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Abstract

In this paper, I describe a set of procedures that automate forest disturbance mapping using a pair of Landsat images. The
approach is built on the traditional pair-wise change detection method, but is designed to extract training data without user
interaction and uses a robust classification algorithm capable of handling incorrectly labeled training data. The steps in this
procedure include: i) creating masks for water, non-forested areas, clouds, and cloud shadows; ii) identifying training pixels
whose value is above or below a threshold defined by the number of standard deviations from the mean value of the
histograms generated from local windows in the short-wave infrared (SWIR) difference image; iii) filtering the original
training data through a number of classification algorithms using an n-fold cross validation to eliminate mislabeled training
samples; and finally, iv) mapping forest disturbance using a supervised classification algorithm. When applied to 17 Landsat
footprints across the U.S. at five-year intervals between 1985 and 2010, the proposed approach produced forest disturbance
maps with 80 to 95% overall accuracy, comparable to those obtained from traditional approaches to forest change
detection. The primary sources of mis-classification errors included inaccurate identification of forests (errors of
commission), issues related to the land/water mask, and clouds and cloud shadows missed during image screening. The
approach requires images from the peak growing season, at least for the deciduous forest sites, and cannot readily
distinguish forest harvest from natural disturbances or other types of land cover change. The accuracy of detecting forest
disturbance diminishes with the number of years between the images that make up the image pair. Nevertheless, the
relatively high accuracies, little or no user input needed for processing, speed of map production, and simplicity of the
approach make the new method especially practical for forest cover change analysis over very large regions.
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Introduction

Rapid assessment of forest disturbance is an important source of

information for studies ranging from global environmental change

to local forest management planning [1], [2]. When viewed from a

disturbance perspective, changes in forested areas are also

important for understanding fluxes of carbon and water between

the biosphere and the atmosphere. For example, although North

American forests have been viewed as a net carbon sink, the

magnitude of the sink is uncertain and requires careful assessment

of land use history including harvest [3], [4], [5], [6], [7]. From a

forest management perspective, the age and composition of forests

are determined in part by harvest history, and land management

influences biodiversity and other ecosystem services in forested

areas.

Remote sensing, either alone or in combination with field

studies, has made great contributions to documenting land use

history in forested landscapes [8]. In particular, the Landsat

system has been the workhorse for characterizing many forest

changes given its long-standing archival imagery, dedicated

acquisition strategy, well-calibrated observations, and high spatial

resolution which provides the necessary detail to document fine-

grain changes. The literature on remote sensing-based change

detection studies in forested areas is rich with a wide range of case

studies, methods, and applications in virtually every type of

environment [9], [10], [11], [12], [13], [14], [15].

In recent years, a variety of new methods have been developed

to process and extract forest disturbance information, including

semi-automated methods [16], [17], [18], [19], [20], [21]. These

methods rely on the availability of relatively dense acquisitions

(annual or biennial) of image data, which may exist only in a few

places (e.g. the United States), despite the recent opening of the

Landsat archive [8]. In other locations, characterization of land

cover change still occurs at relatively sparse temporal intervals [9],

[13], relying on pairs of images from different years. In these

locations, image acquisition strategies coupled with issues related

to cloud cover and the Landsat 7 Scan-Line-Corrector (SLC)-Off

problem preclude image analysis that requires dense time series. In

regions with limited temporal coverage, other approaches are still

needed that are sufficiently generalizable and repeatable to

document forest cover changes through time.

In this paper, I revisit the traditional pair-wise change detection

method for forest disturbance mapping and provide a set of

procedures that automate the process of image-to-image informa-

tion translation. The methods presented here rely on the distinct

spectral signature associated with forest disturbance captured in a
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pair of Landsat images. The approach also relies on the ability to

automatically capture this signal without user interaction and use

it in a robust supervised classification algorithm that can handle

incorrectly labeled training data. The method is essentially a

supervised classification exercise, but eliminates the need for

manual image interpretation for extracting training data. It is

specifically designed to work in situations where dense time stacks

of Landsat imagery are not available and the user is forced to use

pair-wise image analysis [20]. If dense time series of data are

available, the proposed method is also applicable by using a

sequence of image pairs.

Materials and Methods

The methodology includes the following steps: a) preprocessing

of the Landsat image pairs by masking all clouds, cloud shadows,

and non-forested areas such as water and agriculture (sections 2.2,

2.3, and 2.4); b) automated extraction of training data from local

windows using the Landsat shortwave-infrared (SWIR) band

difference image with local windows (section 2.5); c) removal of

incorrectly labeled instances in the training data through n-cross

validation (section 2.6); d) classification of disturbed areas using a

supervised classification algorithm (sections 2.7 and 2.8); and e)

per-pixel to per-region translation of classification results using

segmentation (section 2.9). These steps are illustrated in Figure 1

and described below in further detail.

Data
To test the automated method, I used 17 Landsat footprints

defined by the World Reference System 2 (WRS2) path/row

structure (Table 1). These footprints were chosen to a) maximize

areal coverage; and b) represent a large variety of forested

ecosystems. For each footprint, a total of five image pairs acquired

by the Landsat Thematic Mapper (TM) and the Enhanced

Thematic Mapper Plus (ETM+) sensors at five-year intervals

between 1985 and 2010 (1985–1990; 1990–1995; 1995–2000;

2000–2005; and 2005–2010) were used. The twice-per-decade

interval reflects the tradeoff for the detection of disturbance/

regrowth and the limitation of available remotely sensed data to

detect these changes. Due to data limitations, images from plus/

minus one year of the nominal target year were used when

assembling the image dataset.

The selected images were ordered from the US Geological

Survey (USGS) as terrain corrected, thus no geometric normal-

ization was required. Each image in the time stack was chosen to

contain minimal or no cloud contamination and was acquired

during the peak-growing season. It was difficult to completely

avoid cloud issues so a robust cloud and cloud shadow screening

algorithm was used. In situations where an optimal image pair

match from peak growing season was not available, non-ideal

images were selected but this decision came with a tradeoff in

classification accuracy (see below). No ETM+ images acquired

after May 2003 were used in image pairs to avoid dealing with

data gaps resulting from the SLC problem, although the proposed

methodology could be revised to accept the SLC-Off images.

Cloud and Cloud Shadow Masking
The biggest challenge that cloud and cloud shadows cause in

forest disturbance analysis is the change in brightness values

between image dates that resembles the spectral changes

associated with forest disturbance. To avoid this problem, and

the misclassification that results, I applied a robust cloud and cloud

shadow detection algorithm developed by [22]. This method uses

a series of rules based on calculated probabilities of temperature,

spectral variability, and brightness, using Top of Atmosphere

(TOA) reflectance and Brightness Temperature (BT) as inputs.

The clouds and cloud shadows are treated as 3D objects

determined via segmentation of the potential cloud layer and an

assumption of a constant temperature lapse rate. The solar

illumination and sensor view angles are used to predict possible

cloud shadow locations and select the one that has the maximum

similarity to cloud shape and size.

Land–water Masking
The constant changing nature of inland water bodies also pose

problems for automatic forest change detection as the expansion

and contraction of lakes and rivers between image dates cause

darkening or brightening of image pixels. To identify and remove

water pixels, I used a procedure proposed by [19] that is based on

known spectral properties of water bodies such as low reflectance

in the SWIR (2.1–2.8 mm). Pixels are labeled as water if they have

low SWIR reflectance (less than 25%) and have either a decreasing

trend in reflectance values from the visible to the infrared bands or

have normalized difference vegetation index (NDVI) values less

than 0.3, or both.

Forest/Non-forest Masking
The purpose of this step is to identify potentially forested areas

and limit the application only to those locations. Note that while it

is possible to use existing land cover datasets, such as the US

National Landcover Dataset (NLCD) [23], map accuracy limita-

tions and the absence of this data set outside the US make its use

impractical for global applications. To identify pixels that are likely

to be forested I used the approach proposed by [16], which is

based on known spectral properties of forest canopies. Due to the

dark nature of red light in forested areas, this approach uses the

location of the dark peak in histograms extracted from local image

windows of the Landsat red band (Band 3). Referred to as the

‘‘forest peak’’, the location of this peak is used as a threshold to

separate forested pixels from their non-forested counterparts.

Automatic Extraction of Training Data for Forest Harvest
In this research, the process of extracting training data is

accomplished by identifying thresholds in histograms created from

local SWIR-band image windows. The SWIR portion of the

electromagnetic spectrum is widely recognized as containing the

most useful information for detecting changes in forested areas

[24]. Given a pair of SWIR reflectance images from two different

dates, subtraction of the second image date from the first date will

yield large negative reflectance values in disturbed forested areas.

This is because SWIR reflectance is often low in mature forests

and high in disturbed areas. In contrast, pixels representing forest

recovery/regrowth exhibit a large increase in reflectance values

between the two dates. The overall distribution of the SWIR

reflectance difference image is Gaussian with a mean value near

zero, primarily because the majority of the pixels between the two

dates exhibit no change and form the bulk of the distribution. In

contrast, areas that experienced forest disturbance or recovery are

in the negative (removal) and positive (regrowth) ends of the

distribution. In this research, the crucial part of the analysis is to

automatically identify the threshold values that separate change

from non-change locations in this histogram. Any deviation of the

mean from zero in the Gaussian distribution reflects the

atmospheric/radiometric/phenological differences between image

dates and is ignored for the purpose of this analysis. Note that in

change detection studies involving supervised image classification

where training data are extracted directly from the image pair to

Forest Disturbance Mapping
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be classified (e.g. this study), image radiometric and/or atmo-

spheric correction is not necessary [25].

The training data to identify pixels as disturbed, regrowth, and

no-change were extracted using thresholds applied in local image

windows of the two-date SWIR reflectance difference image. A

local window is defined as a square portion of an image, usually

400 by 400 pixels in size, extracted using a moving window

approach. When a local image window has sufficient proportions

of disturbed, regrowth, and no change areas, a fixed number of

standard deviations away from the mean is used to identify the

thresholds for training data. More specifically, in the absence of

water, clouds, cloud shadows, and non-vegetated surfaces – which

would already be masked out – forest disturbance and regrowth

pixels are identified as pixels whose value exceeds the threshold

defined by 1.5 times the standard deviations in either direction.

Note that while the value of the threshold changes across windows

and images, the number of standard deviations used to identify the

threshold is fixed across all windows and images. This number was

determined empirically to balance omission and commission

errors, using a large number of Landsat footprints. The purpose of

using local image windows is to select an appropriate threshold

that is not easily determined from global image statistics.

Identification of Incorrectly Labeled Training Data
The automatic extraction of training data can result in labeling

errors arising from the selection of inappropriate thresholds,

inaccurate masks, and mis-identification of forested areas. Previous

research has shown that removing mislabeled samples significantly

improves predictive accuracy of the classification process [26],

[27], [28], [29]. This step focuses on improving the quality of the

training data by identifying and eliminating mislabeled training

samples. To achieve this goal, I followed the filtering approach

originally proposed by [30] in which the raw training data is

passed through a number of classification algorithms through an n-

fold cross-validation process that serve as a filter to remove

mislabeled samples. More specifically, a number of subsets (n),

each of which capture about 70 percent of the population, are first

selected from the population randomly with replacement. Then

for each of n subsets, the m algorithms were trained on the other n -

1 instances. The m resulting classifiers were then used to label each

Figure 1. Graphical representation of the steps involved in the automated change detection method. Ellipses with light gray color
represent processes, rectangles with back fill represent results, and the elongated squares represent single- or multiple-layer image sources.
doi:10.1371/journal.pone.0078438.g001
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sample as either correct or mislabeled in the excluded samples.

Once all of the samples tagged as mislabeled are removed, the new

(i.e. filtered) training set is used as the final training input to the

classification algorithm described below. An interesting feature of

this approach is that it employs a consensus filter where only those

samples that all of the individual classifiers tagged as mislabeled

are discarded [30]. The approach is functionally equivalent to

techniques for removing outliers in regression analysis where an

outlier is defined as a case that does not follow the same model as

the rest of the data [30].

In this implementation, I used four well-known classification

algorithms: Support Vector Machines (SVM) [31], Decision Trees

(DT) [32], K-Nearest neighbor (KNN) [33], and Artificial Neural

Networks (NN) [34]. To ensure sufficient representation in the

training process, the original training dataset was divided into a

training set (70%) and a testing set (30%). For each run, the

distribution of the classes in the sample set was forced to reflect the

class distribution of the entire data set. At the end of the 10-fold

cross-validation process, samples that were incorrectly classified by

all four algorithms were identified as mislabeled and removed from

the analysis. Finally, the filtered training data are provided as an

input to the final SVM classifier. Note that apart from SVM, the

three pattern recognition algorithms (DT, KNN, and NN) chosen

for the filtering task were chosen somewhat arbitrarily. The

filtering process is independent of the choice of algorithm – what

matters is the consensus among algorithms when classifying a

training instance into a class label.

Support Vector Machines
Support vector machines (SVMs) are a supervised non-

parametric statistical learning technique that is increasingly being

used by the remote sensing community [35], [36], [37]. At the

heart of an SVM training algorithm lies the concept of a linear

hyperplane – an optimal boundary found through an iterative

learning procedure that separates the training set into a discrete

predefined number of classes while minimizing misclassifications

errors [38], [39]. Several approaches have been developed to

improve SVM predictive accuracies using multispectral remote

sensing data. These include the soft margin approach [30] and

kernel-based learning [40] that lead to SVM optimization,

although the kernel functions often result in more expensive

parameterization [41].

Prior research has identified at least three benefits of SVMs that

make them particularly suitable for remote sensing applications.

First, regardless of the size of the learning sample, not all the

available examples are used in the specification of the hyperplane.

This allows SVMs to successfully handle small training data sets

because only a subset of points – the support vectors – that lie on

the margin are used to define the hyperplane [36]. Second, unlike

many statistical classifiers, SVMs do not make prior assumptions

on the probability distribution of the data, which leads to

reduction in classification errors when input data do not conform

to a required distribution (e.g. Gaussian). Third, SVM-based

classification algorithms have been shown to produce generaliz-

able models from a set of input training data, eliminating the

notion of overfitting [42].

To perform the SVM-based classification, I used the LIBSVM

implementation that provides linear, polynomial (cubic) and

radial-basis kernels [43]. This implementation includes C-support

vector classification (C-SVC), n-support vector classification (n-

SVC), distribution estimation (one-class SVM), e-support vector

regression (e-SVR), and n-support vector regression (n-SVR)

formulations. All SVM formulations supported in LIBSVM are

quadratic minimization problems. Using the radial-basis kernel

classification option, the LIBSVM required only two parameters

to be defined: the kernel parameter c and the cost parameter C

[43]. Both of these parameters are data dependent and are

identified separately for each footprint/date-pair combination

using the grid search option over log-transformed hyper-param-

eters as suggested by [44].

Note that SVMs have been shown to perform well given a

certain level of noise (i.e. mislabeled training data) but they are not

Table 1. Dates of test images used in the analysis.

path/row 1985 1990 1995 2000 2005 2010

11/28 7/1/85 7/2/91 6/27/95 6/22/99 7/8/05 6/17/09

13/30 9/1/85 9/2/91 8/30/96 9/10/00 9/8/05 8/18/09

15/36 5/26/85 5/8/90 5/6/95 5/3/00 5/4/06 4/29/10

16/31 7/23/86 8/3/90 8/1/95 8/1/01 7/11/05 7/6/09

17/33 9/13/85 8/29/91 8/24/95 9/6/00 8/3/05 9/2/10

17/38 11/13/84 11/14/90 11/14/96 10/27/01 11/23/05 10/23/11

19/36 5/19/84 5/7/91 5/4/96 5/15/00 5/13/05 5/27/10

21/29 9/6/84 8/25/91 9/18/94 9/18/00 9/13/04 8/29/10

21/38 6/24/86 6/19/90 6/17/95 6/17/01 5/27/05 5/25/10

24/38 11/1/85 10/30/90 10/30/96 10/25/00 10/23/05 11/6/10

25/28 9/18/84 9/16/89 9/1/95 8/29/00 8/27/05 9/7/09

28/27 8/28/86 9/5/89 9/19/94 9/17/99 9/4/06 8/17/11

34/33 7/2/85 7/13/89 6/25/94 7/1/02 7/6/04 6/21/10

42/27 7/26/85 8/6/89 8/9/96 8/7/01 7/20/06 7/15/10

43/33 9/16/84 9/1/90 9/15/95 9/12/00 9/7/04 9/24/10

46/27 8/23/85 9/9/91 8/21/96 8/16/00 7/29/05 7/30/11

46/30 8/4/84 8/8/91 8/3/95 8/19/01 7/29/05 7/24/09

doi:10.1371/journal.pone.0078438.t001
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completely impervious to outliers [45]. While a number of

methods have been developed to mitigate the effects of outliers

on SVMs [46], [47], [48], [49], they show only incremental

improvements over standard SVM methods.

Input Data to Classification
The primary input to the SVM classifier was the multi-temporal

extension of the well-known Kauth-Thomas (KT) transformation

[50], [51]. The KT indices and in particular the wetness index

have been shown to be useful in mapping forest structure,

condition, and disturbance in coniferous forests [52], [53], [54],

[55], [56]. [57] extended the KT transform to multi-date imagery

(hereafter, MKT) to arrive at three new components: change in

brightness (DB), change in greenness (DG), and change in wetness

(DW). The MKT is well-suited to forest change mapping given

that: (a) MKT uses known linear transform coefficients; (b) MKT

uses all of the Landsat spectral information; and (c) the MKT

change in brightness, greenness, and wetness bands are physically

interpretable [57]. I used a six-band image stack composed of first

date’s brightness, greenness and wetness indices and MKT change

indices. In this representation, the first date KT data is used to

anchor the condition of forested areas prior to disturbance and the

MKT indices reflect subsequent changes [58]. An additional

benefit of this arrangement was reduced confusion between

shifting agricultural patterns and forest clearing.

Post-classification Processing
Raw outputs from a classification algorithm often contain

significant errors when examined on a pixel-by-pixel basis. To

overcome this issue, I employed a post-classification segmentation

process to translate the initial per-pixel results to per-polygon

outcomes (segments). To do this, the segmentation algorithm

developed by [59] with a minimum mapping unit of six Landsat

pixels (roughly equal to 0.5 hectares) was used. Input features to

the segmentation tool included a combination of Landsat bands 3,

4, and 5 (red, NIR, and SWIR) images from the pre- and post-

disturbance period (a total of six bands). Per-pixel classification

results were first eroded and dilated, and converted to polygon-

based outputs using a simple plurality rule. The final polygon-

based classified images were more realistic and devoid of the high

frequency noise present in the original per-pixel classification

results. After adding in water, clouds, cloud shadows, and non-

forested areas that were masked out earlier, the final map

contained six categories: disturbed areas, stable forest, stable non-

forest, water, clouds, and cloud shadows.

Map Validation
An independent, stratified random sample of accuracy assess-

ment sites was used to estimate the final map accuracy for each

Landsat footprint, using traditional map accuracy measures [60],

[61]. Although the final classification contained six categories, I

assessed the accuracy of only two strata: forest disturbance and stable

forest. For each of these categories, I randomly extracted 100 sites

in the form of polygons from the segmented results. This

procedure was repeated for the 17 footprints across five time

periods, with a total of 17,000 samples (200 samples 6 17

footprints 6 5 time periods). For each sample, three analysts

conducted accuracy assessment at the level of individual polygons

through visual inspection of both MKT and Band 4, 5, and 3

(RGB) color composite images as well as vector overlays within

Google Earth.

While it would have been desirable to use an independent,

ground-validated dataset to assess the accuracy of the harvest

maps, neither the data nor the resources to evaluate 17 footprints

were available or logistically feasible. Assessing accuracy was

especially challenging because forest harvest activity had to be

evaluated for nearly three decades. Therefore, I primarily relied

on imagery itself as the only consistent source of evaluation.

Moreover, both [53] and [54] showed that manual interpretation

of tasseled-cap transformed Landsat imagery could be as accurate

for mapping forest clear-cuts as field-based datasets. Therefore, I

chose to use the transformed imagery to test the agreement

between harvested areas identified by our algorithm and the ones

identified by the third party analyst.

Results

Accuracy of Classifications
The evaluation of the forest change maps derived from the

automated procedure includes an assessment of the overall map

accuracy, which measures the proportion of individual footprint

area that is classified correctly into two categories. The overall

accuracy of the forest change and stable forest classes using the

automated classification across all footprints and time periods

ranged from 40 to 99 percent with a mean value of 82.3612.5

percent (N = 85) (Figure 2). These overall accuracy values are

quasi-normally distributed, but are positively skewed having the

bulk of the quantities between 80 and 90 percent (Figure 2).

From these samples, I also extracted standard user’s and

producer’s accuracies for each category. The user’s accuracy

measures the proportion of classified areas as belonging to a

category that should be labeled in that category, while the

producer’s accuracy measures the proportion of map areas

belonging to a category that is classified as belonging to that

class, and are related to the to commission and omission errors.

Both the user’s and the producer’s accuracies range from about 40

to 100 percent for both classes but the distribution of these errors

across classes varies. User’s accuracy for the forest change category

is more evenly distributed between 40 and 100 percent although

the bulk of the distribution is at the higher end (Figure 3 panel A).

The producer’s accuracy, on the other hand, is consistently high

for this class as shown in Figure 3 panel B. For the stable forest

category, the results are reversed: much higher accuracies are

found for the user’s accuracy while a more even distribution of

producer’s accuracies exists for this category (Figure 3 panels C

and D).

I also defined accuracy based on the rate at which the proposed

method could correctly identify forest change (also known as the

True Positive Rate) and the rate at which it identified forest change

when there was none (also known as the False Positive Rate) in a

Receiver Operator Characteristics (ROC) curve (Figure 4). Several

conclusions can be drawn from this analysis. First, the majority of

data points lie at the upper left corner of the ROC curve,

indicating that the classification results are non-random and the

approach produces reliable classification results. Second, the

probability of falsely identifying a forest patch as change when

there was no change is smaller than the probability of correctly

identifying a patch as changed. Third, there is a relationship, albeit

an expected one, between overall accuracy – indicated by the

color of the dot on Figure 4 – and the amount of true or false

positive rate in the classification results.

The final form of accuracy assessment involved visual assess-

ment of the change maps, extracted from a portion of each

footprint, against the original Landsat images as well as against the

National Agriculture Imagery Program (NAIP) data for the year

closest to the change date (Figures 5 and 6). First, in all cases, the

derived forest change maps accurately capture the spatial

distribution of forest disturbance as evidenced by both Landsat

Forest Disturbance Mapping
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and NAIP imagery interpretation (Figure 5 panels A through E).

Second, most errors are confined to commission errors, especially

in landscapes with complex terrain (e.g. Figure 5 panels B and C).

This finding is also verified quantitatively by the accuracy

Figure 2. Distribution of overall accuracy values across all footprints and time periods.
doi:10.1371/journal.pone.0078438.g002

Figure 3. Histogram distribution of user’s (upper panels) and producer’s (lower panels) accuracies for forest change (left) and
stable forest (right) categories.
doi:10.1371/journal.pone.0078438.g003
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assessment reported in Figures 2 and 3. Third, non-ideal

acquisition dates for image pairs such as an acquisition too early

or too late in the season, as well as long periods of time between

image dates reduce the reliability of maps derived from the

automated procedure. For example, there is a one-month gap

(August 3 to September 2) between the acquisition dates of the

West Virginia pair (Figure 6 panels D and E). While the

automated approach successfully determined harvested conifer

stands between the dates, some issues remain due to errors of

omission given the leaf-off status of the deciduous stands. With the

successful launch of Landsat 8 in early 2013 [62], there will be

more opportunities to acquire data during leaf-on seasons as a

potential and simple remedy to this issue.

The Effects of Filtering
On average, the filtering process removed 20 percent (2067%)

of the original, automatically extracted training data. The removal

of incorrectly-labeled training data significantly improved the

classification accuracy (at the 0.05 level of significance using a

paired t-test) in many cases. The primary improvements occurred

through a reduction of false positives, or areas falsely identified as

forest change when there was none as illustrated in Figures 7 and

8. In the first case, a forest-only area composed of both coniferous

and deciduous stands targeted for harvest is shown (Figure 7). The

changes in the landscape are clearly manifested in both the before-

and after-harvest images, as well as in the Band 5 difference image

(Figure 7 upper panel). Without filtering, most of the coniferous

stands located in the center of the scene are labeled as harvested,

although visual inspection of the Landsat images clearly indicates

that this is not the case (Figure 7, lower left panel). When this

image is classified using the filtered training data, this stand is not

longer a part of the forest change category, which is the correct

expectation (Figure 7, lower left panel). Finally, the image in the

lower right panel highlights the differences between classification

results achieved with and without filtering.

In the second case presented in Figure 8, a mixed forested/

agriculture landscape is chosen. In this example, the main benefit

of removing the incorrectly labeled samples is the reduction of

false positives, or areas incorrectly identified as forest disturbance

in cropland areas. For example, the tea kettle-shaped agricultural

field in the center is classified as forest change with the unfiltered

training data, but not with the filtered input. Similarly, the wide,

short field in the northwest center was partially classified as forest

change, even though it is clearly an agricultural field in the first

date (Figure 8, upper and lower panels). Note that filtering does

not improve the incorrectly-labeled agricultural area in the center

west part of the image. In this case, both the filtered and unfiltered

set produce the same incorrect forest change label (Figure 8).

Discussion

The traditional two-date change detection process in forested

areas requires user interaction to define a threshold separating real

changes from those caused by a variety of other factors, including

seasonality and changes in illumination conditions. When analyz-

Figure 4. ROC curve showing the distribution of true and false positive rates of all samples used in the analysis. The color range from
yellow to dark red is indicative of overall accuracy of the sample, where red reflects high accuracy.
doi:10.1371/journal.pone.0078438.g004
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Figure 5. Samples used in the visual assessment of map accuracy. The left two columns are the Landsat images used in the change detection
process. The third column is the derived change polygons displayed on the original Landsat images. The last column is NAIP imagery acquired in the
year closest to the post-forest disturbance year. The locations are: A. Oregon (path/row 46/30); B. Oregon (path/row 46/30); C. Washington (path/row
44/26); D. Georgia (path/row 17/38); E. South Carolina (path/row 17/38).
doi:10.1371/journal.pone.0078438.g005
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Figure 6. Same as Figure 5 but for different locations: A. Minnesota (path/row 28/27); B. Minnesota (path/row 28/27); C. Minnesota
(path/row 28/27); D. West Virginia (path/row 17/33); and E. West Virginia (path/row 17/33).
doi:10.1371/journal.pone.0078438.g006
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ing forest changes over large areas, this user intervention adds

significant cost to production. The automated methods proposed

here eliminate this user input and are suggested as a simple

method to map large areas quickly and efficiently.

However, several requirements must be met for the approach to

become an operational methodology. First, the method relies on

good geometric correction of images. While all images from the

USGS archive are distributed as geometrically corrected and GIS-

ready, occasionally there were scenes with shifted coordinates. Of

the 85 images analyzed for this work, two were identified as having

this problem. Second, the method relies on images acquired

during the peak growing period, at least for the deciduous sites. A

difference of more than three months causes the false positive rate

to increase significantly. While seasonality does not present a

significant challenge for detecting disturbance in coniferous forests,

leaf-on images are recommended for deciduous areas. Given the

improved acquisition strategies and opportunities for more

frequent sampling by missions such as Landsat 8 and Sentinel

II, this problem may be eliminated in the near future [62].

In areas with persistent cloud cover, the automated change

algorithm produces results with large amounts missing data,

leading to maps that are not useable. While the recently developed

forest change methods that rely on dense time series deal with this

issue by replacing data gaps left by clouds and cloud shadows with

data from the dense time stack [20], [21], the method described

here is not capable of doing this. Dense time stacks are not always

available for all regions, which is why the proposed method may

be more appropriate in some cases. Imperfect cloud and cloud

Figure 7. The effects of filtering mislabeled training data on classification accuracy in a forest only landscape in Northwestern
Wisconsin. A. pre-harvest image bands 453 as RGB; B. post-harvest image bands 453 as RGB; C. band 5 difference image; D. filtered result; E.
unfiltered result; and F. difference between the results.
doi:10.1371/journal.pone.0078438.g007

Figure 8. The effects of filtering mislabeled training data on classification accuracy in a forest and agriculture mosaic landscape in
Southern Wisconsin. A. pre-harvest image bands 453 as RGB; B. post-harvest image bands 453 as RGB; C. band 5 difference image; D. filtered result;
E. unfiltered result; and F. difference between the results.
doi:10.1371/journal.pone.0078438.g008
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shadow screening also presents significant challenges to the change

detection algorithm described here. The most adverse effect of

missed cloud or cloud shadow pixels is that the changes in

brightness values are incorrectly labeled as disturbed areas. Third,

the current version of the proposed approach does not capture

forest regrowth. However, with a few modifications, it would be

possible to automatically extract training data for re-establishing

forest stands and produce a map of forest recovery. This extension

may further allow separation of forest disturbance from permanent

land cover change involving forests.

Fourth, as it is currently implemented, the proposed method

cannot distinguish forest harvest from natural disturbances or land

cover change. The process described here simply looks for and

identifies the spectral manifestation of changes on the ground, but

does not identify the type of changes. Although changes unrelated

to forest disturbance are minimized by using an internal forest

mask and filtered training data, the cause of changes on the

ground is not reported, in line with many change detection

methods. Given modifications to the approach presented in this

work to capture forest recovery following a disturbance, it may be

possible to further limit areas that have experienced permanent

land cover change (e.g. conversion to agriculture or urban, built-

up classes). Moreover, because it is relatively fast, the algorithm

can produce change maps quickly. This allows users to compare

multiple change maps in forested areas, which may in turn reveal

the causes of disturbance depending on the pattern, timing, and

the nature of the disturbance. Finally, there is a requirement

imposed by the number of years between the images that make up

the pair. In several cases, forest disturbance occurred immediately

after the early image in the pair (pre-disturbance), leaving up to

five years for the disturbed area to recover. This led to a reduction

in the Band5 reflectance difference that is used as a basis for

mapping disturbance. While SVMs are robust towards this form of

variation in training data, the limit of a threshold used to separate

disturbance from stable forests is quickly reached and may exclude

areas with more subtle change signals.

Given these requirements and limitations, what is the utility and

benefit of the automated forest change detection method described

here? There are several immediate advantages worth mentioning.

First, the proposed method does not require any interactive pre-

processing involving decision-making by the image analyst. While

there are a number of pre-processing steps such as cloud and cloud

shadow masking, forest/non-forest delineation, and water/land

masking, these are all accomplished automatically using well-

tested, well-established algorithms. The only required input is the

image pair from the USGS or other archives. These terrain-

corrected image sets are provided to the algorithm without any

further modification. Second, the algorithm is particularly useful in

areas with less-than-ideal temporal coverage. There is no doubt

that the growing temporal depth of Landsat and Landsat-like

observations provides a unique opportunity for algorithms that

operate across a temporal sequence of images [20], [21]. However,

due to various acquisition strategies and cloud cover, the temporal

record is not growing at the same pace in every region. In fact, as

stated in [20], the biggest challenge in applying a dense record of

temporal images is constructing an appropriate stack of Landsat

imagery, and without it, the accuracy of change detection may

diminish precipitously [54], [63], [56].

Another relevant question concerns the processing time

required to derive a single change map automatically relative to

existing methods. Using a 2010-era computer, each footprint takes

about 30 minutes to process. The 85 image pairs tested here

required two days of processing time. Given the overall accuracy

of the final maps, this quick processing time presents a significant

improvement for map-making over large areas. The most time-

consuming parts of the process are the SVM classification and

image segmentation. Depending on the complexity of the training

data, the SVM processing takes somewhere between 5 and 20

minutes with an additional 10 minutes required for the segmen-

tation process. While this may be considered slow, it is necessary to

convert the per-pixel classification output to a polygon-based map.

The improvement in processing time becomes especially impor-

tant as the number of images requiring classification increases due

to an increase in the size of the area to be mapped or the

frequency with which forest change is to be monitored.

Finally, there are several conclusions that can be drawn from

examining the patterns of observed errors in the change maps.

First, when non-forested areas, especially those involving agricul-

tural land, are mistakenly included in the training data (for

example, as a result of imperfect forest/non-forest masking), the

mis-classification errors rapidly increase as changes in agricultural

cycles are confused with forest change. Inclusion of areas such as

agricultural land, shrubland or brush can cause large errors of

commission in the forest change class, so a robust method/mask is

required to screen out these areas. Nevertheless, the fact that many

of these observed errors can be traced to understandable and

potentially correctable causes is encouraging.

It is important to note that the filtering procedure may remove

samples of a particular class, or of a subset of the classes, to achieve

higher accuracy in the remaining classes. While I did not test this

hypothesis implicitly, the fact that filtering never decreased

accuracy, even in cases with near-perfect (i.e. with very small

number of filtered values) training datasets, suggests that filtering

does not sacrifice the accuracy of some of the classes to improve

overall accuracy.

The reason for improved SVM classification results with the

filtered training data was most likely related to the way the SVMs

search for an optimal solution to class separation [35]. When the

SVM searches for a non-linear decision boundary using kernel

functions, the improved training data allow better definition of this

boundary by providing more samples to be used in the criteria for

class decision. Since easier samples are not generally useful

because they are often far from the hyperplane, an improvement

in training data is likely to improve the definition of the decision

boundary.

Conclusion

In this paper, I provide a set of procedures that automate the

process of image-to-information translation for detection of

changes in forested areas. The method relies on the distinct

spectral signature associated with forest harvest present in multi-

date Landsat imagery, and the ability to automatically capture this

signal without user interaction and use it in a robust supervised

classification algorithm. The proposed approach can handle

incorrectly labeled training data. Although inherently a change

detection exercise involving a supervised classification algorithm,

the proposed method eliminates the need for manual image

interpretation for extracting training data. It is specifically

designed to work in situations where dense time stacks of Landsat

imagery are not available and the user is forced to use a pair of

images over large areas rather than relying on the dense spectral-

temporal profile.

The implementation of the automated method is accomplished

in several steps: a) pre-processing of pair-wise Landsat images in

the form of cloud and cloud shadow masking and excluding all

non-forest areas including water and agriculture using masks; b)

automated extraction of training data using Landsat shortwave

Forest Disturbance Mapping

PLOS ONE | www.plosone.org 11 April 2014 | Volume 9 | Issue 4 | e78438



infrared (SWIR) band difference image with local windows; c)

automatic removal of incorrectly labeled instances in the training

data; d) classification of harvested areas using an implementation

of the SVM supervised classification algorithm; and e) per-pixel to

per-region translation of classification results using a segmentation

analysis.

The requirements for the method to produce appropriate forest

change products include peak growing season acquisition of two

images that form the pair, accurate masking of forest and non-

forested areas, and a robust methodology to screen clouds and

cloud shadows. When these conditions are met, the method can be

used to produce forest change maps rapidly and with accuracies on

par with those delivered by traditional change detection methods.

One of the advantages of the proposed approach is the speed: a

pair of Landsat images can be processed to create a change map in

under an hour. Finally, the automated approach can screen

incorrectly labeled instances from the dataset used to train the

SVM algorithm, which improves the classification accuracy by

reducing commission errors.

When applied to 17 Landsat footprints covering a wide range of

forested ecosystems undergoing different rates and amounts of

change, the automated method produced forest change maps with

overall accuracies in the 80 to 90 percent range based on both

quantitative and visual assessment of a large number of samples.

The new method is especially useful for forest cover change

analysis over very large regions due to the relatively high

accuracies, little or no user input required for processing, speed

of map production, and the simplicity. Finally, after some

modification, the algorithm is also capable of producing maps of

forest recovery, presenting a simple tool for complete forest change

assessment.
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