can be calculated as Kronecker product kernel [28–31] as

follows

K(dADA,dBDB)~SComp(dA,dB)|SDisease(DA,DB), ð8Þ

where SComp can be any one of Schem(dA,dB), Starget(dA,dB), and

Sside{effect(dA,dB) or their combination.

In this paper, ‘‘Chem’’ denotes the case when SComp~Schem,

‘‘Inter’’ denotes the case when SComp~Starget, ‘‘Side-effect’’

denotes the case when SComp~Sside{effect, and ‘‘Comb’’ denotes

the case when SComp~max (Schem,Starget,Sside{effect), which

means drug similarity supported by one or more than one metrics.

Taken together, the rationale behind our kernel function

construction scheme for drug-disease pairs is that two drug-disease

pairs are similar only when the corresponding diseases and drugs

are simultaneously similar supported by heterogeneous data

sources.

SVM Prediction with the Defined Kernel Function
With the above kernel function construction scheme, the drug-

disease interactions prediction task is formalized as a binary

classification problem. We treat the known drug-disease pairs as

the gold-standard positives and the others as the gold-standard

negatives. We note that this may cause the training data imbalance

problem. Because there are more negatives and only a relatively

small number of positives. This situation makes the SVM

ineffective in determining the class boundary [32]. To maintain

a balance, we randomly select a set of training negatives from the

unlabelled data to have the same size with the training positives.

Feeding the kernel function in Equation (8) and training dataset

to SVM, the classifier can be calculated by SVM algorithm.

Benchmark Datasets and Algorithm Implementation
The benchmark dataset, which is used to test the performance

of PreDR as a community standard, was summarized in [8]. It

spans 1,933 associations between 593 drugs taken from DrugBank

[19] and 313 diseases in OMIM database [33]. The drug chemical

structure representation matrix was from [14] (http://cbio.ensmp.

fr/yyamanishi/side-effect/), which contains 888 approved drugs

represented by 881 substructures derived from PubChem [34].

Drug targets and targets sequences are from DrugBank [19]. The

Smith-Waterman scores among protein sequences were calculated

by MATLAB’s Bioinformatics Toolbox. Drug side-effects are from

SIDER [35]. The disease phenotype similarity data was obtained

at http://www.cmbi.ru.nl/MimMiner/.

We trained the SVM-based predictor by using LibSVM [36].

In our implementation, the penalty parameter C was optimized by

a grid search approach with 3-fold cross-validation, and the

optimal value of C is 10. To evaluate the performance of our

methods, 10-fold cross-validation was utilized. The performance of

PreDR is shown by receiver operating characteristic (ROC) curve

[37], which shows the trade-off between the true positive (correctly

predicted interactions) rate (TPR) with respect to the false positive

(wrongly predicted interactions) rate (FPR). Furthermore, the

evaluation criteria shown in Table S1 are also applied to assess the

performance rigorously.

Results

Chemical Structure, Drug-target Interactions, and Side-
effects are all Predictive
We collect three data sources from structure, activity, and

phenotype levels to characterize drugs: chemical structures, target

proteins, and side-effects. First we test the fact that drugs with

similar structures (target proteins or side-effects) will treat similar

diseases. To show this, we correlate drug’s profile by chemical

structure, target protein, side-effect similarity, and their curing

disease profile. The drug similarity by disease profiling is defined

as follows

simdisease(d,d ’)~ max
Di[D(d),Dj[D(d ’)

simphenotype(Di,Dj), ð9Þ

where D(d) and D(d ’) are the sets of diseases associated with drug

d and d ’ in gold standard positives, and simphenotype(Di,Dj) is the

disease phenotype similarity calculated by text mining approach

[12].

Figure 2A plots the weak correlations between drug similarity by

their structures, protein targets, side-effects with drug similarity by

its disease profile. It shows that drug’s disease profile similarity is

more correlated with its side-effect similarity comparing with

chemical structure and protein targets similarity. The Pearson’s

correlation coefficients (PCCs) between drug’ disease profile

similarity and the similarity from chemical structures, target

proteins, and side-effects data are shown in Figure 2B. It shows

that the correlation coefficients tend to be larger when two drugs

are more similar. For example, the correlation coefficients are all

larger than 0.2 with high confidence when drugs are similar than

0.8 for all three kind of data sources. Correlation coefficient

between side-effects profile based similarity and disease profile

based similarity is larger than 0.3 (Figure 2B). Taken together,

chemical structure, target protein, and side-effect similarity

correlate with drug’s disease profile similarity, i.e., drugs similar

in either structure, target, or side-effects tend to cure similar

diseases.

In addition to global similarity by disease profile, we also

correlate the similarity obtained from three kinds of data sources

with the drugs’ distance in the known drug-disease interaction

network. We define the distance of two drugs in the network as the

length of the shortest path between them in the network. We plot

the distributions of chemical structure, target protein, and side-

effects similarity scores with respect to network distance in Figure

S1. It shows that all three kinds of similarities are larger than 0.6

for 75% drug pairs sharing common diseases. That is, two drugs

with larger similarity scores in the three data sources tend to share

common diseases.

All the facts suggest predictability of different data sources for

drug-disease associations. This analysis provides support for our

follow-up integrative analysis.

Drug Repositioning by Single Data Source
In this subsection, we assess the effects of chemical structures,

target proteins, and side-effects in drug repositioning prediction.

Their performances are evaluated and visualized by ROC curves

[37].

Drug Repositioning Based Kernel Fusion
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Firstly, we replace the drug similarity matrix SComp in kernel

function (8) (see Materials and Methods) with Schem, Starget, and

Sside{effect to test the effect of chemical structure, target protein,

and side-effects similarity in uncovering the experimentally

observed drug-disease interactions. The ROCs for each data

source are displayed in Figure 3A. It shows that all the ROC

curves are beyond the diagonal (random classification) and closer

to the 0–1 baseline. The corresponding evaluation criteria when

the corresponding F-measure reaches its maximum are listed in

Table 1. We can see that ‘‘Chem’’ obtains AUC 0.83 and Sn 0.83.

That is, chemical structure is useful in drug-disease interaction

prediction. Target proteins and side-effects play their important

roles in predicting drug-disease interactions too. The Accs, Sns,

Pres and F-measures are all larger than 0.8 for ‘‘Inter’’ and ‘‘Side-

effect’’, and AUCs reach 0.88. It indicates that target proteins and

side-effects can address the activity and effect of drug in cell thus

uncover more experimentally observed drug-disease interactions.

Since we are more interested in the performance of these

methods when FPR is rather small, we also draw ROC curves

when FPR is less than 0.05 in Figure 3B. It shows that, ‘‘Chem’’

obtains the highest TPR when FPR is very small, and with the

number of known interactions increasing, ‘‘Side-effect’’ reveals

more experimentally observed drug-disease interactions. All these

results suggest that, each data source will do one’s bit in prediction.

Therefore, combination of these three data sources produces a

much more sophisticated picture of the interactions among drugs

and diseases.

Data Fusion Improves Drug Repositioning
The usefulness of each data source is validated in uncovering

the experimentally observed indications for drugs. In the

following, we validate the effect of combination of three data

sources.

The performances of combination method: ‘‘Comb’’ is also

evaluated and visualized by ROC curve in Figure 3 and various

evaluation criteria in Table 1. Figure 3 shows that, ‘‘Comb’’ not

only obtains the best area under ROC curve, but also achieves the

highest TPR when FPR less than 0.05. This specifically

demonstrates that ‘‘Comb’’ improves performance when predict-

ing a small fraction of known drug-disease interactions as positives.

Table 1 shows that, ‘‘Comb’’ performs better than using single

data source. For example, ‘‘Inter’’ and ‘‘Side-effect’’ reach the

AUC 0.889 and 0.894, respectively, while ‘‘Comb’’ obtains an

AUC 0.902. ‘‘Inter’’ and ‘‘Side-effect’’ obtain F-measures 0.811

and 0.812, respectively. ‘‘Comb’’ obtains a F-measure 0.822 and

improves by one percent. These facts demonstrate that the

significant improvement is obtained by data integration.

For drug-disease interaction prediction task, the gold standard

positives are relatively not abundant. The area under precision-

recall curve [38] (AUPR) is a more significant quality measure

than the AUC, as it punishes much more the existence of false

positive examples found among the best ranked prediction scores

[39]. So we use the AUPRs (Figure S2) and precision-recall curves

(Figure S3) to validate our results. All results shown in Figure S2

and Figure S3 suggest that each data source is predictive and data

integration brings the improvement.

Leave One Drug Out Cross-validation
Given a new drug, people are interested in which disease it will

cure, i.e., whether this novel drug is related with known diseases.

To this end, we test the performance of our method by doing leave

one drug out cross-validation. That is, we exclude each drug and

its interactions from gold standard positives (known drug-disease

interaction network). This drug and its interactions are taken in

turn as a test dataset to validate the model trained on the

remaining drug-disease interaction network. The procedure is

illustrated in Figure 4A. The AUCs for leave one drug out cross-

validation are shown as barplot in Figure 4B. The results are

similar to 10 fold cross-validation results. ‘‘Chem’’ achieves the

worst AUC, ‘‘Inter’’ obtains a better one, and ‘‘Side-effect’’

performs the best. Furthermore, all three data sources have larger

AUCs than 0.78. ‘‘Inter’’ and ‘‘Side-effect’’ make AUC 0.80 and

0.84, respectively. ‘‘Comb’’ receives an AUC 0.85. These results

demonstrate the data source complementarily and utility of

heterogeneous data integration.

Comparing with Previous Work
We compared PreDR with previous work in [8] since the gold-

standard positives used in our study is the same. The authors in [8]

measured the similarity of the pertaining drug and disease only for

the nearest known associated drug-disease pair. Specifically, a

simple geometric mean based score is calculated to combine the

drug-drug similarity with disease-disease similarity, and the

maximal score with the known associated drug-disease pair is

extracted as classification feature [8]. Differently, we measured

similarities among all the drugs and among all the diseases to

represent drug and disease, respectively. And then we use kernel

function and SVM classifier to train the model. That is, we utilize

the global information extracted from drug-disease data in PreDR.

To show this advantage, we illustrated one example in Figure 5A.

Here the candidate association between drug and disease (shown

as black dash line in Figure 5A) cannot be inferred directly by the

most similar known association (shown as black solid line in

Figure 5A). Because drug ‘Eletriptan’ is not very similar to drug

‘Orphenadrine’ (similarity score is 0.367). However our method

can utilize the drug ‘Benztropine’ as a bridge to connect drug

‘Eletriptan’ and drug ‘Orphenadrine’. In this way we can have

more confidence to associate candidate drug-disease pair. Because

this prediction is achieved by the indirect drug similarity and we

call it as ‘indirect drug-disease association’. Indeed, more drug-

disease associations can be uncovered by PreDR (Figure 5B).

On cross-validation accuracy, the authors in [8] had obtained

an AUC 0.9 in predicting drug indications. In our study, ‘‘Comb’’

achieves an AUC 0.91, which is nearly the same as the authors

obtained in [8]. The authors in [8] used more data sources to

measure the drugs and diseases associations, including GO

annotations for target proteins, the genetic based disease similarity

from gene expression experiments and so on. Given the fact that

we use less data sources, PreDR works well to achieve comparable

performance. We note that these data sources can be easily

integrated into PreDR. Since our aim here is to demonstrate a

useful data integrative analysis framework instead of the most

comprehensive and accurate predictions. We only pick one

representative data source from the structure, activity, and

phenotype levels. Thus we have the sufficient reason to believe

that the improvement can be expected by introducing more data

for each level.

Novel Predictions
In this subsection, we test whether PreDR can produce

biologically useful predictions. To this end, we focus on the

unknown (non-interacting) drug-disease pairs. We used kernel

‘‘Comb’’ on the gold standard positives and randomly selected

gold standard negatives from the unlabelled pairs, and tested it on

the remaining drug-disease pairs. Our expectation is that ‘‘Comb’’

can discover many missing associations. We drew the predicted

drug-disease network in Figure 6 (only top 100 newly predicted

interactions are shown for conciseness). Take drug ‘Hydroxyurea’
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as an example, disease ‘Colorectal Cancer; Crc’ is revealed

because that the similar drug ‘Capecitabine’ which shares the

same side-effect ‘erythema’, treats disease ‘Colorectal Cancer; Crc’

(illustrated in Figure 7). The top five novel predictions are listed in

Table S2. For each novel prediction, we checked the drug target

proteins form DrugBank [19], the disease genes from OMIM [33],

and the corresponding pathway information from KEGG BRITE

[16]. Finally, we checked whether novel predictions appear in

current clinical trials database (http://clinicaltrials.gov/). Take the

most confident prediction as an example, target protein ‘Endo-

thelin-1 receptor’ (EDNRA) for ‘Bosentan’, and the disease gene

‘KCNMB1’ (Kca) for ‘Hypertension, Diastolic, Resistance To’

belong to the same pathway ‘Arachidonic Acid metabolism’

(Figure 8). Furthermore, we find that this drug-disease pair

Figure 6. The predicted drug-disease network (only top 100 novel predictions are shown). LightCoral rectangle represents drug and
LightSteelBlue cycle represents disease. Pink solid line represents the known interaction and the DarkBlue dash line represents the new prediction.
doi:10.1371/journal.pone.0078518.g006
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appears in current clinical trials, the ‘ClinicalTrials.gov Identifier’

is NCT00820352. That is, this novel drug-disease association may

be true with high probability.

The target of ‘Hydroxyurea’ is ‘Ribonucleoside-diphosphate

reductase large subunit’ (RRM2: p53R2), the disease gene of

‘Colorectal Cancer; Crc’ is ‘TP53’ (p53). In addition EDNRA and

Kca belong to the same pathway hsa04115 (shown in Figure 8).

Unfortunately, we do not find the evidence of this pair in current

clinical trials database. However, the lower pathway distance

between disease gene and target already shows the high

probability for their association.

The target of ‘Dasatinib’ is ‘Tyrosine-protein kinase ABL1’

(ABL1: BCRABL), the disease gene of ‘Leukemia, Acute Myeloid;

Aml’ is ‘Mast/stem cell growth factor receptor Kit’ (KIT). In

addition ABL1 and KIT belong to the same pathway hsa05200.

Furthermore. this drug disease pair is found the current clinical

trials database, the ‘ClinicalTrials.gov Identifier’ are

NCT01392703 and NCT00850382. It means that this novel pair

may interact in vivo with high probability.

The target of ‘Nabumetone’ is ‘Prostaglandin G/H synthase 2’

(PTGS2), the disease gene of ‘Sensory Ataxic Neuropathy,

Dysarthria, And Ophthalmoparesis; Sando’ is ‘DNA polymerase

Figure 7. The most confident prediction achieved by PreDR. Disease ‘Colorectal Cancer; Crc’ is revealed because that the similar drug
‘Capecitabine’ which shares the same side-effect ‘erythema’, treats disease ‘Colorectal Cancer; Crc’.
doi:10.1371/journal.pone.0078518.g007

Figure 8. Pathway ‘Arachidonic Acid metabolism’. Drug target proteins and disease genes are highlighted by orange border.
doi:10.1371/journal.pone.0078518.g008
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subunit gamma-1’ (POLG). In addition ABL1 and KIT belong to

a same pathway hsa01100. No evidence is found for this pair in

clinical trials database.

The target of ‘Acebutolol’ is ‘Beta-1 adrenergic receptor’

(ADRB1: ADR), the disease gene of ‘Alcohol Dependence’ is

‘Gammaaminobutyric acid receptor subunit alpha-2’ (GABRA2:

GABR). In addition ABL1 and KIT belong to a same pathway

hsa04080 No evidence is found for this pair in current clinical

trials database. The lower pathway distance between disease gene

and target shows the high probability for their association.

Among our top five predictions, two of them are supported by

current clinical trials. All these results suggest that, PreDR can

uncover potential repositioning of drugs, and can provide

candidates for further high-resolution validation.

Discussion

In this paper, we propose a new computational method, PreDR,

to predict drug repositioning. PreDR allows us to infer novel

associations among drugs and diseases by integrating heteroge-

neous data sources. Our main contributions here are both in

integrating the heterogeneous drug and disease similarity profiles

by kernel function and construction of a predictive model.

Specifically, we characterize the drug similarity profiles form

three levels. Chemical structures, target proteins, and side-effects

data are collected to represent structure, activity, and phenotype

for drugs. Treating the task as a binary classification problem, we

train a SVM-based predictor to uncover unknown interactions

between drugs and diseases. The improvement in various

evaluation criteria is obtained on a well-established dataset with

1,933 interactions among 593 drugs and 313 diseases. Leave one

drug out cross-validations, database search, literature survey, and

functional annotation analysis reveal that PreDR provides high

quality predictions. For example, among the top five novel

predictions, two of them are supported by current clinical trials

database. Taken together, PreDR can serve as a useful tool for

drug repositioning and promote the further drug discovery.

One possible concern is that PreDR works well by those ‘trivial’

predictions. For example, those drugs sharing common target are

easily to be predicted to cure the same diseases. To address this

issue, we test our PreDR by filtering out the potential ‘‘trivial’

predictions. Take target protein as an example, we filter the target

proteins with high sequence similarity (w0.8). That is, the drugs

with high sequence similarity targets (w0.8) are excluded from

gold standard positives. On this filtered dataset, we validate

PreDR’s prediction performance. We achieve the AUC 0.754 for

‘‘Inter’’, which is lower than 0.889 obtained by ‘‘Inter’’ on the full

gold standard positive dataset, but much higher than 0.5 (random

classification). This experiment suggests that PreDR can reveal

‘non-trivial’ predictions, by fully considering the global and remote

similarity in kernel function.

In this article, we attempt to improve the performance by

integrating target proteins information. The experimental results

show that, comparing with chemical structures, the performance is

indeed improved by characterizing drugs in target sequence-based

similarity. In fact, there are other ways to define the drug similarity

based on their targets. For example, target closeness in protein-

protein interaction (PPI) network can be used [8]. Therefore we

take the targets closeness in a human PPI network derived from

HPRD (Release 9) to incorporate into PreDR. Unfortunately, the

prediction accuracy is worse than sequence-based similarity. This

may be due to the high false positive rate and relative low precision

of single PPI network. In the future, we will define the targets

closeness based on an integrated human PPI networks collected

from multiple curated databases, including HPRD [40], OPHID

[41], and BIND [42] databases.

For disease, we only apply the phenotypic similarity in current

study. Studies have shown that phenotypically similar diseases are

often caused by functionally related genes [43]. In addition, many

large-scale studies support the idea that genes sharing similar

diseases are tightly linked in the network [44,45]. Therefore,

disease genes closeness in a PPI network is useful to correlate

disease with candidate genes [43]. Apart from gene closeness,

genes with similar sequences may be functionally related [46,47].

It is promising to use disease gene sequence similarity and

closeness in a PPI network to characterize disease. So we applied

disease gene sequence similarity and closeness in a human PPI

networks to measure the disease similarity, and then extend

PreDR. Unfortunately, neither sequence similarity nor closeness in

a human PPI networks can achieve better results than phenotype-

based similarity (see Table S3). The inefficient performance may

be due to the fact that the gap between phenotype (disease) and

genotype (gene) is too large and the associations are not so

accurate. One possible way out is to validate the disease gene

based similarity by GO annotation terms, which may closely

correlate with the disease similarity.

Supporting Information

Figure S1 The distribution of drug similarity scores
among the drugs sharing common diseases (Distance is
2 for Drug1 and Drug 2), mediate (Distance is 4 for
Drug1 and Drug 2) or unrelated (Distance is 6 for Drug1
and Drug 2), respectively. Figure S1 shows that the drugs

sharing common disease tend to have higher side-effect similarity

comparing with the structure and target protein similarity.

(TIF)

Figure S2 The AUPRs derived from different similarity
measurements (Chem: chemical structure, Inter: drug
target interaction, Side-effect: side-effect based similar-
ity and Comb: integration of Chem, Inter, and Side-
effect). Figure S2 shows that all chemical structures, target

proteins, and side-effects are predictive in drug repositioning

prediction, and improved performance can be achieved by

integration of them.

(TIF)

Figure S3 The precision-recall curves derived from
different similarity measurements (chem: chemical
structure, inter: drug target interaction, side-effect:
side-effect based similarity, and comb: Integration of
chem, inter, and side-effect). Figure S3 presents, all methods

make precision higher than 0.7 when recall value is larger than

0.8, and comb achieves the highest precision with higher recall

values. All these results suggest that each data source is predictive

and by combination further performance improvement can be

obtained.

(TIF)

Table S1 The definitions of evaluation criteria. Table S1
lists the evaluation criteria used in this article. Here TP is the

number of drug-disease pairs correctly predicted to interact, FP is

the number of drug-disease pairs predicted to interact but actually

not. And TN is the number of drug-disease pairs do not interact

and predicted correctly, FN is the number of drug-disease pairs

predicted not to interact but actually interact.

(PDF)
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Table S2 The top five drug repositioning predictions by
our method. Table S2 presents the top five novel predicted

drug-disease interactions.

(PDF)

Table S3 The performance comparison of disease gene
closeness in a human PPI network under different drug
similarity measurements to predict drug repositioning.
The best predictions obtained are highlighted in bold.
Table S3 just lists the performance of disease gene closeness in PPI

network due to the fact that disease gene sequence similarity

performs worse than its closeness in PPI network.

(PDF)
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