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Abstract

Understanding gene transcription regulatory networks is critical to deciphering the molecular mechanisms of different
cellular states. Most studies focus on static transcriptional networks. In the current study, we used the gastrin-regulated
system as a model to understand the dynamics of transcriptional networks composed of transcription factors (TFs) and
target genes (TGs). The hormone gastrin activates and stimulates signaling pathways leading to various cellular states
through transcriptional programs. Dysregulation of gastrin can result in cancerous tumors, for example. However, the
regulatory networks involving gastrin are highly complex, and the roles of most of the components of these networks are
unknown. We used time series microarray data of AR42J adenocarcinoma cells treated with gastrin combined with static TF-
TG relationships integrated from different sources, and we reconstructed the dynamic activities of TFs using network
component analysis (NCA). Based on the peak expression of TGs and activity of TFs, we created active sub-networks at four
time ranges after gastrin treatment, namely immediate-early (IE), mid-early (ME), mid-late (ML) and very late (VL). Network
analysis revealed that the active sub-networks were topologically different at the early and late time ranges. Gene ontology
analysis unveiled that each active sub-network was highly enriched in a particular biological process. Interestingly, network
motif patterns were also distinct between the sub-networks. This analysis can be applied to other time series microarray
datasets, focusing on smaller sub-networks that are activated in a cascade, allowing better overview of the mechanisms
involved at each time range.
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Introduction

Understanding gene transcription regulatory networks is critical

to deciphering the molecular mechanisms resulting in different

cellular states in response to growth factors [1,2]. Gastrin is a

peptide hormone that is mainly produced by G-cells in the

stomach in response to a meal. It plays a key role in the

physiological regulation of gastric acid secretion [3]. Gastrin binds

to the cholecystokinin receptor-2 (CCKR-2), forming an active

complex that initiates a signaling cascade [4]. The transduced

signal results in different cellular processes such as growth,

differentiation, proliferation, migration, angiogenesis and apopto-

sis [5–7]. Recent studies have revealed that gastrin can act as a co-

risk factor for gastric carcinogenesis and atrophy in Helicobacter

pylori infection [8,9]. Dysregulation of gastrin can result in

cancerous tumors, for example [10]. These cellular states are

achieved through complex gene transcription regulation pro-

grams.

Gene regulatory networks are highly complex and dynamic,

especially the coordinated regulation between transcription factors

(TFs) and their target genes (TGs) [11–13]. At present,

reconstructing these dynamic networks is a challenging task

because only static TF-TG interaction data are available. In the

gene regulation process, an active TF binds to the promoter region

of a TG and initiates the process of transcription. The majority of

transcription factors are not inherently active but become

activated through complex mechanisms such as forming homo-

or heterodimers, interacting with other signaling proteins and co-

factors or binding to a specific microRNAs. The activity of a TF is

dependent on the specific environment, cell type, and system

dynamics. Thus, only specific TFs are active and regulate a set of

TGs in a specific condition, resulting in a specific biological

outcome in response to external stimuli. The group of active TFs

and their regulated TGs are called active sub-networks or

regulatory modules. For example, a regulatory module consisting

of the TFs EGR4, FRA-1, FHL2 and DIPA promotes prolifer-

ation in breast cancer cells in response to epidermal growth factor

(EGF) [2].

Understanding cellular functionality by studying its key

components, interactions and network topological measures is a

common approach in systems biology [14–17]. However, most of

these studies are confined to static networks. Adding dynamic

features to these studies may lead to new insights. Different active

sub-networks have varying topological measures that characterize

their biological functions. Thus, studying the active sub-networks

in regulatory networks that respond to external signals may help to

determine the cell fate.

It is well known that transcription networks often contain a

small set of recurring regulatory patterns called network motifs.

These small networks are frequently found in quantities that are

significantly larger than would be expected for random networks
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[18]. These are the basic building blocks of any gene regulatory

network and are found in the transcriptional networks of diverse

organisms [19]. In the regulatory networks of Saccharomyces cerevisiae

and Escherichia coli, a 3-node motif called a feed forward-loop and a

four-node motif called a bi-fan are the most common [18]. These

network motifs are unique for each active sub-network. Finding

these motifs in active sub-networks can enhance our understand-

ing of the design principles of complex regulatory networks.

In the current study, we combined time series gene expression

data and static TF-TG interaction data to study the dynamic

features of gastrin-regulated transcriptional networks. We recon-

structed the dynamic activities of key TFs using network

component analysis (NCA) [20,21]. Our study identified four

active sub-networks at four time ranges, namely immediate-early

(IE), mid-early (ME), mid-late (ML) and very late (VL). These sub-

networks showed variations in their network topological measures

and network motif usage. In addition, gene ontology analysis of the

TGs in each active sub-network demonstrated that each network is

highly enriched with specific biological processes. Overall, our

study provides a framework for studying dynamic transcription

networks and obtaining new biological insights on the manner

networks at specific time ranges as a response to external stimuli.

Materials and Methods

Data preprocessing
The gene expression data used in this study were obtained by

measuring the response of AR42J adenocarcinoma cells treated

with gastrin hormone at 11 time points over a period of 14 hours.

We downloaded the data from GEO database (Array Express

accession number: GSE32869) [22]. We applied loess normaliza-

tion within time points and quantile normalization across time

points [23]. The expression values were averaged over two

replicate measurements. We conducted t-tests to identify differen-

tially expressed genes (DEGs). The DEGs with p-value,0.05 at

more than two time points were selected for further analysis [23].

This analysis resulted in 4105 DEGs. To reduce the noise and to

smooth the data, we used Fourier transform functions to fit the

time-series data. All the computations were performed using

bioinformatics toolbox in MATLAB.

Static regulatory network construction
We collected the experimentally verified TF-TG regulations

from TFacts [24], a database containing experimentally validated

regulations between 2720 TGs and 330 TFs. This database

includes information integrated from different resources as TRED,

TRDD, PAZAR NFIregulomeDB and their own experimental

predictions. In addition we retrieved TF-TG interactions based on

Chip-X experiments from Transcriptome Browser [25]. This list

includes interactions between 312 TFs and 13133 TGs. Further-

more, we collected protein-protein interactions between TFs from

BIOGRID [26] and HPRD [27] data bases. We integrated all the

data to construct a static regulatory network of 449 TFs, 13398

TGs and 164077 unique interactions among them.

Active sub-networks for four time ranges were excerpted from

static network by incorporating gene expression data and

predicted TF activities from NCA. For each time range, active

TFs and TGs (which displays higher expression/activity than a

threshold) were identified and combined it with static network to

define an active sub-network.

Network component analysis (NCA)
Network component analysis (NCA) is a computational method

for reconstructing hidden regulatory signals (TFs activity) from

gene expression data with known connectivity information in

terms of matrix decomposition [20,28]. The NCA method can be

represented in matrix form as follows:

½E�~½C�½T � ð1Þ

where the matrix [E] represents the expression values of genes at

various time points, the matrix [C] is the control strength of each

TF on a target gene (TG), and the matrix [T] represents the

activities of all of the TFs. The dimensions of [E], [C] and [T] are

N X M (N is the number of targets, and M is the number of time

points or measurement conditions), N X L (L is the number of

TFs) and L X M, respectively.

Based on above formulation, the decomposition of [E] into [C]

and [T] can be achieved by minimizing the following objective

function:

min ½E�{½C�½T �k k

s:t:C[Z0

ð2Þ

where Z0 is the initial connectivity pattern. [C] and [T] are

estimated using a two-step least-squares algorithm and are

normalized through a nonsingular matrix [S] according to

½E�~½C�½T �~½C�½S�½S{1�½T � ð3Þ

To guarantee the uniqueness of the solution for equation (3) up

to a scaling factor, certain criteria, termed NCA criteria, must be

satisfied:

N The connectivity matrix [C] must have full-column rank

N When a node in the regulatory layer is removed along with all

of the output nodes connected to it, the resulting network must

be characterized by a connectivity matrix that still has full-

column rank

N The [T] matrix must have full row rank

Using NCA as the reconstruction method, we predicted

significant TFs and their temporal activity profiles.

Network topological metrics
The degree of a node n, k(n), is the number of edges connected

to it. The in-degree and out-degree of a node n is the number of

edges with n as their terminal and initial nodes, respectively. The

clustering coefficient, Cn of a node n with k neighbors is the ratio of

the actual number of edges En between the neighbors to all the

possible edges.

Cn~
2En

Kn(Kn{1)
ð4Þ

In the case of directed networks,

Cn~
En

Kn(Kn{1)
ð5Þ

The betweenness centrality Cb(n) of a node n is defined as

follows.

Gastrin-Treated Regulatory Network
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In the case of directed networks,

Cb(n)~
X

s=n=t

(sst(n)=sst) ð6Þ

where s and t are nodes in a network different from n, sst denotes

the number of shortest paths from s to t, and sst(n) is the number of

shortest paths from s to t that n presents in between. The closeness

centrality Cc(n) of a node n is defined as the reciprocal of the

average shortest path length.

Cc(n)~
1

avg(L(n,m))
ð7Þ

where L(n,m) is the length of the shortest path between two nodes n

and m. The mean values of all the topological metrics of all nodes

in a network was computed to create a global view of the network.

All computations are performed using the Cytoscape software tool

[29].

Network motif detection
Network motifs are small networks that are present in large

complex networks at higher frequencies than in random networks.

To understand the regulation patterns, we used the FANMOD

tool [30,31] to find 3- and 4-node sized network motifs. Significant

motifs were identified based on a statistical measure, the Z-score.

The Z-score of a network motif is defined as the difference

between the frequencies in the original and random networks

divided by the standard deviation.

Gene ontology analysis
Gene ontology (GO) analysis aims to capture increasing

knowledge of gene functions in a collective manner. We used

the ClueGO tool [32] to find the highly enriched biological

processes in active sub-networks. To calculate the enrichment

values, we used a two-sided (enrichment/depletion) hypergeo-

metric test, and p-values were adjusted for multiple testing using

the Bonferroni method. ClueGO employs a new kappa static

measure (ranging from 0 to 1) to link the terms or groups in the

network. We chose a kappa score of 0.3. The size of the node in

the network reflects the enrichment of the terms.

Results and Discussion

The workflow of our data pre-processing and subsequent

analysis is presented in Figure 1. For this study, we used gene

expression time series data of AR42J adenocarcinoma cells in

response to gastrin measured at 11 time points over a period of

14 hours. The expression data provides the basis for our analysis

of transcriptional regulatory network dynamics.

Dynamics of gene expression and transcription factor
activity

The changes in the expression of differentially expressed genes

(DEGs) over the 14-hour period after gastrin stimulation are

shown in Figure 2A. The gene expression data are clustered in a

way such that we can observe both sequential and combinatorial

regulation patterns. This expression pattern clearly displayed

early-, mid-, and late-phase responses to gastrin stimulation. In

addition, this expression pattern characterizes a typical stimuli

response. The majority of the genes showed impulse response

(exhibiting peak expression only at one time point), one of the

typical response patterns in time series data [33].

We used network component analysis (NCA) [20] to reconstruct

the dynamic activities of TFs from gene expression data and a

known TF-TG topology (see Methods section). The computed TF

activities were also clustered in a pattern similar to that of the gene

expression shown in Figure 2B. This model included a number of

TFs, such as ATF2, CREB1, ELK1, EGR1, FOXO1, and SP1,

which are known to be regulated by the gastrin-cholecystokinin

receptor-2 (CCKR-2) signaling pathway [34–39].

To understand gastrin regulation in adenocarcinoma cells in

terms of quantitative measurements, we computed the number of

differentially expressed genes (DEGs) and TFs (computed from

NCA) activated at each time point (Figure 3). It appears that

during the initial time points, TGs expressions were activated by

gastrin intracellular signaling which in turn activated a large

number of TFs at later time points (1.5 hours after gastrin

stimulation). The largest effects of gastrin on the transcriptome

were found at 1 and 2 hours for TGs and 1.5 and 6 hours for TFs.

At 2 hours, ,13% of TGs were differentially expressed and,

interestingly, ,12.5% of TFs were active at the same time.

Surprisingly, none of the TFs were showed peak activity at

12 hours, and only TGs were also only 1% showed peak

expression.

Active sub-networks
To study the dynamic features of regulatory networks, a static

integrated regulatory network was constructed by combining

various data resources including Chip-X studies, experiments and

predicted data bases. The regulatory TF-TG relationships were

Figure 1. Schematic of the approach. The schematic of our
approach for constructing the active sub-networks at different time
ranges from gene expression data.
doi:10.1371/journal.pone.0078349.g001
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extracted from the Transcriptome Browser [25] and TFacts [24].

The interactions between TFs were retrieved from the BIOGRID

and HPRD databases [26,27]. The combined integrated network

contained 449 TFs, 13398 TGs and 164077 unique interactions

among them (see File S1).

The active sub-networks were built based on differential

expression of TGs and peak TF activity during a specific time

range. We defined four active sub-networks, namely immediate-

early (IE), mid-early (ML), mid-late (ML) and very late (VL), as

shown in Figure 1. First, we identified active TGs and TFs

(showing expression or activity higher than a specified threshold) at

each time point. We retrieved interactions between active TGs

and TFs from a static regulatory network (see File S2).

We then examined the structural and modular architecture of

the four constructed active sub-networks. This analysis clearly

distinguished each active sub-network from the others. The size

and topological metrics of the static regulatory network and the

four active sub-networks are presented in Table 1. The size of the

VL active sub-network was significantly smaller than the others.

The clustering coefficient (CC), which defines the interconnectivity

of nodes in the network, was higher in the ML and VL sub-

networks. This indicates that the ML and VL active sub-networks

were less organized in terms of modular structures than the IE and

ME networks. The values for the average path length (APL) and

betweenness centrality (BC) were greater in the ME and VL active

sub-networks respectively than compared to the other sub-

networks. The higher BC in the VL network and APL in the

ME sub-networks suggests that they are controlled by a number of

central nodes. Closeness centrality was higher in the ME and VL

networks than IE and ML sub-networks. This suggests that ME

and VL networks have more nodes with shortest paths to other

nodes.

To corroborate the significance of these topological divergences,

we performed the same computations on a set of random networks

created from a static network with the same number of nodes as

the actual active sub-networks. We generated 100 random

networks, and the structural properties were averaged over these

100 networks. The mean and standard deviations are provided in

the last row of Table 1. All the structural properties of actual sub-

networks were significantly different from those of random

networks except for network diameter, indicating that the

computed network properties are indeed biologically significant.

We performed all these computations using the Cytoscape

software tool [29].

Network motifs
Transcriptional regulatory networks are made up of small

recurring patterns called network motifs. To understand the

dynamic functional characteristics of the gastrin network, we

performed a network motif analysis for each active sub-network.

We identified network motifs with 3-, 4- and 5-nodes in four active

sub-networks using the FANMOD tool [30,31]. The statistical

significance of a network motif is computed by comparing

occurrences of the motif in an active sub-network and in random

networks. The Z-score of a motif is determined as the difference

between its occurrence in an active sub-network and in hundreds

of random networks with a normalized standard deviation.

The significantly enriched network motifs and their Z-scores in

the four active sub-networks are presented in Figures 4 and 5,

respectively (see Files S3 to S10 for complete results). We found

four variants of 3-node motifs that were overrepresented in the

four active sub-networks. Cliques (three TFs regulating each other,

type ‘a’), cross-regulating TFs co-targeting a TG (type ‘b’), SIMs

(single input motifs, type ‘c’), and FFLs (feed forward loops, type

‘d’) are the various types of significantly enriched 3-node motifs.

Cliques were most frequently used motif pattern in all active sub-

networks, suggesting that formations of three interacting TFs

regulatory complexes are involved during the whole response.

Network motif types ‘b’ and ‘c’ were significantly missing in the IE

network, suggesting that they are not main cause for the early

activation of large number of TGs. Cliques and cross-regulating

TFs co-targeting a TG (type ‘b’) were previously found in the

integrated regulatory networks of Saccharomyces cerevisiae [40]. FFLs

are well-known regulatory patterns in transcriptional networks

[14,15,19,41]. Six variants of 4-node motifs appeared more

frequently than others. Interestingly, cliques of four TFs were

Figure 2. Dynamics of transcriptional regulation. (A) TG
expression profiles. (B) Reconstructed TF activity profiles. Clustering
was performed in such a way that both sequential and co-regulation
was observed. Here, each row represents either a TG or TF, and each
column represents a progression in time (in hours). Activations and
repressions are represented by red and blue colors, respectively.
doi:10.1371/journal.pone.0078349.g002

Figure 3. Differential regulation. The number of active TGs and TFs
at each time point is presented. Active TGs and TFs were defined at
each time point based on peak expression or activity at that time point.
doi:10.1371/journal.pone.0078349.g003
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not found in the VL active sub-network. Two variants of bi-fan

motifs (types ‘c’ and ‘d’) were found. Bi-fan motifs type ‘c’ and ‘d’

were enriched in the VL network and ME sub-networks,

respectively. Bi-fan motifs are well-known regulation patterns in

gene regulatory networks [18,40,42]. Another commonly identi-

fied network motif was SIM (single input motif, type ‘e’), which

was detected more prominently in all the sub-networks except in

the IE sub-network. SIMs play a key role in large-scale gene

activation [15,19,43].

Five types of 5-node motifs were enriched in the constructed

networks. MIMs (multi input motifs, types ‘a’, ‘b’ and ‘c’) were the

most common regulatory pattern among 5-node motifs. Of these,

type ‘b’ was significantly enriched in the VL sub-network and type

‘c’ in the ML network. MIMs are also known to regulate large-

scale gene activation [15,43]. It is possible that these motifs are

Table 1. Topological properties of networks.

Network Static network IE network ME network ML Network VL network

Active TGs 12980 734 877 1201 265

Size Active TFs 449 43 78 87 31

Regulatory interactions 164077 2008 3957 5984 762

Average degree 24.03 5.02 8.02 8.94 4.82

Topological metrics Clustering coefficient 0.274 0.054 0.062 0.113 0.272

Diameter 6 7 9 7 6

Average path length 2.634 2.957 3.343 2.942 2.697

Betweenness centrality 3.87E-06 7.48E-05 15.92E-05 9.07E-05 42.52E-05

Closeness centrality 1.38E-02 2.94E-02 3.39E-02 2.71E-02 5.64E-02

Centralization 0.285 0.338 0.245 0.293 0.456

Average degree NA 1.2660.41 1.7660.61 2.4560.66 0.6160.32

Clustering coefficient NA 0.02960.023 0.0560.03 0.07760.04 0.01460.02

Diameter NA 6.0161.31 7.161.63 7.661.24 2.961.27

Average path length NA 2.6660.57 2.9960.5 3.2360.37 1.5260.46

Centralization NA 0.06 0.15160.05 0.18160.06 0.10960.06

The degree of a node is the number of interactions incident to it. The clustering coefficient measures the interconnectivity around a node. The average path length is
the average length of all shortest paths among all node pairs. Betweenness centrality is the average number of shortest paths between all node pairs passing through a
node. Closeness centrality is the reciprocal of the average shortest path lengths. The mean and standard deviation (mean 6 SD) of 100 random networks for each active
sub-network are presented in the last row. All computations were performed in Cytoscape.
NA-Denotes not applicable.
doi:10.1371/journal.pone.0078349.t001

Figure 4. Network motifs. The key network motifs of 3-, 4-, and 5-component nodes detected in four active sub-networks are presented. Red
nodes represent TGs and green nodes represent TFs. The network motif search was performed using the FANMOD tool. The motifs with p-
value,0.05 were considered statistically significant.
doi:10.1371/journal.pone.0078349.g004
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also responsible to turn off expression of large number of genes,

since here they mostly appear at late time ranges. Additionally, the

IE and ME active sub-networks were uniquely enriched with types

‘e’ and ‘d’, respectively, and these network motifs were not found

in other sub-networks. This may suggest that large TF regulatory

complexes are responsible for large scale gene expression and as an

immediate response to stimuli. The current literature on 5-node

motifs is very limited [44]. Thus, network motif analysis disclosed

basic regulatory patterns in the four active sub-networks, and each

sub-network was enriched with different network motifs. Although

the findings show differential usage of motifs by each active sub-

network, these results should be confirmed experimentally.

Functional annotation of differentially expressed genes
To identify which and how various biological processes are

affected by differentially expressed TGs in each active sub-

network, we conducted functional annotations in ClueGO tool in

Cytoscape [32]. All statistically significant functional terms in the

interacting network for the four active sub-networks are presented

in Figures 6 and 7. Interestingly, several unique terms for each

active sub-network and few common terms among all sub-

networks were found.

The IE active sub-network is highly enriched in functions

involved in cellular differentiation. Many previous studies have

confirmed the role of gastrin in differentiation processes [45–47].

Koh et al. demonstrated that gastrin deficiency in mouse models

altered the differentiation of gastric mucosa [46]. Additionally,

Wang et al. showed gastrin-induced differentiation of rat intestinal

epithelial cells in correlation to the up regulation of villin

expression [47]. The other significant categories are regulation

of several signal transduction pathways as ErbB signaling pathway,

MAPK signaling pathway, Ras protein signal transduction and cell

fate determination, cell fate commitment. Several studies have

shown that stimulation of gastrin-CCK2R resulted in the

activation of various signal transduction pathways including

MAP kinases [48–52]. Gastrin induced the proliferation of

AR42J cells by activating MAPKs and the c-fos gene [53].

The ME active sub-network is enriched in a large number of

significant categories involving several metabolic and several types

of cancer associated pathways. This sub-network is enriched in

energy-related metabolic processes such as carbohydrate, polysac-

charide, lipid, organic acid, cellular aromatic compound metabolic

processes and generation precursor metabolites and energy

processes. This network is overrepresented by cancer pathways

such as small cell lung cancer, thyroid cancer, prostate cancer,

endometrial cancer and chronic myeloid leukemia. In addition,

this network is enriched with response to endoplasmic reticulum

(ER) stress, cellular response to stimulus, B cell activation and

hemostasis. One of the recent studies confirms the involvement of

gastrin in regulating the genes resulting in ER stress [54].

The ML network is highly enriched in biological processes

related to morphogenesis such as the cell morphogenesis,

morphogenesis of an epithelium, embryonic epithelial tube

formation, heart morphogenesis. In addition, this network is

enriched with regulation of cell migration and cell growth,

angiogenesis and activation of Wnt and calcium signaling

pathways. Previous studies of gastrin-CCK2R (cholecystokinin-2

receptor) signaling have confirmed some of the processes predicted

in this study. Gastrin-CCK2R involvement in the morphogenesis

of epithelium cells was found in previous studies. Pagliocca et al.

found that stimulation with gastrin promotes branching morpho-

genesis (process of tubule formation) in gastric AGS cells through

the activation of protein kinase C (PKC) [55]. Previous studies

have shown the involvement of gastrin in angiogenesis of various

types of cells [56,57]. Lefranc et al. investigated the role of gastrin

on angiogenesis in gliomas both in vitro and in vivo. This study

concluded that gastrin has marked proangiogenic effects in human

glioblastomas and endothelial cells [56].

The VL sub-network is mainly involved in metabolic processes

such as DNA metabolic process, phosphorous metabolic process,

cell communication, apoptosis and tube morphogenesis. Gastrin

has induced apoptosis in many cells in previous studies [52,58].

Muerkoster et al. performed an in vivo study to determine the role

of gastrin in colon carcinogenesis and found that gastrin was able

to induce apoptosis in human colon cancer cells through the wild-

type CCK2 receptor, thereby suppressing the growth of colon cells

[58].

Thus, our functional annotation of genes in four active sub-

networks revealed several known and new functions of gastrin. In

addition, this analysis contributed to identifying the gastrin

response from a dynamic perspective.

Conclusion

The primary objective of this study was to analyze the time

series gene expression data generated by external stimuli to

understand the transcriptional regulatory network from a dynamic

perspective. To achieve this goal, we integrated information from

a static TF-TG network with gene expression data to identify key

TFs temporal dynamics. The gene expression and TF activities

showed early-, mid-, and late-phase action in response to gastrin.

Figure 5. Differential usage of motifs. The computed Z-scores for
selected network motifs across the four active sub-networks were
shown. Each active sub-network is enriched in specific network motifs.
The labels ‘a’, ‘b’, ‘c’, ‘d’, and ‘e’ represent the respective network motifs
in Figure 4. The network motif search was performed using the
FANMOD tool. The motifs with p-value,0.05 were considered
statistically significant.
doi:10.1371/journal.pone.0078349.g005

Gastrin-Treated Regulatory Network

PLOS ONE | www.plosone.org 6 January 2014 | Volume 9 | Issue 1 | e78349



Figure 6. Functional enrichment analysis. Network representations of enriched terms among active genes in the respective sub-networks.
Enriched terms are represented as nodes based on their kappa score ($0.3). The node size indicates the significance of the enrichment. (A) IE active
sub-network. (B) ME active sub-network.
doi:10.1371/journal.pone.0078349.g006
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Figure 7. Functional enrichment analysis. Network representations of enriched terms among active genes in the respective sub-networks.
Enriched terms are represented as nodes based on their kappa score ($0.3). The node size indicates the significance of the terms enrichment. (A) ML
active sub-network. (B) VL active sub-network.
doi:10.1371/journal.pone.0078349.g007
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This indicates that gastrin regulates genes over a period of

14 hours, although the majority of the genes were active at 1 and

2 hours and TFs were active 1.5 and 6 hours after gastrin

treatment.

To more comprehensively understand the mechanisms of

transcriptional regulation, we built four active sub-networks at

four different time ranges. The active sub-networks defined in this

study showed structural differences in their network organization.

The ME and VL sub-networks were more strongly interconnected

than the others. In addition, we identified key regulatory patterns,

called network motifs, in all sub-networks. This analysis showed

that distinct network motifs were significantly enriched in each

active sub-network. The GO ontology and pathway analysis of

active TGs and TFs in each active sub-network revealed

interesting facts. Each active sub-network was enriched in unique

GO terms/pathways. This shows that gastrin triggers different

cellular states through diverse and complex transcription regula-

tion patterns depending on the time of activation. We demon-

strated that analyzing time series microarray data through

partitioning to smaller temporal sub-networks reveals network

properties that are unique for each time range, yet may otherwise

be hidden when the whole time range is combined.

The development of high-throughput technologies such as

microarrays results in large amounts of biological data and

demands the rapid development of computational methods and

strategies to analyze the data and thus extract biological

knowledge. Our current study provides one such strategy for

using these data and integrating known biological information to

decipher the mechanisms of signaling and transcriptional pro-

grams of the biological system.

Supporting Information

File S1 Integrated static network. The integrated static

network from different sources used in the analysis of this study is
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(ZIP)

File S2 Active sub-networks. The four active sub-networks

extracted at different time ranges in gastrin signaling are provided

as a Cytoscape network file.

(ZIP)

File S3 Network motif analysis. The complete results of the

3-node network motif analysis for the IE active sub-network are
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(OUT)

File S4 Network motif analysis. The complete results of the

3-node network motif analysis for the ME active sub-network are
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(OUT)

File S5 Network motif analysis. The complete results of the

3-node network motif analysis for the ML active sub-network are
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(OUT)

File S6 Network motif analysis. The complete results of the

3-node network motif analysis for the VL active sub-network are
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(OUT)

File S7 Network motif analysis. The complete results of the

4-node network motif analysis for the IE active sub-network are
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(OUT)

File S8 Network motif analysis. The complete results of the
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