OPEN 8 ACCESS Freely available online

@PLOS ‘ ONE

Measurement of Microbial DNA Polymerase Activity
Enables Detection and Growth Monitoring of Microbes

from Clinical Blood Cultures

Daniel R. Zweitzig", Nichol M. Riccardello’, John Morrison?, Jason Rubino?, Jennifer Axelband? Rebecca
Jeanmonod?, Bruce |. Sodowich’, Mark J. Kopnitsky', S. Mark O’Hara’

1 Research and Development, ZEUS Scientific, Raritan, New Jersey, United States of America, 2 St. Luke’s University Health Network, Bethlehem,

Pennsylvania, United States of America

Abstract

Editor: Stefan Bereswill, Charité-University Medicine Berlin, Germany

preparation of the manuscript.

Surveillance of bloodstream infections (BSI) is a high priority within the hospital setting. Broth-based blood cultures
are the current gold standard for detecting BSI, however they can require lengthy incubation periods prior to
detection of positive samples. We set out to demonstrate the feasibility of using enzymatic template generation and
amplification (ETGA)-mediated measurement of DNA polymerase activity to detect microbes from clinical blood
cultures. In addition to routine-collected hospital blood cultures, one parallel aerobic blood culture was collected and
immediately refrigerated until being transported for ETGA analysis. After refrigeration holding and transport, parallel-
collected cultures were placed into a BACTEC incubator and ETGA time-course analysis was performed. Of the 308
clinical blood cultures received, 22 were BACTEC positive, and thus were initially selected for ETGA time course
analysis. The ETGA assay detected microbial growth in all 22 parallel-positive blood cultures in less time than a
BACTEC incubator and also yielded genomic DNA for gqPCR-based organism identification. In summary, feasibility of
detecting microbes from clinical blood culture samples using the ETGA blood culture assay was demonstrated.
Additional studies are being considered towards development of clinically beneficial versions of this methodology.
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Introduction

Bloodstream infections (BSI) can cause sepsis, which is
associated with significant patient morbidity and mortality [1,2].
The health care costs related to sepsis are also high. In fact, a
recent study estimated that the annual economic burden
associated with BSI care in the United States is $17 billion [2].
It should therefore not be surprising that surveillance and
detection of BSl is of high priority within the hospital setting [3].

Broth-based blood culture is the current gold standard test
for detecting BSI and is a prerequisite to additional downstream
microbiology testing aimed at guiding appropriate therapy [4-8].
This approach is problematic, as sepsis can rapidly progress
over the course of hours, while blood culture results can take
days to confirm the presence of a hematopathogen [3,8,9].
Since delays in administration of proper antimicrobials have
been shown to increase morbidity and mortality rates [10],
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patients are often prescribed empiric broad spectrum
antimicrobial therapy with the hope of narrowing the antibiotic
coverage once the pathogen is identified to the genus or
species level. Unfortunately, this practice contributes to
suboptimal therapy and the increasing problem of multidrug-
resistant organisms through selection pressure and may also
contribute to superinfections [11,12].

To address these issues, numerous rapid nucleic acid tests
(NAT) have been developed with the goal of reducing the time
to confirmation of BSI as well as pathogen identification (ID)
and antimicrobial susceptibility determination [13-15]. Despite
showing promise, adoption of NAT within the clinical
microbiology laboratory has been met with resistance for
numerous reasons including high costs and the inability of NAT
to distinguish live microbes from circulating nucleic acid [16].
Also, studies have revealed that the broad range detection of
microbes via NAT, such as 16S-targeted PCR, may not
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represent bona fide universal detection assays due to
sequence variability across species [17-19].

We recently developed a novel methodology that enables
rapid, sensitive, and universal detection of viable microbes via
enzymatic template generation and amplification (ETGA)-
mediated measurement of endogenous DNA polymerase
activity [20]. We subsequently used a differential cell lysis
procedure in combination with ETGA (referred to hereafter as
the ETGA Blood Culture Assay) to enable detection of
microbes 3 times faster than a continuous monitoring blood
culture incubator during simulated BSI experiments [21].
Herein, we set out to verify that the ETGA Blood Culture Assay
could also detect the presence and growth of microorganisms
in clinical blood culture samples.

Materials and Methods

Hospital Setting and Patient Enroliment

Saint Luke’s Hospital and Health Network Internal Review
Board (IRB), Bethlehem PA, approved this study protocol,
identification number, SLHN 2011-04. Patients were screened
for enroliment at a Level 1 community trauma center with a 37-
bed Intensive Care Unit (ICU), a 45-bed Emergency
Department (ED), and an annual census of 75,000. Adult
patients (age 18 or older) in the ED and ICU were eligible for
inclusion if they presented with signs and symptoms suggestive
of serious bacterial infection and if their clinical evaluation
included blood cultures at the discretion of the enrolling
physician. Upon determination of eligibility, subjects or their
health care proxies were approached to volunteer for
participation; written informed consent was obtained prior to
enrollment.

Clinical Blood Culture Sample Collection and
Subsequent Handling

Upon voluntary written consent enrollment, patients
underwent a routine blood culture collection procedure as per
hospital protocol. Blood culture protocol typically consists of
two sets of blood culture bottles (2 aerobic BD-cat# 442192
and 2 anaerobic BD-cat# 442191) collected using aseptic
technique. Blood was collected simultaneously into a third
aerobic blood culture bottle which was designated only for
parallel BACTEC and ETGA blood culture assay analysis (no
analyses from this specimen were used in clinical decision
making). Hereafter, the third parallel-collected aerobic culture
bottle will be referred to as the ETGA-bottle. All 4 hospital
culture bottles were incubated in BD BACTEC™ automated
blood culture system (BD Company, Franklin Lakes, NJ) in the
hospital lab. A hospital blood culture was defined as positive
using criteria outlined by the Centers for Disease Control [22],
and the causative microorganism was subsequently identified
according to standard clinical microbiology procedures. The
ETGA-bottle was routinely drawn last in the draw sequence,
blind coded, stored in a refrigerator, and transported twice-
weekly 50 miles to our laboratory for independent BACTEC
and ETGA analysis.
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BACTEC and ETGA Time Course Analysis of Clinical
Blood Cultures

At the initiation of this study, ideal resources were not
available for around-the-clock time course ETGA monitoring of
the ETGA-bottle within the hospital laboratory. Therefore, the
ETGA-bottle was refrigerated prior to being transported to our
laboratory for ETGA analysis. Although refrigeration is not
recommended by CLISI [23], recent studies have shown that
microbial growth is unaffected after limited refrigeration of
blood culture samples [24]. After being transported from the
hospital, the ETGA-bottle was placed into a BACTEC 9050
incubator. One milliliter aliquots were aseptically removed in a
time course manner using a 3 mL syringe (21ga. Needle) and
were immediately refrigerated to enable synchronization of the
ETGA sample preparation procedure. For BACTEC-positive
ETGA-bottles, blood culture time course aliquots were promptly
removed from refrigeration holding and 0.75 mL was subjected
to the ETGA blood culture assay procedure (described below).
One hundred micro-liters from each of the remaining blood
culture aliquots (non-processed) were also immediately plated
onto blood agar for parallel CFU monitoring. After completion of
the ETGA blood culture assay procedure, sample lysates were
frozen at -20°C to enable subsequent nucleic acid analysis. For
BACTEC-positive ETGA-bottles, microbe identification (derived
from the corresponding hospital blood cultures) were
retrospectively obtained from the hospitals’ microbiology
laboratory.

The ETGA Blood Culture Assay Procedure

The ETGA Blood Culture Assay consists of a differential cell
lysis procedure followed by measurement of microbe-derived
DNA polymerase extension activity via ETGA. A detailed
description of the core ETGA technology and subsequent
development of the ETGA Blood Culture Assay have been
recently described [20,21]. Briefly, 0.75 mL of blood culture is
transferred to a 1.5 mL tube already containing 250 uL of 1%
Triton X-100. The sample tube is then capped, inverted four
times to mix, and incubated for 5 minutes at room temperature.
After spinning at 8000 x g for 3 minutes, the supernatant is
poured off into a waste container and the tube is then inverted
onto a plastic-backed lab wipe to drain any residual liquid.
Using an extended pipette tip, 1 ml of 5 mM NaOH is added
and subsequently pipetted up and down ten times to resuspend
blood debris. The sample tube is then capped, incubated for 5
minutes at room temperature, and spun at 8000 x g for 3
minutes. The supernatant is poured off into a waste container
and the tube is then inverted onto a plastic-backed lab wipe to
drain any residual liquid. Next, 0.6 mL of a Tris-based wash
buffer is added, pipetted up and down 5 times to resuspend the
sample, and simultaneously transferred to pre-labeled bead
mill lysis tube. All beadmill lysis tubes are then spun at 8000 x
g for 3 minutes. After spinning, supernatants are carefully
removed using a 1 mL pipette and DNA polymerase extension
activity is assayed as described previously [20,21].

Gene Specific gPCR Assays

The primers and probes for the S. aureus and E. coli-specific
assays have been previously reported [20]. The primer and
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probe sequences for the S. agalactiae and S. epidermidis
assays are as follows: S. agalactiae - Forward primer 5 —
TCGCATTTTAGATCCATTTGC- 3’, Reverse primer 5 -—
GCTCTATCAGTTGGTTTTAAATCAGG- 3, Probe 5 -
CAATTAAAGCTCAAG TTAACGATGTAAAGGCA 3. S

epidermidis - Forward primer 5 —CAACTCGATGCA
AATCAGCAA- 3, Reverse primer 5 -
GAACCGCATAGCTCCCTGC- 3, Probe 5 -

TACTACGCTGGTGGAACTTCAAA TCGTTATCG- 3. The
gPCR reactions were prepared as follows: 300nM forward and
reverse primers, 100nM hydrolysis probe, 15uL Light Cycler
480 Probes Master (Roche Applied Sciences cat#
04902343001), nuclease free water (Life Technologies, cat#
AM9932) to a volume of 26uL, and 4uL of sample. The
samples were analyzed on a Cepheid Smart Cycler Il
(Sunnyvale, CA) using the following protocol: 95°C for 5
minutes, and then 45 cycles of 95° for 15 seconds followed by
60°C for 1 minute. Fluorescence was measured during the
60°C stage of each cycle.

Results and Discussion

BACTEC Results and Corresponding Microbial ID

In this report, we set out to assess the feasibility of detecting
microbes from clinical blood culture samples via selective
measurement of their DNA polymerase extension activity using
ETGA. A schematic diagram of the proposed experimental
approach is presented in Figure 1. Initially, 308 ETGA-bottles
were collected and subjected to BACTEC analysis. Of these,
22 yielded positive BACTEC results (Table 1). The microbial ID
for each of these 22 samples was obtained retrospectively from
the parallel-collected blood culture samples that were analyzed
by the hospital laboratory, and are also presented in Table 1.
The most prevalent organisms found to be associated with the
BACTEC-positive samples were E. coli and Streptococcus sp.,
followed by Staphylococcus sp. Consistent with previous
observations, these species are common among BSI-causing
microorganisms [14].

Growth Monitoring of Clinical Blood Cultures via the
ETGA Blood Culture Assay

As mentioned, the primary goal of this study was to assess
the feasibility of using the ETGA blood culture assay to detect
the presence and growth of microbes within clinical blood
cultures. Towards this goal, ETGA blood culture assay time
course analysis was performed for each of the 22 ETGA-
bottles that were called positive by the BACTEC instrument.
The ETGA assay time course analysis data for these samples
were assembled into 5 separate groups and are presented in
Figures 2A-E. A horizontal red line was incorporated into each
graph, representing a positivity threshold cycle threshold (Ct)
value of 35.24 that was previously established from ETGA
Blood Culture Assay analysis of blood cultures obtained from
healthy donors [21]. Despite being determined previously, the
35.24 threshold Ct marker is included as a visual reference
within the time course graphs to help differentiate microbial
growth from typical blood culture sample background noise. As
shown in Figures 2A-E, the ETGA blood culture assay

PLOS ONE | www.plosone.org

ETGA Enables Earlier Detection of Septicemia

sensitively detected the presence and growth of microbes
within all 22 of the ETGA-bottles. The ETGA Ct values and
parallel CFU plating data for these samples also correlate well
with one another (Tables S2-S6). Of note, the growth curve
derived from sample ZSL-229 dipped below the positivity
threshold at the 6 hour time point (Figure 2C). This atypical
growth curve behavior correlates well with the CFU fluctuation
and/or mixed microbial population observed from parallel
plating analysis of sample aliquots taken from the
corresponding ETGA-bottle (Figure S1).

Taken together, these preliminary time course studies
suggest that the ETGA blood culture assay has potential to
reduce the Time-to-Detection (TTD) of microbes from clinical
samples, when compared to standard BACTEC analysis (Table
S1). In fact, ETGA detected 100% (4 of 4) of the samples
containing S. aureus at time zero (Figure 2B). Also, considering
the range of bacterial species present (Table 1), these data
support the potential universality of detecting microbes from
clinical samples via the highly conserved biochemical activity of
DNA polymerase extension. Furthermore, when considering
these clinical samples and previously published data obtained
during assay development studies [20,21], ETGA has detected
without fail more than 30 different microbial species.

In addition to the 22 positive samples, time course aliquots
from 15 BACTEC-negative ETGA-bottles were subjected to
ETGA blood culture assay time course analysis. As shown in
Figure 2F, all of the ETGA blood culture assay signals derived
from the 15 negative clinical samples remained below the
positivity Ct threshold, and are thus consistent with the
previously determined healthy donor threshold [21]. Therefore,
these results demonstrate that the growth curves presented in
Figures 2A-E are specific for microbial growth and not reflective
of artifactual changes in assay background signal due to the
time that these negative blood cultures spent in refrigeration
and/or in the BACTEC incubator. For more accurate clinical
diagnostic positivity/negativity and ETGA TTD determinations,
a rigorous threshold value will need to be determined
statistically using ETGA assay signals derived from a larger
number of negative clinical blood culture samples that had not
been subjected to atypical handling such as refrigeration.

Nucleic Acid-Based Microbial Identification from ETGA
Lysates

In addition to DNA polymerase activity, we previously
demonstrated that ETGA lysates from simulated BSI also
contain microbe-derived nucleic acid, and thus are readily
available for subsequent microbial identification via rapid NAT
such as qPCR [21]. To determine the feasibility of parallel NAT
analysis of clinical blood cultures, we retrospectively
interrogated the ETGA lysates (generated from 13 of the 22
BACTEC-positive ETGA-bottles) for the genomic DNA of S.
aureus, E. coli, S. epidermidis, and S. agalactiae, based upon
availability of the corresponding in-house gene specific qPCR
(gsPCR) assays. The gsPCR ID results presented in Table 2
agree with the Hospital microbiology laboratory’s independent
ID, and demonstrate that the ETGA blood culture assay
procedure produced lysates from clinical samples that are
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Figure 1. A schematic overview of the study design is presented.

doi: 10.1371/journal.pone.0078488.g001
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rapid parallel nucleic acid-based species

Summary

Herein, we demonstrated the feasibility of using the ETGA
blood culture assay to rapidly detect the presence and growth
of microbes within clinical blood cultures. Together, we feel that
these results merit additional studies aimed at performing time
course analysis of clinical blood cultures within the hospital
laboratory setting, towards a more realistic assessment of the
ETGA blood culture assay’s capability to be used as a rapid
BSI screening tool. However, in its current manual form, it
would be difficult to incorporate the ETGA blood culture assay
into the busy workflow of the modern clinical microbiology
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laboratory. To this end, experiments are underway to further
simplify the ETGA blood culture assay and make it more
amenable to automation. If achieved, automation could
potentially reduce the TTD of BSI. Also, an ETGA lysate-
coupled NAT approach could enable much faster organism
identification times and initiation of data-guided antimicrobial
susceptibility testing faster than traditional methods. The
importance of this proposed approach is supported by the
mounting evidence that rapid identification of BSI leads to
lower morbidity and mortality, translating into reduced length of
hospital stay and associated cost savings [25]. We are also
interested in evaluating procedural modifications that would
enable ETGA-mediated detection of microbes directly from
whole blood and blood products.

October 2013 | Volume 8 | Issue 10 | e78488



ETGA Enables Earlier Detection of Septicemia

Table 1. BACTEC Time-to-Detection (TTD) for ETGA-bottles and the corresponding hospital-derived microbe identification.

Sample ID

Hospital Microbe ID

BACTEC Result (TTD hours)

4
12

39

63

183
254
256
208
258
273

114
229
95

301

E. coli

E. coli

E. coli

E. coli

E. coli

E. coli

E. coli

S. aureus

S. aureus

S. aureus

S. aureus

CoNS

CoNS

Beta h strep - Group A
Beta h strep - Group C
Beta h strep - Group B
Beta h strep - Group G
Proteus
Abiotrophia/granulicatella
Alpha haemolytic strep
S. pneumoniae

S. pneumoniae

Positive (11.67)
Positive (10.83)
Positive (14.83)
Positive (10.67)
Positive (13.17)
Positive (10.67)
Positive (11.00)
Positive (12.33)
Positive (10.67)
Positive (8.33)

Positive (15.17)
Positive (22.67)
Positive (26.83)
Positive (11.00)
Positive (11.83)
Positive (13.33)
Positive (19.83)
Positive (13.33)
Positive (30.67)
Positive (22.67)
Positive (14.33)
Positive (14.83)

BACTEC TTD values are presented for the ETGA-bottles. Microbial ID’s provided by parallel analyses of the corresponding cultures at the Hospital’s clinical microbiology

laboratory are also presented.
doi: 10.1371/journal.pone.0078488.t001
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Figure 2. ETGA time course monitoring of clinical blood cultures. (A-E) BACTEC-positive ETGA-bottles that underwent time
course monitoring were separated into 5 groups and linear plots were generated using their respective ETGA Blood Culture Assay
Ct values versus the time each culture bottle spent within the BACTEC instrument. A horizontal red line, representing a previously
determined ETGA blood culture assay positivity threshold, is also included in each plot as a visual reference. The sample ID
numbers are also included to the right of the curves in each graph and can be used to locate the corresponding microbial ID and
BACTED TTD values using Table 1. (F) Linear plots are also presented from ETGA time course analysis of 15 BACTEC-negative

ETGA-bottles.
doi: 10.1371/journal.pone.0078488.g002
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Table 2. Bacterial identification from ETGA assay sample lysates using gene specific PCR.

Sample ID Hospital Microbe ID S. aureus Assay Result E. coli Assay Result S. epidermidis Assay Result S. agalactiae Assay Result
4 E. coli Negative Positive Negative Negative
12 E. coli Negative Positive Negative Negative
39 E. coli Negative Positive Negative Negative
63 E. coli Negative Positive Negative Negative
183 E. coli Negative Positive Negative Negative
256 E. coli Negative Positive Negative Negative
254 E. coli Negative Positive Negative Negative
208 S. aureus Positive Negative Negative Negative
190 S. aureus Positive Negative Negative Negative
258 S. aureus Positive Negative Negative Negative
273 S. aureus Positive Negative Negative Negative
217 Streptococcus-group B Negative Negative Negative Positive
165 S. epidermidis Negative Negative Positive Negative

Thirteen of the ETGA Blood Culture Assay Sample lysates were analyzed by 4 different qPCR assays specific for genomic DNA targets of S. aureus, E. coli, S. epidermidis,
and S. agalactiae.
doi: 10.1371/journal.pone.0078488.t002
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Supporting Information

Figure S1. The plating images and ETGA curves are
presented for sample ZSL-229 in an effort to highlight the
potential source of the atypical growth curve behavior
presented in Figure 2C.

(TIF)

Table S1. Time-to-Detection comparisons were compared
for the ETGA blood culture assay versus a BACTEC
instrument.

(TIF)

Table S2. The raw ETGA data and parallel CFU monitoring
of the time course results corresponding to Figure 2A.
(TIF)

Table S3. The raw ETGA data and parallel CFU monitoring
of the time course results corresponding to Figure 2B.
(TIF)

Table S4. The raw ETGA data and parallel CFU monitoring
of the time course results corresponding to Figure 2C.
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