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Abstract

Apoptosis of lymphocytes governs the response of the immune system to environmental stress and toxic insult.
Signaling through the ubiquitously expressed glucocorticoid receptor, stress-induced glucocorticoid hormones induce
apoptosis via mechanisms requiring altered gene expression. Several reports have detailed the changes in gene
expression mediating glucocorticoid-induced apoptosis of lymphocytes. However, few studies have examined the
role of non-coding miRNAs in this essential physiological process. Previously, using hybridization-based gene
expression analysis and deep sequencing of small RNAs, we described the prevalent post-transcriptional repression
of annotated miRNAs during glucocorticoid-induced apoptosis of lymphocytes. Here, we describe the development of
a customized bioinformatics pipeline that facilitates the deep sequencing-mediated discovery of novel glucocorticoid-
responsive miRNAs in apoptotic primary lymphocytes. This analysis identifies the potential presence of over 200
novel glucocorticoid-responsive miRNAs. We have validated the expression of two novel glucocorticoid-responsive
miRNAs using small RNA-specific qPCR. Furthermore, through the use of Ingenuity Pathways Analysis (IPA) we
determined that the putative targets of these novel validated miRNAs are predicted to regulate cell death processes.
These findings identify two and predict the presence of additional novel glucocorticoid-responsive miRNAs in the rat
transcriptome, suggesting a potential role for both annotated and novel miRNAs in glucocorticoid-induced apoptosis
of lymphocytes.
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Introduction

Apoptosis of lymphocytes is critical for the homeostatic
balance of the immune system. The escape of lymphocytes
from apoptotic constraint results in dire consequences
including the development of hematomalignancy and
autoimmune disorders. Glucocorticoid hormones are potent
inducers of lymphocyte apoptosis [1]. Endogenous
glucocorticoids regulate immune development through the
elimination of unwanted immature thymocytes during the T-cell
selection process [2]. Furthermore, given their aggressive pro-
apoptotic properties, synthetic glucocorticoids are a mainstay
of hematomalignant chemotherapeutic regimens.

Glucocorticoids are a class of essential stress-induced
steroid hormones regulating cardiovascular, metabolic,

homeostatic and immunologic functions. Endogenous
glucocorticoids are synthesized and secreted under the control
of the hypothalamic-pituitary-adrenal axis in response to
stressors, including environmental stress, nociception, and
emotion [3]. The pleiotropic effects of glucocorticoids are
mediated by the ubiquitously expressed glucocorticoid receptor
(GR), which serves as a sensor of environmental stress,
mediating the response of the immune system to
environmental stress and toxic insult. Glucocorticoid-induced
apoptosis of lymphocytes is a multifaceted process, requiring
signaling through the GR and the altered expression of
apoptotic effector genes [4-6]. Several laboratories have
performed genome-wide microarray analysis to delineate the
changes in gene expression that modulate glucocorticoid-
induced apoptosis. Most notably, the expression of the pro-
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apoptotic BH3-only Bcl-2 family member Bim is induced by
glucocorticoid-treatment in murine lymphoma cell lines, human
leukemic cell lines, mouse primary thymocytes, as well as
human primary chronic lymphoblastic leukemia and acute
lymphoblastic leukemia samples [7-9]. While not the only
mechanism involved in this complex process, the upregulation
of Bim is likely an important mediator of glucocorticoid-induced
apoptosis, as both in-vivo and in-vitro depletion of Bim
expression in lymphocytes decreases sensitivity to
glucocorticoid-induced apoptosis [10-12]. However, until
recently, gene expression analysis of lymphocytes undergoing
glucocorticoid-induced apoptosis has largely ignored the
examination of non-coding RNAs, or miRNAs.

MiRNAs are non-coding, ~21mer, single-stranded post-
transcriptional regulators of gene expression [13,14]. First
discovered in C. elegans fifteen years ago, highly conserved
miRNAs have now been identified and cloned in plants, D.
melanogaster, rodents, humans and numerous other species
[15-18]. The interaction of a miRNA with mRNA (via imperfect
“seed sequence” binding) hinders target mRNA translation
while increasing evidence demonstrates that miRNAs can also
promote the deadenylation and subsequent degradation of
their mRNA targets[19].

To date, miRNAs have been assigned regulatory roles in
fundamental biological processes, including differentiation,
proliferation, embryonic development, and cell death [20].
Accordingly, the dysregulation of miRNA expression and
function is a common observation in numerous and diverse
human diseases [21]. Currently, there are over 2000 annotated
mature human miRNAs, each with the capacity to regulate
hundreds of target mRNAs (or approximately 30% of coding
genes), establishing miRNAs as a substantial class of gene
regulatory elements [22]. Importantly, miRNAs also regulate
lymphocyte function and survival through both the induction
and antagonism of apoptosis [23].

Previously, using both microarray and deep sequencing
analysis, we described the prevalent repression of annotated
miRNA expression during glucocorticoid-induced apoptosis of
primary lymphocytes [1]. Further functional studies
demonstrated for the first time a regulatory role for specific
miRNAs and miRNA processors in the execution of
glucocorticoid-induced apoptosis. Interestingly, this analysis
also indicated the potential presence of numerous novel
glucocorticoid-responsive miRNAs.

Here, we have developed a customized bioinformatics
pipeline that facilitates the deep sequencing-mediated
discovery of novel miRNAs. Using this approach, we describe
the identification of hundreds of potentially novel glucocorticoid-
responsive miRNAs in the transcriptome of apoptotic primary
lymphocytes. Furthermore, we validated the glucocorticoid-
dependent repression of two candidate novel miRNAs and
Ingenuity Pathways Analysis (Ingenuity® Systems,
www.ingenuity.com) predicted that these novel glucocorticoid-
responsive miRNAs may contribute to glucocorticoid-induced
apoptosis. In summary, these computational findings describe
the discovery of novel glucocorticoid-responsive miRNAs and
further suggest a potential role for both annotated and novel
miRNAs in the glucocorticoid-induced apoptosis program.

Results

Discovery of novel miRNAs from deep sequencing
data: Generation of test and training sets

To identify glucocorticoid-responsive novel miRNAs from
deep sequencing data we employed a customized
bioinformatics pipeline. This pipeline is based on miRanalyzer,
a previously published methodology (also available via web-
server) [24]; however, we implemented several significant
modifications to the original miRanalyzer approach (see
methods). The basis of this computational analysis was to first
align miR-analyzer-generated reads to the genome and use
‘machine learning’ to learn from the signal profile of known
miRNAs and known non-miRNAs (training). Once the models
are trained and able to accurately classify known miRNAs from
non-miRNAs, we then use the models to predict novel miRNAs
from signals at unannotated regions of the genome (testing)
(Figure 1A).

This analysis employed reads previously generated by
miRNA-seq analysis of annotated miRNAs during
glucocorticoid-induced apoptosis [1]. Reads were generated by
next generation sequencing on the Illumina platform using total
RNA extracted from dexamethasone (Dex) treated and
untreated (Control) primary thymocytes (see [1] for detailed
description of apoptosis analysis). We obtained approximately
12-13 million reads for each sample and performed quality
control analysis using FastQC (http://
www.bioinformatics.bbsrc.ac.uk/projects/fastqc). We then
trimmed all reads at the 3’ end to remove adapter sequences.
Trimmed reads were subjected to a step-wise alignment
protocol adopted from miRanalyzer [24] which first attempts to
align reads to known miRNA sequences, and the remaining
unaligned reads are then sequentially aligned to mature,
mature-star*, unobserved mature-star*, hairpin, Refseq, and
Rfam transcripts, sequentially (Figure S1). As a final alignment
step, the remaining reads are aligned to the whole rat genome
(Rn4). As expected, a large number of the total ~12-13 million
reads obtained from deep sequencing of each sample aligned
to known miRNAs when compared to the aforementioned RNA
subtypes (Figure 1B). Reads that aligned to known miRNAs
were used to generate the “Positive” training set while reads
that aligned to other RNA subtypes were used to generate the
“Negative” training set. Reads that did not align to any
annotated RNA species but did align to the genome were used
as “Test” data (Figure 1A).

To generate sequences belonging to the “Training” and
“Test” datasets, reads with overlapping genomic coordinates
were grouped together to form ‘clusters’ (totaling a length of
20-27 nucleotides) and several ‘precursor’ sequences were
generated from each cluster. Precursors encompassed a
genomic window centered at the cluster and extending on both
the 5’ and 3’ ends of the cluster. We obtained 284 Control and
236 Dex clusters in the true “Positive” and 5,499 Control and
3,179 Dex clusters in the true “Negative” training data (Table
S1A). Generated precursor sequences were then subjected to
secondary structure selection criteria (Figure 1A).

The secondary structure of each precursor sequence was
generated using Vienna RNA [25] and the precursor sequence
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was discarded from further consideration if the secondary
structure did not meet stringent criteria. Pre-miRNAs are
characterized by a canonical stem loop structure, hence the
selection criteria was designed to discard all precursors whose
secondary structure did not exhibit the desired number of base
pairing and a stable hairpin structure. The filtered precursor
sequences that met these criteria were used to generate
molecular features that describe the unique sequence and/or
secondary structure attributes of the precursor candidate in
question. We chose a set of ten molecular features that best
characterize attributes distinguishing a miRNA from other RNA
subtypes (Figure 1A). These include features that characterize
the degree of conservation of the miRNA sequence, the signal
intensity at each putative miRNA location, and characteristics

of the predicted secondary structure including the minimum
free energy (Figure S2).

Training of random forest models
We generated molecular features for all filtered precursor

sequences within the “Positive” and “Negative” training sets
and constructed random forest models for both the Control and
Dex datasets (Figure 1A). While our modeling technique used
information from all molecular features for classification
purposes, our analysis indicated that certain molecular features
had more influence on the classification. The sequence
conservation score was the most informative feature whereas
the number of bases in the overhang of the secondary

Figure 1.  Development of a customized bioinformatics pipeline for the discovery of novel miRNAs from deep sequencing
data.  (A) This bioinformatics analysis workflow describes the novel miRNA discovery process adapted from miRanalyzer. The
analysis pipeline uses next generation sequencing (miRNA-seq) data from untreated (control) or dexamethasone-treated rat primary
thymocytes as input. This pipeline divides reads into three files: reads that align to an annotated mature miRNA (“Positive” training
set), reads that align to other RNA subtypes (“Negative” training set), or reads that align at unannotated regions (“Test” set). Reads
from each of these files are then aligned and alignment results are methodically processed to generate clusters, precursors and
predicted secondary structures. Random forest machine learning is then employed to train the models for the prediction of novel
miRNAs in the “Test” dataset. The output provides the genomic coordinates of predicted putative novel miRNAs.
(B) Table describes total number of reads generated by miRNA-seq of control and dexamethasone treated primary thymocytes
analyzed using the novel bioinformatics workflow described above. As expected, the majority of these reads align to known miRNAs
when compared to other RNA subtypes.
(C) Table summarizes the total number of known and predicted novel miRNAs identified by the bioinformatics workflow as induced
or repressed in control and dexamethasone treated rat primary thymocytes. Both known and predicted novel miRNAs exhibit a trend
of repressed expression during glucocorticoid-induced apoptosis.
doi: 10.1371/journal.pone.0078316.g001
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structure was among the least informative (Figure S2). The
training classification error for random forest models ranged
from 93.3% to 99.8% denoting a high degree of accuracy
(Table S2A and S2B).

Prediction of novel miRNAs using trained models
The “Test” dataset was processed in a manner identical to

the “Training” dataset in terms of preparation of clusters and
precursor sequences; however, we eliminated clusters from
further analysis if miRNA expression signal was below 11 raw
read count to focus on only those miRNAs displaying moderate
to high expression levels. We obtained 15,332 Control and
9,876 Dex clusters resulting in 52,354 Control and 33,646 Dex
precursors in the “Test” dataset (Table S1B). These precursors
were subjected to classification using our modeling technique.

The precursor sequences that were predicted as novel
miRNAs were further filtered based on two criteria: (i) the
minimum free energy of their predicted secondary structures,
and (ii) signal intensity. This yielded 515 and 346 novel
miRNAs predicted for Control and Dex samples, respectively,
with 220 common between the two sample types. Previously,
we reported that the majority of known miRNAs are repressed
during glucocorticoid-induced apoptosis of lymphocytes [1].
Interestingly, this trend extends to our analysis of miRNA-seq-
derived novel miRNAs. Here, approximately 80% of predicted
novel miRNAs were repressed in response to dexamethasone
treatment (Figure 1C).

Validation of novel glucocorticoid-responsive miRNAs
To verify the glucocorticoid-induced repression of miRNAs, a

combination of both annotated and novel miRNA candidates
were selected for qPCR validation. Two novel miRNA
candidates, candidate 44 and candidate 166, were chosen for
validation on the basis of their predicted secondary structure.
Both candidates demonstrate a canonical stem-loop structure
and a putative mature miRNA sequence (Figure 2A).
Furthermore, the expression of each novel miRNA candidate
(as visualized in the UCSC Genome Browser [26]) is repressed
in response to dexamethasone treatment (Figure 2B). This
observation parallels the trend of prevalent repression of
annotated miRNAs during glucocorticoid-induced apoptosis of
lymphocytes, suggesting that these novel candidates are
biologically similar to annotated miRNAs. Interestingly,
candidate 166 also exhibits detectable signal at the proximal
mature miRNA rno-miR-6324, a recently annotated mature
miRNA arising from the same precursor as candidate 166 [27].
While the basal expression of rno-miR-3624 is lower than
candidate 166, it is also repressed in response to
dexamethasone treatment (Figure 2B).

A total of five candidates, three annotated miRNAs
(miR-1949, miR-3559-5p, and miR-362*) and the two predicted
novel miRNAs (candidates 44 and 166) were subjected to
small-RNA qPCR analysis. Each validation candidate exhibited
sufficient basal signal for qPCR analysis and a degree of
glucocorticoid-responsiveness as determined by the percent
control value generated from computationally derived
expression signals (Figure 2C and 2D). Custom Taqman Small
RNA assays were designed to the mature 5’-3’ sequence of

each candidate miRNA and used for the targeted quantitation
of novel glucocorticoid-responsive miRNAs. These assays
employ a sequence-specific stem-loop 3’ reverse transcription
primer, thereby assuring the definitive analysis of small RNAs
[28]. This analysis confirmed the significant repression of both
the annotated positive controls as well as the novel candidate
miRNAs during glucocorticoid-induced apoptosis of primary
lymphocytes (Figure 2E). Interestingly, the percent of control
values generated by qPCR analysis closely mirror those
derived from the miRNA-seq data (Figure 2D). These findings
confirm the presence of two and predict the existence of
numerous additional novel glucocorticoid-responsive miRNAs
in the rat transcriptome (Figure 1C). To explore the potential
functional roles of these novel glucocorticoid-responsive novel
miRNAs, we performed further computational analysis to
identify the predicted gene targets for each of the two qPCR-
validated novel miRNAs.

Pathways analysis predicts novel miRNA targets may
contribute to glucocorticoid-induced apoptosis

Using the mature sequence of novel miRNA candidates 44
and 166, gene target predictions were made against the 3’
untranslated regions of RefSeq transcripts via the miRanda
miRNA target prediction algorithm [29]. Numerous gene targets
were predicted for both candidate novel miRNAs (Figure 3A).
To assess the potential role of these predicted targets in the
glucocorticoid-induced apoptosis program, whole genome gene
expression microarray was performed on both untreated and
dexamethasone treated primary thymocytes (3 biological
replicates each). Ingenuity Pathways Analysis (IPA) of genes
deemed differentially expressed (p-value < 0.01 and absolute
fold change > 1.2) suggests that they govern molecular and
cellular functions involving cell proliferation, cell division, and
cell death (Figure 3B). Interestingly, IPA of the predicted novel
miRNA targets suggests that these miRNAs may contribute to
many of the same molecular and cellular functions identified by
the whole genome microarray analysis. Specifically, cell death
and cell survival is a top IPA-generated molecular and cellular
function for the miRanda predicted targets of both candidates
44 and 166 (Figure 3B).

Further Venn diagram analysis identified specific mRNA
targets of candidates 44 and 166 differentially expressed
during glucocorticoid-induced apoptosis (Figure 3A). IPA of this
combined gene list identified cell death and survival as a top
predicted molecular and cellular function of these differentially
expressed potential targets, as well as other functions critical to
the induction and execution of glucocorticoid-induced
apoptosis, including changes in cell morphology, cell cycle and
cell signaling (Figure 3C). These computational findings
suggest that these novel glucocorticoid-responsive miRNAs
may contribute to glucocorticoid-induced apoptosis.

Discussion

Previously, using both microarray and deep sequencing
analysis, we described the prevalent repression of annotated
miRNAs during glucocorticoid-induced apoptosis of primary rat
thymocytes [1]. Additional studies have demonstrated the
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glucocorticoid-mediated regulation of specific miRNAs in
lymphoid cells, and further delineated a functional role for these
miRNAs in the execution of glucocorticoid-induced apoptosis
[30-33]. For example, studies by both Harada et al. and
Molitoris et al. report the glucocorticoid-mediated repression of
the miR-17 family, resulting in increased Bim expression, and,
consequently, increased sensitivity to glucocorticoid-induced

apoptosis [31,32]. Alternatively, several studies have reported
that specific miRNAs regulate glucocorticoid sensitivity and
contribute to glucocorticoid-resistance in lymphoid
malignancies [34-37].

In our present study, we propose the existence of novel,
unannotated, glucocorticoid-responsive miRNAs with
expression profiles similar to those we previously described for

Figure 2.  Validation of novel glucocorticoid responsive miRNAs.  (A) Secondary structure of two novel miRNA generated by
ViennaRNA. The predicted ‘mature’ sequence is highlighted in red; the remaining hairpin contains the putative stem loop and
mature-star* sequence, the minimum free energy (MFE) of each structure is indicated. The VARNA visualization applet was used to
draw the RNA secondary structure [66].
(B) The expression of the candidate novel miRNAs, candidates 44 and 166 visualized in UCSC genome browser (Dex treated is top
bar, Control is bottom bar). Both of the predicted novel miRNAs are repressed during glucocorticoid-induced apoptosis of primary
lymphocytes. Visualization of novel miRNA candidate 166 also detects a glucocorticoid-responsive signal at the proximal newly
annotated mature miRNA rno-miR-6324, which is antisense to candidate 166 (indicated in the red box).
(C) Percent control values of the five miRNAs (3 known and 2 predicted novel candidates) selected for qPCR validation. Percent
control was calculated as (Dex/Control) using computationally derived signal values for control and dexamethasone-treated rat
primary thymocytes. Signal values were generated using stringent sequence alignment criteria of miRNA-seq data.
(D) Graphic representation of percent control values for control and dexamethasone-treated samples generated using
computationally derived expression signals from the miRNA-seq data. Raw read counts at each miRNA were normalized to the total
number of aligned reads in the respective sample to generate normalized signal.
(E) Rat primary thymocytes were untreated (control) or treated with 100nM dexamethasone for 6 hours (apoptosis was monitored as
previously described [1]). The expression of annotated positive controls and individual mature candidates was evaluated via
quantitative PCR using custom TaqMan Small RNA Assays. The expression of RNU43 small nuclear RNA served as an
endogenous control. Results are reported as mean percent control values +/- SEM values for 3 biological replicates (**p<.01).
doi: 10.1371/journal.pone.0078316.g002
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annotated miRNAs (dexamethasone-induced repression).
Given that deep sequencing technology provides a powerful,
unbiased platform to measure the expression of miRNAs we
sought to further explore and catalogue the presence of novel
glucocorticoid-responsive miRNAs in the rat transcriptome. To
this end, we developed a bioinformatics pipeline combining
elements of miRanalyzer [24], a peer-reviewed publically
available miRNA discovery approach, and a customized
machine learning technique to facilitate the identification of
novel miRNAs from deep sequencing data.

The discovery of novel miRNAs from deep sequencing data
is a rapidly expanding area of bioinformatics research. To date,
numerous studies have reported the deep sequencing-
mediated discovery of novel miRNAs in diverse systems
including viruses [38,39], plants [40-43], insects [44], lower
vertebrates [45,46], mammals [47,48], cell culture [49,50], and
human patient samples [51-55]. Interestingly, several of these
studies report the altered expression profile of these newly

identified miRNAs during pathophysiological conditions
including aging, Sjogren’s Syndrome, psoriasis, b-cell
malignancy, and lung cancer [48,51-54]. Our study extends
these findings to non-transformed, mammalian primary
lymphocytes and, to our knowledge, is the first to report the
hormonal-regulation of novel miRNA expression. Importantly,
the recent, independent discovery of rno-miR-6324 (a mature
miRNA in the anti-sense orientation to candidate 166)
strengthens the evidence that candidate 166 is a novel,
glucocorticoid-responsive miRNA and that our approach to the
identification of novel miRNAs from deep-sequencing data is
both accurate and reproducible [27].

We next employed IPA to characterize the potential cellular
and molecular functions of the newly validated glucocorticoid-
responsive miRNAs. This analysis indicated that the putative
targets of these novel miRNAs are predicted to influence cell
death. Pathways analysis of specific novel miRNA candidate
targets differentially regulated during glucocorticoid-induced

Figure 3.  Pathways analysis predicts novel miRNA targets may contribute to glucocorticoid-induced apoptosis.  (A)
miRNA target predictions for novel miRNA candidates 44 and 166 were performed using the miRanda miRNA target prediction
algorithm. The number of target mRNAs differentially expressed during glucocorticoid-induced apoptosis (p < 0.01; fold change >
1.2) is indicated for each candidate.
(B) IPA-generated ranking of the top five molecular and cellular functions of genes differentially expressed during glucocorticoid-
induced apoptosis (p < 0.01; fold change > 1.2), as well as the predicted targets of both candidates 44 and 166 (p-values for top
functions are indicated beneath each ranking). Genes differentially expressed during glucocorticoid-induced apoptosis were
identified by whole genome microarray analysis of untreated and 100nM dexamethasone-treated thymocytes (6 hours, 3 biological
replicates).
(C) Venn diagram analysis identified specific novel candidate predicted targets differentially expressed during glucocorticoid-
induced apoptosis (p<.01) and the application IPA to this combined gene list (40 genes) generated a top 5 ranking of molecular and
cellular functions regulated by these predicted targets (p-values for top functions are indicated beneath each ranking).
doi: 10.1371/journal.pone.0078316.g003
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apoptosis identified cell death and survival as a top-regulated
predicted cellular and molecular function as well as other
cellular processes essential for the glucocorticoid-induced cell
death program, including changes in cellular morphology, cell
cycle, and cellular signaling [56]. Presently, further functional
analyses of these novel miRNAs in this model system are not
possible, since rat primary thymocytes are not amenable to
genetic manipulation in-vitro. However, these preliminary IPA-
derived functional predictions provide a promising basis for the
future validation and functional analysis of both novel miRNAs
in an alternative, adaptable model system.

In summary, these studies employ a customized
bioinformatic pipeline that enables the discovery of novel
miRNAs from deep sequencing data and further describes the
repression of two novel miRNAs (candidates 44 and 166)
during glucocorticoid-induced apoptosis of primary thymocytes.
Computational analysis predicts that miRNA candidates 44 and
166 may contribute to the glucocorticoid-induced apoptosis
program through the regulation of target mRNAs involved in
cell death and survival functions. These findings are the first to
identify the presence of novel, glucocorticoid-responsive
miRNAs in the rat transcriptome.

Materials and Methods

Ethics Statement
All animal experiments were approved by the National

Institute of Environmental Health Sciences Institutional Animal
Care and Use Committee and complied with USDA Column C
classification (minimal, transient, or no pain or distress).
Experimental animals were routinely monitored by NIEHS
veterinary staff and investigators for pain or distress.

Rat primary thymocyte isolation
Rat primary thymoyctes were isolated from

adrenalectomized (60-75g) male Sprague-Dawley rats (Charles
River Laboratories, Wilmington, MA) approximately 1-2 weeks
after surgery. Following decapitation, the thymi of three animals
were removed and pooled in RPMI 1640 medium containing
10% heat-inactivated fetal bovine serum, 4 mM glutamine, 75
units/ml streptomycin, and 100 units/ml penicillin. Thymi were
gently sheared with surgical scissors at room temperature.
Sheared cells were filtered through 200-micron nylon mesh
twice and centrifuged at 3K for 5 minutes at room temperature.
The cell pellet was then resuspended in fresh media and
filtered into a sterile conical tube. Cells were cultured at a final
concentration of 2x106 cells/mL and incubated at 37°C, 5%
CO2 atmosphere.

miRNA deep sequencing
Rat primary thymocytes were isolated and cultured in the

presence or absence of 100nM dexamethasone for 6 hours.
Following treatment, total RNA was isolated using the Ambion
mirVana miRNA isolation kit (Austin, TX) from untreated control
and dexamethasone-treated samples and subjected to miRNA
Deep Sequencing. Small RNA cDNA libraries were prepared
according to manufacturer’s protocol (Small RNA Sample Prep

Kit Oligo Only, protocol 71003, Illumina, Inc., San Diego, CA).
Small RNA cDNA libraries were then sequenced according to
manufacturer’s instructions on the Illumina Genome Analyzer II
(Illumina, Inc., San Diego, CA). The data discussed in this
publication have been deposited in NCBI's Sequence Read
Archive [57] and are accessible through SRA accession
number SRP019941.

Bioinformatic analysis of miRNA deep sequencing data
Deep sequencing data for one lane each of Dex and Control

samples were received in the fasta format. Read lengths of
Dex samples was 35 nucleotides whereas for control it was 25
nucleotides. However approximate length of a mature miRNA
is around 18-22 nucleotides therefore it is likely that the 3’ end
of the read sequence may contain adapter sequences. To
remove possible adapter sequences we trimmed the reads at
3’ end such that resulting reads were 20 nucleotides in length.
Next, the sequence reads were collapsed into a fasta formatted
file where only unique sequences remain and duplicated
sequences were counted and recorded in the header
information for each sequence. Out of 13,087,842 and
12,307,015 reads in Dex and Control respectively, the data
was compressed to 440,473 and 657,066 unique reads
respectively. The resulting files were used for further analysis,
which included discovery of novel miRNAs and calculation of
differential expression in Dex vs. Control for novel and existing
miRNAs.

Computational prediction of novel miRNAs
To discover novel miRNAs from deep sequencing data, we

designed a bioinformatics pipeline based on the miRanalyzer
methodology. miRanalzyer is a web server that uses input
short sequence reads of lengths up to 25nts and outputs
predicted novel miRNAs [24]. It is also available in a stand
alone version [58]. Moreover, our experimentation with the
software determined that the implementation of the random
forest prediction approach within miRanalyzer was not robust
enough to yield reproducible results. To overcome these
limitations we implemented a number of new ideas within the
novel miRNA discovery paradigm. To this end, we designed a
data analysis workflow that uses the general framework and
certain components from miRanalyzer and combines it with our
novel machine learning approach.

First, we implemented a sequence alignment strategy as
described in miRanalyzer. The fasta files from Dex and Control
samples were used as input. Alignments were performed in a
sequential manner. First, reads were aligned to known
miRNAs, followed by alignment to mature-star*, mature-star*
unobserved and hairpin precursors. Next, the remaining reads
were aligned to known mRNAs and RNA families as defined by
RFAM. The sequences that map to any of the above RNA
subtypes are then removed. Remaining sequences are aligned
to the Rn4 genome (Figure S1).

Reads aligning to mature miRNAs were used to build the
true “Positive” training dataset and reads aligned to other RNA
types such as RFAM was used to build “Negative” training
dataset. Reads that did not map to any known RNAs but map
to unannotated locations in the genome were used to build the
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“Test” dataset. The alignments for training/test dataset were
generated using bowtie (0.12.7) [59] with –best and –strata
options. We allowed up to 2 mismatches in the seed length of
17 and up to 6 alignments were allowed per read. Only the
longest alignments that maintained the number of observed
mismatches within the seed were kept for further analysis.

Following the miRanalyzer approach, all overlapping aligned
reads were grouped together and ‘clusters’ were formed.
‘Precursor’ sequences were then generated from each cluster
[58]. We predicted the secondary structure of each precursor
sequence using the ViennaRNA (version 2.0.6) [60] tool and
removed precursors if any of the following were true:

1. It doesn’t have single stem hairpin structure
2. If it has less than 19 bindings to the candidate precursor

sequence
3. If it has less than 11 bindings to the region occupied by

the read cluster
4. If candidate precursor genomic location doesn’t overlap

with a known miRNA (only in case of true positive data set)

For the remaining precursor sequences, we calculated the
molecular attributes that best describe the sequence and
secondary structure characteristics of the precursor
sequences. These characteristics are then used as input to the
machine learning methods to train the models. The molecular
features used include:

1. Total number of bindings within the read cluster
2. Total number of bindings in whole candidate precursor

secondary structure
3. The length of the read cluster
4. The expression of mature-star* sequence
5. Total tag counts in the read cluster
6. The minimum free energy (MFE)
7. Normalized Energy (MFE/candidate precursor length)
8. The difference in the number of nucleotides that don’t bind

between the arms
9. The expression of overlapping conserved region
10. The number of unbinding nucleotides in overhang region

Using these features calculated for each precursor sequence
in the positive and negative training dataset, we built two
random forest models, one each for the Control and Dex data
using “randomForest” R-Package [61]. The random forest
model consisted of 1000 binary decision trees, each
constructed from 66% of randomly selected training precursors
and 3 randomly selected training features. For each training
sample, aggregated classification votes were computed from
all the trees in which the sample under consideration was
excluded. Next, the out of bag training error/accuracy rates
were computed, using above classification vote counts. The
importance of each of the training feature is assessed using
change in out of bag training accuracy, after permuting the
values of feature of interest (Figure S2 shows the ranking of
features). Ranking is calculated by mean decrease in accuracy
associated with each feature.

Our training models displayed significantly high classification
accuracy (i.e. low class error) as described by the confusion
matrix (Table S2). We employed 1000 trees for modeling, a

significantly large number compared to the miRanalyzer, to
ensure that training and testing results are consistent and
reproducible.

We used reads from the “Test” dataset and generated
clusters and precursor sequences as described earlier. Here,
we discarded clusters with raw read counts (expression value)
lower than 11 prior to precursor generation step to avoid
regions with low expression. The resulting precursor
sequences from the test data were used for feature generation
and as input for classification using the two random forest
models trained from the Control and Dex data as described
earlier.

Precursor sequences that were predicted to be novel
miRNAs were identified, and the parent ‘cluster’ sequence for
each of those precursors was used as the novel ‘mature’
miRNA sequence. These novel miRNAs were further discarded
if they met either of the following criteria:

1. If the predicted novel miRNA localizes to chrUn or any of
the ‘random’ chromosomes.

2. If the MFE of predicted novel miRNA is greater than -25.

In cases where the chromosomal coordinates of the novel
miRNAs overlapped each other, they were merged to form one
novel miRNA.

miRNA signal and differential expression calculation
To determine computationally derived expression values at

each annotated and predicted novel miRNA, we counted the
total number of reads aligned at a genomic locus normalized by
the total aligned reads for a given sample (Reads Per Million).
For this calculation, we only included those reads that met very
stringent sequence alignment criteria (reads may have a
maximum of 3 alignments and only one mismatched position
within the 17nt seed length). To determine whether a given
miRNA is induced or repressed in response to dexamethasone
treatment, we calculated the ratio of signal in Dex divided by
Control. If the ratio is above 1, we consider the miRNA induced
by Dex, if the ratio is below 1, we consider the miRNA
repressed by Dex.

Novel miRNA qPCR
Total RNAs were isolated from control and dexamethasone-

treated (100nM, 6 hours) thymocytes using the Ambion
mirVana miRNA isolation kit (Austin, TX). For annotated and
novel miRNA validations, total RNAs were reverse transcribed
using the Taqman miRNA Reverse Transcription kit (Applied
Biosystems, CA, USA) and analyzed using custom-designed
Taqman Small RNA Assays (Applied Biosystems, CA, USA)
per manufacturer instructions. Single-tube primer/probes for
each candidate were designed using the Custom TaqMan
Small RNA Assay Design Tool using the predicted (or
annotated) mature miRNA sequence as the design template.
Prior to submission, template sequences were evaluated for
specificity via the Basic Local Alignment Search Tool (BLAST)
[62]. Primer template sequences for each candidate novel
miRNA were:

Candidate 44: CGCGGATGATGACACCTGGGTAT
Candidate 166: GCTCTGCTGACTGCCTATGGGCT
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Each customized small RNA assay was evaluated for signal
in both reverse transcriptase minus and the cDNA minus non-
template controls, indicating the detection of small-RNA-
specific signal. Each primer/probe was normalized to the
expression of the small-nucleolar RNA RNU43.

Whole genome microarray
Rat primary thymocytes were isolated and cultured in the

presence or absence of 100nM dexamethasone for 6 hours.
Following treatment, total RNA was isolated from three
biological replicates using the Ambion mirVana miRNA
isolation kit (Austin, TX) and subjected to whole genome
microarray analysis. Gene expression analysis was conducted
using Agilent Whole Rat Genome 4x44 multiplex format oligo
arrays (014879) (Agilent Technologies) following the Agilent 1-
color microarray-based gene expression analysis protocol.
Starting with 500ng of total RNA, Cy3 labeled cRNA was
produced according to manufacturer’s protocol. For each
sample, 1.65ug of Cy3 labeled cRNAs were fragmented and
hybridized for 17 hours in a rotating hybridization oven. Slides
were washed and then scanned with an Agilent Scanner. Data
was obtained using the Agilent Feature Extraction software
(v9.5), using the 1-color defaults for all parameters. The Agilent
Feature Extraction Software performed error modeling,
adjusting for additive and multiplicative noise. The resulting
data were processed using the Rosetta Resolver® system
(version 7.2) (Rosetta Biosoftware, Kirkland, WA). The data
discussed in this publication have been deposited in NCBI's
Gene Expression Omnibus [63] and are accessible through
GEO Series accession number GSE45560.

Analysis of whole genome microarray data
The feature extractor processed raw signal was log2-

transformed, quantile normalized and summarized for each
probe using median polish algorithm. Next, we identified
differentially expressed genes in Dex treated compared to
Control samples using signal to noise statistic defined as the
ratio of average signal difference and sum of between replicate
standard deviations. The adjusted and unadjusted p-values for
this signal to noise statistic was computed using left/right tail of
empirical distribution generated by 10,000 sample/probe
permutations (similar to [64]. We used a nominal p-value
threshold of 0.01 (nominal p-value =< 0.01) and absolute fold
change threshold of 1.2 (absolute fold >= 1.2) to identify
differentially expressed probes. We used available probe
annotation to map probe IDs to corresponding RefSeq genes.
We identified 219 genes with statistically significant differential
expression.

Prediction novel miRNA targets
Prediction of gene targets for a given miRNA was conducted

using miRanda software [65]. We used the mature miRNA
sequence as an input to the program and the software
generated predicted gene targets by comparing
complementarity in the seed region of the miRNA sequence to
the 3’ UTR sequence of all known mRNAs in the genome. The
list of gene targets for each of the two candidate novel miRNA

was further analyzed for enrichment of biological pathways
using IPA.

Pathway analysis using IPA
We employed Ingenuity Pathway Analysis software to

identify enriched biological pathways and molecular functions
within a given gene list. We performed IPA on a list of gene
targets for each of the two candidate novel miRNAs (candidate
44 and 166), and also performed IPA on the list of differentially
expressed genes identified by the microarray analysis. IPA was
also performed on the subset of gene targets, as identified by
the Venn Diagram analysis, to be differentially expressed in the
microarray analysis (Figure 3).

Supporting Information

Figure S1.  Alignment workflow based on original
miRanalyzer. Work-flow diagram of sequence alignment as
implemented in miRanalyzer. The figure was adapted from the
miRanalyzer manuscript [58].
(TIFF)

Figure S2.  Accuracy of molecular features used in
computational prediction of miRNAs. Figure displays
ranking of molecular features used in computational prediction
of miRNAs. The x-axis reports the mean decrease in accuracy
of the model for each of the molecular features in question.
Conservation is the most informative feature in this analysis.
(TIFF)

Table S1.  Summary of training and test data sets. (A) Table
describes number of unique clusters and resulting precursor
sequences for Dex and Control samples in positive and
negative training sets.
(B) Table describes number of unique clusters and resulting
precursor sequences for Dex and Control samples in test set.
(TIFF)

Table S2.  Confusion matrix for training data for control
and dexamethasone-treated thymocytes. (A and B)
Confusion matrix displaying predicted and actual number of
microRNAs and non-microRNAs as identified by our
computational analysis. The classification accuracies of
predicting microRNAs are listed for both control and
dexamethasone-treated samples.
(TIFF)
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