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Inositol polyphosphatases are important regulators since they control the catabolism of phosphoinositol derivatives,
which are often signaling molecules for cellular processes. Here we report on the characterization of one of their
members in soybean, GmSAL1. In contrast to the substrate specificity of its Arabidopsis homologues (AtSAL1 and
AtSAL2), GmSAL1 only hydrolyzes inositol-1,4,5-trisphosphate (IP;) but not inositol-1,3,4-trisphosphate or
inositol-1,4-bisphosphate.The ectopic expression of GmSAL1 in transgenic Arabidopsis thaliana led to a reduction in
IP; signals, which was inferred from the reduction in the cytoplasmic signals of the in vivo biomarker pleckstrin
homology domain—green florescent protein fusion protein and the suppression of abscisic acid-induced stomatal
closure. At the cellular level, the ectopic expression of GmSAL1T in transgenic BY-2 cells enhanced vacuolar Na*
compartmentalization and therefore could partially alleviate salinity stress.
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Introduction

Phosphoinositol derivatives play a key role in mediating
cellular signals which are often related to abscisic acid (ABA)
and calcium signaling pathways [1-3]. Inositol
polyphosphatases are therefore potential regulators of cellular
processes [1-4]. Early characterizations of inositol
polyphosphatases were mainly conducted in animal systems
and have successfully identified inositol polyphosphatases with
different substrate specificities [4,5]. Besides phytases which
act on inositol hexakisphosphate (IPs; phytate) [6,7], there are
two major classes of inositol polyphosphatases identified in
plants: inositol 5-phosphatases and inositol 1-phosphatases
[8-10].

In Arabidopsis thaliana, a total of 15 genes were predicted to
encode for inositol 5-phosphatases [11], based on the
presence of two consensus domains (Domain | and Domain II)
identified by aligning characterized inositol 5-phosphatases
from animals, yeast and plants [4]. Despite sequence
homology at the two consensus domains, the proteins encoded
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by these 15 Arabidopsis genes show little overall sequence
similarity, suggesting a diverse group of inositol 5-
phosphatases present in plants [11]. Plant inositol 5-
phosphatases also exhibit different substrate specificities. For
example, AtSPTase1l and AtSPTase2 can hydrolyze
inositol-1,4,5-trisphosphate (IP3) and inositol-1,3,4,5-
tetrakisphosphate  (1(1,3-5)P,) [10,11] while At5PTase3,
At5PTase7, and At5PTase11 all act on
phosphatidylinositol-4,5-bisphosphate (P1(4,5)P,) and
phosphatidylinositol-3,5-bisphosphate (PI(3,5)P,) [12,13]. At
the same time, At5PTase11 can also use
phosphatidylinositol-3,4,5-trisphosphate  (PI(3-5)P;) as a
substrate [12].

Gain-of-function experiments showed that the
overexpression of At5PTase resulted in a reduction of the
stomatal response toward light and ABA treatment, presumably
due to a lowered IP; level [8]. The overexpression of
At5PTase2 also showed decreased sensitivity toward ABA
inhibitory effects on seed germination [10]. These two pieces of
evidence point to the regulatory role of inositol 5-phosphatases
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in ABA signaling. On the other hand, the overexpression of
At5PTase7 in A. thaliana enhanced salt tolerance while the
knock-out mutant of At5PTase7 aggravated salt damage due to
a loss in the ability to induce reactive oxygen species that are
required to trigger the expression of ABA-responsive genes
[13].

The AtSAL1 protein from Arabidopsis thaliana was a
prototype of inositol 1-phosphatases in plants [14]. AtSAL1 was
originally identified as a homologue of the yeast HAL2 protein
[9]. In vitro enzymatic assays showed that AtSAL1 acts on
inositol-1,4-bisphosphate (I(1,4)P,) and inositol-1,3,4-
trisphosphate (1(1,3,4)P;) [9] while IP; is apparently not a
preferred substrate [14]. However, a mutation in AtFRY1 (the
same gene as AtSALT) resulted in increased levels of cellular
IP;. It was proposed that this observation was due to the
accumulation of 1(1,4)P, and 1(1,3,4)P, that inhibited the
catabolism of IP; [14].

The in vivo functions of AtSAL1 on stress responses are still
controversial. The ectopic expression of the Arabidopsis gene
AtSAL1 in yeast conferred lithium tolerance, similar to the
effects of overexpressing the endogenous ScHal2 gene in
yeast [9]. It was an expected result since AtSALT and ScHal2
are homologues. However, it was subsequently reported that
the overexpression of AtSALT in A. thaliana did not elevate
NaCl tolerance [15]. In fact, AtSAL1 is a negative regulator of
drought tolerance in A. thaliana, since a mutation in the AtSAL1
gene led to enhanced drought tolerance [16].

In this work, we identified the coding sequence of the SAL1
homologue in soybean, GmSAL1. We also characterized its
substrate specificity and demonstrated its effects on various
stress responses in plant cell through its function as an inositol
polyphosphatase.

Materials and Methods

Cloning of GmSAL1

Soybean (Glycine max L. Merr.) plants were grown in a
greenhouse. For experiments leading to the cloning of
GmSAL1, the seeds were first germinated in sand irrigated with
water. After the opening of the first trifoliate, the seedlings were
irrigated with modified Hoagland’s solution [17]. NaCl treatment
was performed using 150 mm NaCl for 3 d.

Total RNA samples were obtained using a modified phenol
extraction protocol [18]. The first-strand cDNA was then
obtained from the total RNA by reverse transcription using the
Moloney murine leukemia virus-reverse transcriptase (Gibco
BRL, Grand Island, NY, USA) according to the manufacturer's

manual. Degenerate primers
(5'GTNCANGTIGCIIGAYTAYGG3' and
5'GCRTGITCCCAIATYTTYTC3') (N = A/C/G/T; Y = CIT;
R = A/G; | = Deoxyinosine) were designed based on the

multiple alignments of the following proteins: ScHal2 from S.
cerevisiae (GenBank accession number: AAR89916); AtSALI1,
AtSAL2 and AHL from A. thaliana (GenBank accession
number: Q42546, NP_201205 and NP_200250 respectively);
and RHL from rice (GenBank accession number: Q40639).
PCR using the above primer pair successfully amplified a
fragment of ~600 bps, under the following conditions: 94 °C

PLOS ONE | www.plosone.org

GmSAL1 Regulates IP3 Signals

5 min; 50 cycles of 94 °C 1 min, 54 °C 1 min and 72 °C 1 min;
followed by 72 °C 5 min; in a 25 pl reaction mixture composed
of 5.0 yl of the first-strand cDNA, 5.0 mM MgCl,, 0.2 mM
dNTPs, 0.8 uM of each primer, 0.5 U Tag DNA polymerase
(Roche, Indianapolis, IN, USA), and 1x PCR buffer.

The DNA sequence of the full-length coding region of

GmSAL1 was subsequently obtained by 5 and 3' Rapid
Amplification of cDNA Ends (RACE) using the SMARTRACE
cDNA amplification kit (Clontech Laboratories, K1612,
Mountain View, CA, USA), according to the manufacturer's
protocol. Gene-specific primers (GSPs)/nested GSPs for 5' and
3 RACE were5'’ACCACCTTCAGATTTACCACCGTC3/
5TGCTTTGACACCGAGTTTTTCTGC3' and
5'GTTGTATTGGGGTGTCTTGGCTTG3/
5 TGTCAAAGCACCACCCAGTCAGAA3'respectively. The
GmSAL1cDNA clone covering the entire coding region was
amplified from the first-strand cDNA samples using the primers
5'CGCCGCTGACACTAATCGTTT3 and
5'CGAGCCGACAACAAAGTTAGC3. The DNA sequence
information of GmSAL7 was deposited into GenBank
(accession number: EF637045).

DNA sequencing and sequence analysis

DNA sequencing was performed using the ABI PRISM
dRhodamine Terminator Cycle Sequencing Ready Reaction kit
(PerkinElmer, Waltham, MA, USA) and analyzed by the
Genetic Analyzer ABI Prism 3100 system, according to the
manufacturer's protocol. Homologue searches were performed
with Position-Specific Iterated Basic Local Alignment Search
Tool  (PSI-BLAST)  (http://www.ncbi.nlm.nih.gov/BLAST/).
Multiple alignments were performed using the ClustalW
program [19] in the BioEdit package (ver. 7.0.5.3).

Gene expression under stress

Soybean seeds were germinated in vermiculite with water in
a greenhouse. After one week, seedlings were transferred to
hydroponic cultures with half-strength Hoagland’s solution [20].
Just after the emergence of the first trifoliate, the plants were
transferred to half-strength Hoagland’s solution supplemented
with 60mM, 125mM, and 185mM NaCl, and 10%, 14%, and
16.5% (w/v) polyethylene glycol (PEG)-6000 for 24h. Treated
sample tissues were harvested and frozen in liquid nitrogen for
total RNA extraction. A total of 20ug RNA for each sample was
used for northern blot analysis. The osmolarity of NaCl and
PEG solutions was measured by Advanced™Micro Osmometer
(Model 3300; Advanced Instruments, Inc., Norwood, MA, USA).

Northern blot analysis and real time RT-PCR

Northern blot analysis was performed as previously
described [21]. Antisense single-stranded digoxygenin- (Roche,
Indianapolis, IN, USA)labeled DNA probes were obtained by
PCR according to the manufacturer's manual. The GmSAL1 or
GFP cDNA subcloned into the pBluescript || KS (+) vector was
used as the template and the primers used in the PCR were
5'AATTAACCCTCACTAAAGGGS' (T3) &
5'GTAATACGACTCACTATAGGGC3' (T7) for the first round
and the T3 primer for the second round of amplification.
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Real-time PCR was performed according to a previous report
[22] using the CFX96 Touch™ Real-Time PCR Detection
System (Bio-Rad, Hercules, CA, USA). The following primers

were used: 5-ATTGGGTGTCTTGGCTTGTC-3' (forward
primer for GmSAL1), 5-TGTGTAGAACCACCCAGTGC-3
(reverse primer for GmSALT), 5-

GGCCTTGTATAATCCCTGATGAATAAG-3' (forward primer
for AtUBQ10; house-keeping gene for A. thaliana samples)
[23], 5-AAAGAGATAACAGGAACGGAAACATAGT-3 (reverse
primer for AtUBQ10) [23], 5-CCCCTCACCACAGAGTCTGC-3'
(forward primer for L25; house-keeping gene for N. tabacum
samples) [24], 5-AAGGGTGTTGTTGTCCTCAATCTT-3’
(reverse primer for L25) [24].

Construction of GmSAL 1transgenic A. thaliana lines
Transgenic A. thaliana ectopically expressing GmSAL1 was
constructed according to a previous report [22]. The cDNA of
GmSAL1 was cloned into a binary vector [25] downstream of
the cauliflower mosaic virus 35S promoter. Six-week-old A.
thaliana (Col-0) plants were transformed by the vacuum
infiltration method[26] using the Agrobacterium tumefaciens
strain  GV3101 (pMP90) transformed with the GmSAL1
construct. The expression of GmSALTin the transformed A.
thaliana was verified by real-time PCR (Figure S1 in File S1).

Construction of A. thaliana lines expressing both
PHp, .,-GFP and GmSAL1

Reciprocal crosses were performed between the PHp, o,-GFP
and the GmSAL1 transgenic lines. Five- to six-week-old plants
grown on soil were used. Mature flowers were detached from
the pollen donor parent. Sepals, petals, and stamens of the
flower buds of the pollen recipient parent were removed with a
pair of fine forceps. Pollens of the donor parents were
transferred to the stigma of the recipient flower bud. About 2-3
weeks after artificial crossing, seeds were harvested. After a
few generations of self-fertilization, double homozygous lines
were screened by PCR. For the line PHp-GFP/
GmSAL1-1,GmSAL1 was the pollen donor. For the line PHp, o4~
GFP/GmSAL1-2, PHp, ,-GFP was the pollen donor.

Expression and purification of the GmSAL1 protein in
E. coli

The coding sequence of GmSAL1 was amplified by PCR
using Pfx polymerase (Invitrogen, Carlsbad, CA, USA) with the
following primers:
5'CCCCAGATCTATGCCTTACGAGAAGGAATTC3' and
5'CCCGCAATTGTCACAAGGATGAAACTTTCS3'. The amplified
GmSAL1cDNAwas subcloned into pGEX-2T vector (GE
Healthcare, Chalfont St Giles, UK) to form a fusion protein with
the glutathione S-transferase (GST). The GST-GmSAL1
construct was then introduced into the E. coli strain BL21 (DE3)
cells. The expression of the recombinant protein was induced
by the addition of 0.1mM IPTG to the E. coli culture followed by
incubation for 4h, before the cells were washed and
resuspended in the lysis buffer (50mM Tris-HCI pH 7.5, 100mM
NaCl and 1mM phenylmethylsulfonyl fluoride). The soluble
protein fraction was obtained by sonication and subsequent
centrifugation. Soluble GmSAL1 protein was affinity-purified by
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GST-Trap column (Amersham Biosciences, Piscataway, NJ,
USA) and then dialyzed overnight in the enzyme assay buffer
(25mM Tris-HCI pH 7.5, 1TmM MgCl,) with 2mM dithiothreitol.

Enzyme assays and determination of the K, values

Phosphatase assays were performed according to previous
reports [9,27,28] with slight modifications. A 100ul reaction
mixture containing the recombinant protein and substrate in the
assay buffer (26mM Tris-HCI pH7.5 and 1mM MgCl,) was
incubated at 37°C for 30min and the released inorganic
phosphate was quantified at 650nm using a 96-well microtiter
plate reader (Tecan Group Ltd., Seestrasse, Mannedorf,
Switzerland). Protein concentrations were determined by the
Bradford method [29]. The K, for IP; hydrolysis was
determined by measuring the rate of hydrolysis at the following
substrate concentrations: 0.0125mM, 0.025mM, 0.05mM,
0.1mM, and 0.2mM.The K, of IP; was calculated using the K.,
protein concentration, and molecular weight of the recombinant
protein. All substrates used were from Sigma-Aldrich Co. (St
Louis, MO, USA) except 1(1,3,4)P; and I(1,4)P, (Echelon
Biosciences Inc., Salt Lake City, UT, USA).

Relative in vivo IP, levels in guard cells

The microscopic analysis of relative in vivo IP; level in guard
cells was according to a previous report [30]. The lower
epidermal of rosette leaves of 4-week-oldA. thaliana grown on
soil at 22°C (16h light-8h dark cycle) was peeled off. The
epidermal peels were immersed in buffer containing 50uM
CaCl, , 5mM KCI, 10mM MES-Tris, (pH 6.15) for 2 h under
constant light, before subjected to confocal microscopic
analysis. Images were collected using Olympus FV1000(Ex:
488nm; Em: 510-525nm). The fluorescence signals were
analyzed using the Imaged program (ver. 1.371.44p)[31].

Stomatal aperture assay

The stomatal aperture assay was performed according to a
previous report [8]. Leaves of 4-week-oldA. thaliana grown on
soil at 22°C (16h light-8h dark cycle) were detached and
incubated in a perfusion solution (50mMKCI, 10mM MES, pH
7.0) without supplements for 2h, followed by incubation in a
perfusion solution with supplements for another 2h. In the
control experiment, the perfusion solution was supplemented
with 0.1% (v/v) MeOH (solvent of ABA). In the other two sets of
experiments, perfusion solutionscontaining100uM ABA with or
without 5mM CaCl, were used. The concentration of ABA
employed was according to a previous report [8]. All
incubations were conducted at 22°C under constant light. The
differential interference contrast (DIC) images of guard cells
were captured using a light microscope (Nikon Eclipse 80i).
The stomatal aperture was measured using a digital ruler
available in the software SPOT Advance (ver. 4.6, Diagnostic
Instruments, Inc.).

Seed germination assay

The seed germination assay was performed according to a
previous report [8].A. thaliana seeds were surface-sterilized,
placed on half-strength MS agar plate (1% (w/v) sucrose
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supplemented with one of the following: 0.1% (v/v) MeOH
alone, 2.5uM ABA in 0.1% (v/v) MeOH, or 4uM ABA in 0.1%
(v/iv) MeOH) and kept at 4°C in the dark for 2 d. Seeds were
then allowed to germinate at 25°C under continuous light. The
germination rate was calculated using 138 to 211 seeds from
three independent experiments.

Establishment of transgenic tobacco BY-2 cell lines

The same recombinant construct used to transform A.
thaliana was transformed into the tobacco BY-2 cells [32] using
Agrobacterium (strain LBA4404) by a co-cultivation method
[33]. After selecting the transformants on antibiotic-containing
medium, PCR screening using gene-specific primers was
performed to verify the successful integration of the transgene
into the genome and real-time PCR was performed to verify the
expression of the transgene in the transformed cell lines. Cells
were grown in a liquid MS medium [32] at room temperature in
the dark with mild agitation.

Microscopic analysis of Na* compartmentalization

For Na* compartmentalization studies, BY-2 cells were
harvested 4 d after subculture and used for all microscopic
analyses. After the cells had been treated with 150mM NaCl in
MS medium, they were incubated with shaking at room
temperature for 1h. SodiumGreen™ indicator (S6901;
Invitrogen, Carlsbad, CA, USA was used to visualize the
intracellular contents of Na* [17], and the confocal images were
captured using Olympus FV1000 (Ex: 488nm; Em: 510-
525nm). The fluorescence signals were analyzed using the
Imaged program (ver. 1.44p)[31]. The total fluorescence
intensity in the pixels was divided by the total area to obtain the
average pixel fluorescence intensity. Background fluorescence
intensity was measured in the same field and was subtracted.
DIC images of cells were obtained by excitation with a red
diode. Two replicates of each experiment were performed.

For real-time image capturing, 3-day-old cells were pre-
incubated with 10uM Sodium Green™ indicator for 30 min prior
to the 200mMNacCl treatment. Images of cells were captured at
10-sec intervals after NaCl treatment for a total period of
50min, using the Bio-Rad Radiance 2100 system (Ex: 514nm,
filter set HQ545/40). The first reading was taken ~20s after
NaCl treatment. Cell sizes were measured by the ImageJ
program (ver. 1.37) and the % change was reported. Na*
content was measured as the intensity of the Sodium Green™
signal per unit area using the same program. The images were
collated and converted to an MPEG video and attached as a
supplementary file.

Microscopic analysis of cell viability

For cell viability assays, 4-day-old BY-2 cell suspension
cultures were remained untreated or treated with one of the
following: 150mM NaCl in MS medium, 150mMNaCl with 1uM
IP; in MS medium, or 13.3% (w/v) PEG-6000 in MS medium
(near-isotonic to 150mM NaCl), for 24 h with shaking in an
orbital shaker. After treatment, cells were stained with 0.4ug/pl
Trypan blue (Sigma Aldrich Co., St Louis, MO, USA). The
images of stained cells (around 150 cells in each experiment)
were captured using the CCD camera attached to the light
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microscope (Nikon Eclipse 80i). A total of 91-247 cells were
counted from 4-12 fields. Two replicates of each experiment
were performed.

NaCl and PEG stress treatments on A. thaliana

Stress treatments on A. thaliana were performed as
described in previous reports [34,35] with slight modifications.
Ten-day-old A. thaliana seedlings grown on MS agar at 22°C
(16h light-8h dark cycle) were transferred to MS agar without
supplement (CK) or MS agar supplemented with 100mM NaCl,
11.1% (w/v) PEG-6000, 150mM NaCl, or 13.5% (w/v)
PEG-6000 (100mM NaCl MS broth is near-isotonic to 11.1%
(w/v) PEG-6000 MS broth; 150mMNaCl MS broth is near-
isotonic to 13.5% (w/v) PEG-6000 MS broth).The A. thaliana
seedlings were harvested10 days after treatment. The
experiments were replicated.

Determination of total chlorophyll in A. thaliana

The determination of total chlorophyll in A. thaliana was
performed as described previously [34]. Leaf tissue of less than
0.02 g was immersed in 0.8 ml N, N-dimethylformamide (DMF)
followed by incubation at 4°C overnight[36]. The absorbance at
603, 647 and 664 nm was recorded. The amount of total
chlorophyll was calculated using a formula published
previously[37].

Statistical analysis

Statistical analysis was performed using the Statistical
Package for Social Sciences (version 16.0; SPSS Inc.,
Chicago, IL, USA).

Results

The expression of GmSAL1 was induced by NaCl but
not near-isotonic PEG

We obtained the full-length coding region ofGmSAL1 (the
soybean homologue ofAtSAL1) by PCR using degenerate
primers followed by RACE.Basic Local Alignment Search Tool
(BLAST) analysis showed that the overall amino acid sequence
identity of GmSAL1 (GenBank accession No.: EF637045) to
the closest homologues in A. thaliana, AtSAL1 (GenBank
accession No.: Q42546) and AtSAL2 (GenBank accession
No.:NP_201205), is 77% and 63% respectively. Multiple
alignments were performed on GmSAL1, AtSAL1 and AtSAL2
(Figure 1). The consensus sequences [38] for inositol- and
phosphate-binding are all conserved in GmSALA1.

Since the yeast homologue, ScHal2, is known to be a salt-
stress determinant [39],we tested the expression of GmSAL1
when the plants were subjected to different concentrations of
NaCl (Figure 2). It was found that the levels of GmSAL1
transcripts in both leaves and roots were induced by treating
the plants with NaCl (Figure 2). Since NaCl treatment consists
of two stress components: ionic stress and osmotic stress, we
therefore used near-isotonic PEG treatments to control for the
osmotic stress. The difference in GmSAL1 expression levels
between each isotonic pair of NaCl and PEG treatments
showed that GmSAL1 could only be induced by ionic stress
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Figure 1. Aligning GmSAL1 with its closest homologues in A. thaliana. Multiple alignments were performed for GmSALA1,
AtSAL1, and AtSAL2 (Genbank numbers EF637045, Q42546, and NP_201205, respectively), using the ClustalW program [19] in
the BioEdit package (ver. 7.0.5.3). Identical amino acid residues were shaded black and similar amino acid residues were shaded
grey. The conserved motifs involved in substrate- and metal-binding and nucleophilic water activation were marked as A, B and C
[38].

doi: 10.1371/journal.pone.0078181.g001
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A
Leaf
Untreated 60 mM 10% 125 mM 14% 185 mM 16.5%
control NacCl PEG-6000 Nacl PEG-6000 Nacl PEG-6000
GmSAL1 ' ' . " B Tkl
rRNA
B
Root Untreated 60 mM 10%  125mM  14%  185mM  16.5%
control Nacl PEG-6000 NacCl PEG-6000 NacCl PEG-6000
GmSAL1
rRNA . - - - R et
Figure 2. Northern blot analyses of the expression of GmSAL17 in soybean under NaCl and isotonic PEG-6000

treatments. A series of NaCl solutions with different concentrations were prepared, together with the corresponding near-isotonic
PEG solutions: 60mM NaCl versus 10% (w/v) PEG-6000; 125mM NaCl versus 14% (w/v) PEG-6000; 185mM NaCl versus 16.5%
(w/v) PEG-6000 (the osmolarities of treatment solutions are given in Table S1 in File S1). Two-week-old soybean seedlings grown
hydroponically were placed in fresh half-strength modified Hoagland’s solution without (untreated) or with various NaCl or PEG
supplements. Leaf and root tissues were harvested 24 h after treatment. 20ug total RNA from each sample was used for northern
blot analysis. The experiment was performed twice and similar results were obtained.

doi: 10.1371/journal.pone.0078181.g002

(due to NaCl) but not osmotic stress (due to PEG) (Figure 2).
PEG treatment actually led to a repression of GmSAL71gene
expression (Figure 2).

GmSAL1 hydrolyzed IP,

The amino acid sequence alignment suggested that
GmSAL1 may possess inositol polyphosphatase
activities(Figure 1). We expressed and purified the GmSALA1
protein from Escherichia coli in order to determine its substrate
specificity in vitro. Surprisingly, we found that GmSAL1 used
IP; readily as the substrate but had no effect on 1(1,3,4)P;,
1(1,4)P,, inositol 1-monophosphate (I(1)P) or IPs. The K, and
Ks Vvalues were also determined (Table 1). The GmSAL1
substrate specificity is therefore completely different from that
of AtSAL1, an inositol 1-phosphatase and the closest
homologue of GmSAL1 in A. thaliana.

To study the physiological significance of the enzymatic
activities of GmSAL1 in vivo, we employed the biosensor
construct Pleckstrin homology domain—green florescent protein
(PHp c-GFP). PHp oy is a protein domain which binds to
P1(4,5)P, (on the plasma membrane) and IP; (in the cytosol)
[30]. The PHp c4-GFP construct was successfully employed to
indicate the cytoplasmic IP; levels [30].

We first generated homozygous lines of transgenic A.
thaliana expressing GmSAL1 and confirmed the expression of
the transgene (Figure S1 in File S1). Two independent
GmSALT1 transgenic lines were crossed to an A. thaliana line
expressing the PHp, ;-GFP construct. Homozygous transgenic
lines containing both the GmSAL1 and PHp, c,~GFP constructs
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Table 1. Substrate specificity (K,) and K, values of
GmSALT'.

Substrates Specific activity (umol min“'mg-1) Km (MM)  Kcat (min-)
IP3 1.1+£0.2 10.8+ 0.1 68 13
1(1,3,4)P3 0 - -

I1,4P, O ) i

I(1)P 0 ; .

IPg 0 ) i

a. Enzymatic activities were measured as described [9,27,28] in 25 mM Tris-HCI
pH7.5, 1 mM MgCly at 37°C for 30 min. All substrates were in a final concentration
of 0.5 mM except IP3 (0.2 mM). The results were from three independent
experiments, each performed in triplicates. Details for the determination of K., and
Kcat values were described in Materials and Methods. Numerical data represent
the mean value of independent experimentststandard deviation.

doi: 10.1371/journal.pone.0078181.t001

were obtained and the expression of GmSAL1 was validated
(Figure S1B in File S1).

Since the expression of PHp -.,GFP was reduced in the
GmSAL1/PHg,.4-GFP double transformants (Figure S1D in File
S1), instead of comparing the total GFP signals, we examined
the percentage of signals localized in the cytoplasm of guard
cells.

Compared to the original PHg, ,-GFP transgenic line, the
proportion of signals in the cytoplasm was much lower in the
GmSAL1/PHp,.-GFP  double transformants (Figure 3).
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Figure 3. In vivo changes in IP; signals due to the ectopic expression of GmGAL1 in A. thaliana. The biosensor PH, .4 was
employed to study the changes in IP, signals as described in Materials and Methods. Representative fields of the lower epidermis of
the original PHp, -,-GFP line and two independent double-transformed A. thaliana lines (PHp,c,-GFP/GmSAL1-1 and PHp, .o-GFP/
GmSAL1-2) under a confocal microscope were shown. The GFP signal is represented by a pseudo-green color. A: A low
magpnification showing a wider view, scale bar= 100um. B: A close-up view of the guard cells, scale bar = 10um. C:Statistical
analysis of the percentage GFP signal in cytoplasm of the guard cells. Results were calculated from 30 cells from 6 fields. Error bar:
standard error. ** indicates a significant difference (p<0.01) between the original PHp c,-GFP construct and the double
transformants (PHp,c-GFP/GmMSAL1-10rPHp, .- GFP/GmSAL1-2), using one-way analysis of variance (ANOVA) followed by the

posthoc Tukey'’s test. The experiment was performed twice and similar results were obtained.

doi: 10.1371/journal.pone.0078181.g003

Together with the in vitro enzymatic data, this in vivo evidence
supports the function of GmSAL1 to down-regulate the level of
cytosolic IP;.

Ectopic expression of GmSAL1 negated the effects of
ABA on stomatal closure and seed germination

IP; plays a key role in mediating the ABA signaling in guard
cells to control the stomatal aperture [8]. To test whether the
ectopic expression of GmSAL1 will also affect |IP;-mediated
stomatal closure, a stomatal aperture assay was conducted.
Detached A. thaliana leaves were treated in a buffer containing
0.1% (v/v) MeOH, with or without 100uM ABA. Under ABA
treatment, the stomatal apertures in the wild type leaves (WT)
and the empty vector-transformed control were much reduced
compared to no ABA treatment (Figure 4). On the other hand,
the stomatal apertures in the leaves of the GmSALT lines were
significantly larger than those in the controls under the same
ABA treatment (Figure 4).

The model of ABA-induced stomatal closure postulates that
ABA increases the cytosolic IP; level in guard cells, which in
turn leads to an increase in cytosolic calcium [Ca*'],,,, resulting
in the differential activation and inactivation of K* channels on
the plasma membrane and the tonoplast [1]. The net result is
the efflux of K* (and subsequently water) out of the cytosol and
the vacuole, which leads to the loss of turgidity in guard cells
and, consequently, stomatal closure [1,3,40]. To investigate
whether the effect of GmSAL1 on stomatal aperture is Ca?*-
dependent, 5mM Ca?* was also included in the medium in

PLOS ONE | www.plosone.org

addition to 100uM ABA. External Ca?* leads to the elevation in
[Ca?"],,: and stomatal closure [41]. Our results indicated that the
suppressing effect of GmSAL1 on stomatal closure under
100pM ABA was mitigated by the addition of external Ca?
(Figure 4).In the medium containing 100uM ABA and 5mM
Ca?*, the stomatal aperture of wild type, the empty-vector line,
and the GmSAL17transgenic lines show no significant
differences (Figure 4).The effect of GmSAL1 on the stomatal
opening may hence be a result of its hydrolytic activities toward
cellular 1P;.

Besides controlling the stomatal aperture, another important
function of ABA in plants is the inhibition of seed germination.
Germination rate is a common strategy to study ABA sensitivity
[8,10]. The effects of ABA on the seed germination rate of the
wild type A. thaliana, empty-vector transgenic control and
theGmSAL 1transgenic lines were compared. Under 2.5uM
ABA and 4pM ABA treatments, the germination rate of
GmSALTtransgenic lines was significantly higher than the
controls (Figure 5) with the effects being more pronounced
under 2.5uM ABA than 4uM ABA treatment, indicating that
GmSAL1 can reduce the sensitivity of plants toward ABA.

Ectopic expression of GmSAL1 enhanced vacuolar Na*
compartmentalization in BY-2 cells under salinity
stress

Next, we examined the effects of GmSAL1 on plant cells in
general. A previous study of AtSAL1 showed that its ectopic
expression in yeast cells could increase salinity tolerance [9].
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Figure 4. Ectopic expression of GmSAL1 in A. thaliana negated the effects of ABA on stomatal aperture. Leaves from 4-
week-old A. thaliana grown on soil were used in this experiment. A:Representative DIC images of the guard cells of untransformed
wild type (WT), empty-vector transgenic control (Empty vector), and two GmSAL1 transgenic lines (GmSAL1-1 and GmSAL1-2),
treated with OuM ABA, 100uM ABA, or 100pM ABA + 5mM CaCl, were captured using a light microscope. Scale bar =20um. B:
Mean stomatal aperture was measured using a digital ruler. N>168 from repeated experiments. Error bar: standard error. **
indicates a significant difference (p<0.01) between GmSAL1-1 or GmSAL1-2 and WT, based on ANOVA followed by the posthoc

Tukey'’s test.
doi: 10.1371/journal.pone.0078181.g004
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Figure 5. Ectopic expression of GmSAL1 in A. thaliana negated the effects of ABA on seed germination. The germination
rates of A. thaliana seeds of untransformed wild type (WT), empty-vector transgenic control (Empty vector), and GmSAL17-
expressing lines, treated with OuM (A), 2.5uM (B), or 4uM (C) ABA on half-strength MS agar plates, were determined. Results were
calculated from 138-211 seeds from three independent experiments. Error bar: standard error. The differences of germination rates
among WT, empty vector and GmSAL1 overexpressing lines were subjected to one-way analysis of variance (ANOVA) followed by
the posthoc Tukey’s test. Under 2.5uM ABA treatment, p<0.01 from day 4 to day 7. Under 4uM ABA treatment, p<0.01 from day 4
to day 8.

doi: 10.1371/journal.pone.0078181.g005
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Figure 6. Ectopic expression of GmSAL1 in BY-2 cells enhanced their survival rates under NaCl stress. Four-day-old BY-2
cells grown in MS medium were used, including cells of untransformed wild type (WT), empty-vector transgenic control (Empty
vector), and three independent GmSAL1 transgenic lines (A3-1, B3-1, D2-3). The survival rate was determined by Trypan blue
staining. The cells were untreated, treated with 150mM NaCl or 150mM NaCl+ 1uM IP; in MS medium for 24 h with shaking. They
were then washed with fresh MS medium and stained with 0.4ug/ul Trypan blue for 15min before microscopic analysis. A: Typical
photos showing the rate of survival. The nuclei of dead cells were stained blue. Scale bar= 100um.B: Statistical analysis. A total of
94-247cells were counted from 4-6 fields. Error bar: standard error. ** indicates a significant difference (p<0.01)between transgenic
cells and WT, based on ANOVA followed by the posthoc Tukey’s test.

doi: 10.1371/journal.pone.0078181.g006

Since the expression of GmSAL1 is salt-inducible (Figure 2), cells. The expression of GmSALT could alleviate NaC1-
the effect of GmSAL1 on salt tolerance in plant cells was induced salinity stress (Figure 6) but not PEG-induced osmotic
investigated. The survival rates of GmSAL1 transgenic BY-2  stress (Figure S2 in File S1). The percentage of survival in the
cells under NaCl stress (Figure 6) and PEG-induced osmotic =~ GMSALT transgenic BY-2 cell lines under NaCl stress was
stress (Figure S2 in File S1) were studied. The expression of significantly higher than in other lines (Figure 6), whereas the
GmSALT in the transgenic cells was validated (Figure S1 in supplementation of 1uM IP; could negate the protective effects
File S1). Trypan blue was used to stain the dead cells. Nacl ~ ©f GmSAL1 (Figure 6).

(salinity stress) significantly increased the number of dead
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We also traced the cellular compartmentalization of Na*
using the fluorescence dye Sodium Green™. Our results
indicated that under NaCl treatment, GmSAL1 transgenic BY-2
cells exhibited enhanced vacuolar compartmentalization of Na*,
as reflected by the higher fluorescence intensity in the vacuole
when compared to the wild type BY-2 cells and empty-vector
transgenic control (Figure 7). Similar to the results of the cell
survival test, the effects of expressing GmSAL1 was much
reduced by the supplementation of 1uM IP,(Figure 7).

To better visualize the changes of BY-2 cells under NaCl
stress, we captured time-series images of a single cell after
NaCl treatment. Two major differences were observed when
comparing the wild type BY-2 cell to the GmSAL1 transgenic
cell. Firstly, when NaCl was added, the size of the protoplast in
the wild type cell decreased (Figure 8; Video S1), probably due
to the efflux of water from the cell. Under the same treatment,
the GmSAL1 transgenic cell exhibited an initial shrinkage in
protoplast size followed by a recovery after about 15 min
(Figure 8; Video S1). Secondly, while there was no significant
elevation of Na* compartmentalization into vacuoles over time
in the wild type BY-2 cell under NaCl treatment, an obvious
increase in vacuolar Na* was observed in the GmSALT
transgenic cell under the same conditions. The vacuolar Na*
was maintained at a higher level than before the NaCl
treatment when the transgenic cell gradually recovered from
shrinkage (Figure 8; Video S1).

Ectopic expression of GmSAL1did not enhance the
tolerance of A. thaliana to NaCl and PEG stress

We also investigated the effect of ectopic expression of
GmSAL1 at whole plant level. Wild type (WT), transgenic
empty vector (Empty vector), GmSAL1 transgenic (GmSAL1-1
and GmSAL1-2) A. thaliana were treated with NaCl and near-
isotonic PEG-6000. In contrast to the protective effects of
GmSAL1 on BY-2 cells, ectopic expression of GmSALT in A.
thaliana did not confer obvious protection under salt stress and
osmotic stress (Figure S3 in File S1).

Discussion

It is common to classify enzymes that can act on I(1,4)P, and
1(1,3,4)P, as inositol 1-phosphatase and those that can act on
IP; as inositol 5-phosphatase [5]. While GmSAL1 showed
strong sequence homology to AtSAL1 and AtSAL2 which were
reported to be inositol 1-phosphatases that have no activities
toward IP;, GmSAL1 employed IP; as the preferred substrate
and is inactive toward 1(1,4)P, and 1(1,3,4)P; (Table 1).

There are two possible explanations for this observation.
GmSAL1 may be an inositol 1-phosphatase like AtSAL1, but
differs from AtSAL1 in substrate specificity. Another possibility
is that GmSAL1 possesses inositol 5-phosphatase activities
that act on the 5-phosphate of IP,. Inositol polyphosphates
without a 5’-phosphate such as 1(1,4)P, and 1(1,3,4)P; are
therefore non-substrates. Detailed sequence analysis revealed
that GmSAL1 exhibits a low degree of homology to the two
consensus domains found in inositol 5-phosphatases (Figure
S4 in File S1). In this research, we focus on the consequence
of the IP; hydrolytic activities exhibited by GmSALA1.
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The K, value of GmSAL1 toward IP; was found to be about
10uM, which is similar to the K, value of human inositol 5-
phosphatase that also acts on IP; [5]. This value is at least two
folds higher than the cellular IP; level that is needed to affect K*
transport [42].Therefore, GmSAL1 activity inside the cell may
not be at maximum velocity under normal conditions. The IP,
level required to induce Ca? is at the uM level [42]. While
mainly located in the cytosol, IP; may be able to bind to
receptors such as Ca?* channels on the plasma membrane
[30,43]. On the other hand, stress will increase the level of
cytosolic IP; [44—46]. For instance, NaCl treatment could
increase the IP, level up to 15 folds in A. thaliana [2]. GmSAL1
may therefore play a role in the fine adjustment of the cytosolic
IP; concentration under stress.

The expression of GmSALT in its native host was responsive
to NaCl (salinity stress) but not near-isotonic PEG treatment
(osmotic stress) (Figure 2). This may be tied to its physiological
roles. The ability of GmSAL1 to reduce the ABA-induced
stomatal response (Figure 4), by lowering the IP; level, is
apparently not a protective mechanism against long-term
osmotic stress. The expression of GmSAL1 in transgenic BY-2
cells also showed no improvement in the tolerance toward PEG
treatment (Figure S2 in File S1). On the other hand, GmSALA1
can help to combat salinity stress at the cellular level by
enhancing the vacuolar compartmentalization of Na* (Figure 6)
and such an effect was not observed when IP; was added. It is
possible that under such experimental conditions, the
protective function of GmSAL1 is brought forth by reducing the
IP; below a threshold level.

Using stomatal closure (Figure 4) and seed germination rate
(Figure 5) as parameters, we showed that GmSAL1 can lower
the plant’s sensitivity toward ABA treatments, presumably due
to the reduction of IP; signals. Such effects were also observed
in inositol 5-phosphatases which use IP; as their substrate
[8,10].

The cytosolic IP; offers protection against water loss in
planta via inducing the closure of stomata by activating the
tonoplast and cell membrane K* channels that remove K* from
the vacuole and the cytosol and inactivating K* channels that
increase uptake [1]. These K* channels are reported to be non-
specific and can also transport Na* [47,48]. Consistent with this
observation, it was previously reported that the addition of NaCl
could lead to stomatal opening, a phenomenon that could be
reversed by ABA [49].

The classical model that IP; is the direct signaling molecule
inducing cytosolic Ca?* influx in the guard cells [50] has been
challenged by some recent findings. IP; was found to be a
much more potent signalling molecule controlling Ca?* influx
and the effect of IP; on Ca? influx might be due to its
conversion to IPg [51]. However, GmSAL1 does not use IP; as
the substrate (Table 1) and hence the GmSAL1 effect on
stomatal opening is via regulation of the cytosolic IP; levels.

The level of cellular IP;increases under stress [44—46]. If the
effect of IP; on vacuolar cation channels also occurs in cells
other than the guard cells, a higher level of IP,will decrease
vacuolar Na* compartmentalization. In contrast, the hydrolysis
of IP; will enhance the accumulation of vacuolar Na* under
NaCl treatments. It was indeed what we observed using the
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Figure 7. The ectopic expression of GmSAL1 in BY-2 cells increased the vacuolar compartmentalization of Na* under NaCl
stress. Four-day-old BY-2 cells grown in MS medium were used, including cells of the untransformed wild type (WT), empty-vector
transgenic control (Empty vector), and three independent GmSAL1T transgenic lines (A3-1, B3-1, D2-3). Vacuolar Na*
compartmentalization was visualized with the use of Sodium Green™. Cells pre-washed with MS medium were transferred to fresh
MS medium containing no supplements (untreated), MS medium supplemented with 150mM NaCl or 150mM NaCl+ 1uM IP, for 1h
with shaking. They were then washed with fresh MS medium and stained with 5uM Sodium Green™, followed by confocal
microscopic analysis. A: Typical photos showing the relative levels of vacuolar Na* using the fluorescent signal of Sodium Green™
(represented by the pseudo-green color). Scale bar= 50um.B: Statistical analysis. The relative fluorescence intensity of 17-34 cells
(from 4 fields) was determined for each data point. Error bar: standard error. ** indicates a significant difference (p<0.01) between
the transgenic lines and WT, based on ANOVA followed by the posthoc Tukey'’s test.

doi: 10.1371/journal.pone.0078181.g007
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Figure 8. Changes in the protoplast size and vacuolar Na* content under NaCl treatment in real time. GmSAL1 transgenic
BY-2 cells and the untransformed wild type cells (WT) were treated with 200mM NaCl (see Materials and Methods). Differential
interference contrast (DIC) images and Sodium Green™ fluorescent signals were collected by confocal microscopy (see Materials
and Methods), over a period of 50min. Each data point represents the average value of 4-5 cells. Closed square: Na* content of the
GmSALT1 transgenic line; closed triangle: Na* content of WT; open square: protoplast size of the GmSAL1 transgenic line; open
triangle: protoplast size of the untransformed wild type (WT). Images were collated to produce the Video S1. The differences in
signal intensity and cell size between WT and GmSAL1 transgenic lines were subjected to the Student’s T-test. For Sodium Green
signal comparison, p<0.01 from 20 sec after NaCl treatment till the end of the experiment (50 min and 20 sec). For cell size
comparison, p<0.05 from 25 min and 20 sec after NaCl treatment till the end of the experiment.

doi: 10.1371/journal.pone.0078181.g008

BY-2 cell model. GmSAL1 produced in the transgenic BY-2 supported by our observations that severe plasmolysis

cells hydrolyzed IP; and hence increased Na* occurred in the untransformed wild type BY-2 cells upon NaCl
compartmentalization in the vacuole (Figure 7), resulting in a treatment and the GmSAL1 transgenic cells could accumulate
higher survival rate for the transgenic cells under NaCl stress Na* in the vacuole more effectively and could therefore partially
than for the wild type (Figure 6). restore the protoplast size, presumably through increased
Compartmentalization of Na* in the vacuole is an effective water intake following ion compartmentalization in the vacuole
way to protect the plant cell against salinity stress [52—-54]. On (Figure 8; Video S1). The detailed mechanism of how GmSAL1
one hand, the toxic Na* is removed from the cytosol. At the and cytosolic IP; level regulate Na* compartmentalization into
same time, the accumulation of Na* in the vacuole sets up an vacuole is still unclear at this point.
osmotic gradient to enable the plant cell to uptake water from Since ABA is the hormone which induces stomatal closure to

an environment with low osmotic potential [55,56]. This is protect the stressed plant from water loss [57] and GmSAL1
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reduces ABA-induced stomatal response, it is not surprising
that the protective effect of GmSAL1 on NaCl or PEG stress
was not obvious at the whole plant level (Figure S4 in File S1).

In summary, we conclude that GmSAL1 is a novel soybean
SAL1 homologue that hydrolyzes IP, and plays differential
roles at the whole plant level versus at the cellular level in
response to salinity stress.

Supporting Information

File S1. A combined file containing one supplemental
table and four supplemental figures as follows: Table S1,
Osmolarity of near-isotonic solutions; Figure $S1,
Validation of transgene expression; Figure S2, Ectopic
expression of GmSAL1 in BY-2 cells did not enhance their
survival rates under PEG stress; Figure S3, Ectopic
expression of GmSAL1 in A. thaliana did not enhance their
tolerance toward NaCl or PEG stress; Figure S4, Multiple
alignments of GmSAL1 with inositol 5-phosphatases.
(DOCX)
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Video S1. An MPEG video is provided to show the change
in cell size and vacuolar Na* in the GmSAL1 transgenic
and wild type BY-2 cell lines under 200 mM NaCl treatment.
The images were taken over a 50-min period.
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