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Abstract

Soluble oligomeric amyloid b peptide (Ab) generated from processing of the amyloid precursor protein (APP) plays a central
role in the pathogenesis of Alzheimer’s Disease (AD) and through actions at glutamatergic synapses affects excitability and
plasticity. The physiological control of APP processing is not fully understood but stimulation of synaptic NMDA receptors
(NMDAR) can suppress Ab levels through an ERK-dependent increase in a-secretase activity. AMPA-type glutamate
receptors (AMPAR) couple to ERK phosphorylation independently of NMDAR activation raising the possibility that
stimulation of AMPAR might similarly promote non-amyloidogenic APP processing. We have tested this hypothesis by
investigating whether AMPAR directly regulate APP processing in cultured mouse cortical neurons, by analyzing APP C-
terminal fragments (CTFs), soluble APP (sAPP), Ab levels, and cleavage of an APP-GAL4 reporter protein. We report that
direct stimulation of AMPAR increases non-amyloidogenic a-secretase-mediated APP processing and inhibits Ab production.
Processing was blocked by the matrix metalloproteinase inhibitor TAPI-1 but was only partially dependent on Ca2+ influx
and ERK activity. AMPAR can therefore, be added to the repertoire of receptors that couple to non-amyloidogenic APP
processing at glutamatergic synapses and thus pharmacological targeting of AMPAR could potentially influence the
development and progression of Ab pathology in AD.
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Introduction

Generation of the amyloid b peptide (Ab) from the amyloid

precursor protein (APP) and the subsequent aggregation of Ab as

soluble synaptotoxic oligomers, is central to the pathogenesis of

Alzheimer’s Disease (AD) [1–4]. The production of Ab via the

amyloidogenic pathway of APP processing begins with b-secretase

cleavage followed by c-secretase cleavage to yield sAPPb and Ab
[5]. Alternatively APP can be cleaved by a-secretase followed by c-

secretase to yield a p3 fragment and neurotrophic sAPPa in a non-

amyloidogenic pathway [6]. The identification of new approaches

for reducing Ab burden either by inhibition of bc -secretases,

stimulation of a-secretase, enhanced Ab clearance, or by

maintaining neuronal homeostasis remains a major therapeutic

goal for AD, particularly in the very early stages of pathogenesis.

The mechanisms that regulate APP processing under pathological

conditions have been extensively studied, but less is known about

the physiological control of endogenous non-mutated APP

processing at healthy, non-diseased synapses although there is a

close relationship between APP processing, Ab production and the

regulation of excitability at glutamatergic synapses [7–9]. Synaptic

activity enhances Ab release from nerve terminals following

endocytosis of APP into endosomes [10,11] and similarly

stimulation of presynaptic group II metabotropic glutamate

receptors (mGluRs) increases Ab secretion [12]. In contrast,

postsynaptic group I mGluRs promote non-amyloidogenic a-

secretase mediated APP processing [13]. However, the situation

with respect to N-Methyl-D-Aspartate receptors (NMDAR) is

more complex, as stimulation of NMDAR can either elevate or

inhibit Ab production depending upon temporal and spatial

differences in receptor-evoked signaling events. For example,

prolonged activation of NMDAR with sub-maximal doses of

agonist [14,15] or specific stimulation of extrasynaptic NMDAR

[16], promotes amyloidogenic processing of APP and hence

increases Ab production. In contrast, direct activation of synaptic

NMDAR favours non-amyloidogenic a-secretase-mediated APP

processing to reduce Ab production and release [17], first

recruiting ADAM-10, towards the cell surface [18] and then

upregulating ADAM-10 expression in an ERK-dependent manner

[19]. Administration of NMDAR antagonists or channel blockers
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increases Ab levels both in vitro and in vivo [15,17] and similar

elevations in Ab are observed following the administration of

MEK/ERK inhibitors [15]. Thus, basal activity at NMDAR

suppresses Ab levels through a potentially ERK-dependent

increase in a-secretase activity suggesting that other receptors

found at glutamatergic synapses that act via ERK might similarly

suppress Ab production.

a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

(AMPA)-type glutamate receptors (AMPAR) couple to ERK

phosphorylation independently of NMDAR activation [20,21],

raising the possibility that stimulation of AMPAR might lead to

promotion of non-amyloidogenic APP processing. We have tested

this hypothesis by investigating whether AMPAR activity directly

regulates APP processing in cultured mouse cortical neurons, by

analyzing APP C-terminal fragments (CTFs), soluble APP (sAPP),

Ab levels, and cleavage of an APP-GAL4 reporter protein. We

report that direct stimulation of AMPAR increases non-amyloido-

genic a-secretase-mediated APP processing and inhibits Ab
production.

Materials and Methods

Ethics Statement
Primary cortical neuronal cultures were prepared from mouse

embryos as described previously [17] in accordance with UK

Home Office Guidelines as stated in the Animals (Scientific

Procedures) Act 1986 using procedures approved by the King’s

College London Ethics Committee.

Antibodies
Rabbit polyclonal antibody CT20 raised against residues 676–

695 of human APP (APP695 numbering) has previously been

described [22]; mouse monoclonal APP antibody 13-M raised

against a 21 amino acid sequence in the N-terminal domain of

human APP, and which is identical in mouse and rat APP, was

purchased from Alpha Diagnostic International (San Antonio,

TX); phospho-ERK1/2 (Thr202/Tyr204) rabbit polyclonal anti-

body was purchased from Cell Signaling Technology (Danvers,

MA); Glu1 (GluA1) polyclonal antibody, GluR2 (GluA2) poly-

clonal antibody and PSD-95 monoclonal antibody were purchased

from Millipore (Temecula, CA); total ERK (C-14) rabbit

polyclonal antibody was purchased from Santa Cruz Biotechnol-

ogy (Santa Cruz, CA); synaptophysin (clone SVP-38) mouse

monoclonal antibody was purchased from Sigma (St. Louis, MO);

AlexaFluor 488 and AlexaFluor 546 secondary antibodies were

purchased from Invitrogen (Carlsbad, CA); and horseradish

peroxidase-conjugated secondary antibodies were purchased from

Millipore (Temecula, CA). Unless otherwise indicated, primary

antibodies were used for immunoblotting at the following

dilutions: APP CT20 (1:20,000); APP 13-M (1:2,500); total ERK

(1:2,000); phospho-ERK1/2 (1:2,500); synaptophysin (1:2,000).

Compounds
AMPA, NMDA, (+)-MK801, Nimodipine, DAPT, U0126,

PD184352 and Fura2-AM were purchased from Tocris Bioscience

(Bristol, UK); GYKI53655 was a gift from Lilly (Indianapolis, IN);

EGTA was purchased from Sigma (St. Louis, MO); b-secretase

inhibitor IV was purchased from Calbiochem (San Diego, CA);

TAPI-1 was purchased from Peptides International (Louisville,

KT); Complete Protease Inhibitor Cocktail tablets were purchased

from Roche Applied Science (Indianapolis, IN).

Plasmids
pRC-CMV vector containing human APP695 fused at the C-

terminus via a 5 glycine hinge to the yeast transcription factor

Gal4 containing both the DNA-binding and activation domains

(APP695-Gal4) was originally provided by Professor Tommaso

Russo (Naples, Italy), [23]. pFR-Luciferase reporter vector

containing the firefly (Photinus pyralis) luciferase gene under the

control of a synthetic promoter consisting of five tandem repeats of

the yeast GAL4 activation sequence upstream of a minimal TATA

box, and phRL-TK vector containing the Sea Pansy (Renilla

reniformis) luciferase gene under the control of the herpes simplex

virus thymidine kinase (HSV-TK) promoter, were from Promega

(Madison, WI).

Primary neuronal culture
Briefly, cortices were dissected from embryonic day 15 to 16

Swiss mouse embryos (NIH, Harlan, UK) and mechanically

dissociated using a fire-polished glass Pasteur pipette in Hank’s

Buffered Salt Solution (Ca2+- and Mg2+-free). Neurons were plated

into Nunc (Rochester, NY) multiwell tissue culture plates that had

been coated previously with 20 mg/ml poly-D-lysine (Sigma, St.

Louis, MO) and were maintained in Neurobasal medium without

Phenol Red, supplemented with B-27, 2 mM glutamine, 100 mg/

ml streptomycin, and 60 mg/ml penicillin (Invitrogen, Carlsbad,

CA), at 37uC in a humidified atmosphere of 95% air and 5% CO2.

Cultures used after 8–14 days in vitro (DIV), were 97–99%

neuronal, as judged by b-tubulin III staining. Glial elements were

typically less than 2%, as judged by GFAP staining.

Immunofluorescence and image acquisition
Primary cortical neurons at 10 DIV, cultured on glass coverslips

were fixed at room temperature in PBS (pH 7.4) containing 4%

paraformaldehyde for 20 min. Neurons were then incubated in

blocking-permeabilisation buffer (PBS, pH 7.4 containing 3%

BSA, 0.1% TX-100) for 15 min. Primary antibodies: APP CT20

(1:1,500 dilution), GluR1 (1:500 dilution), GluR2 (1:300), PSD-95

(1:500 dilution), synaptophysin (1:200 dilution) were applied in

antibody buffer (PBS, pH 7.4 containing 1% BSA) for 18 h at

4uC, followed by application of AlexaFluor 488 (1:1,000 dilution)

or AlexaFluor 546 (1:1,000 dilution) secondary antibodies in

antibody buffer for 1 h followed by DAPI (600 nM) in PBS for

30 min. Immunofluorescence in the absence of primary antibodies

produced a very weak, diffuse staining of cell bodies that did not

overlap with the primary antibody-specific staining (data not

shown). Multi-channel fluorescence (DAPI-FITC-Rhodamine

filter set) images were captured using either a 40X or 63X oil

objective fitted to a Zeiss META LSM510 confocal microscope,

using Zeiss LSM image examiner software (Carl Zeiss, Thorn-

wood, NY). Multi-channel image overlays were obtained using

ImageJ software (NIH, USA).

Single cell calcium imaging
Primary mouse cortical neurons grown on coverslips for 10 DIV

were loaded with Fura-2 AM (5 mM; Invitrogen) at 37uC for

45 min. Dye loading and subsequent experiments were performed

in HEPES-buffered saline (HBS; 140 mM NaCl, 5 mM KCl,

10 mM glucose, 10 mM HEPES, 2 mM CaCl2, and 1 mM

MgCl2, pH 7.4) AMPA (50 mM) and antagonists where appropri-

ate were applied to cells at room temperature by microperfusion.

Images of individual cells typically 15–20 per field were captured

every 2 s at 340 and 380 nm excitation wavelengths, with emission

measured at 520 nm, using a microscope-based Concord imaging

system. Analysis of emission intensity ratios at 340/380 nm was
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performed with the ImageMaster suite software (Photon Technol-

ogy International, West Sussex, UK). Data was statistically

analysed using GraphPad Prism software, Version 5 (La Jolla,

CA).

Detection of APP695 and APP C-terminal fragments
(CTFs)

To detect APP695 and APP CTFs, primary cortical neurons

cultured for 10 DIV were treated directly with agonists,

antagonists and inhibitors as detailed in the legend to figures,

washed once with PBS (pH 7.4), and lysed immediately in 100 ml

SDS-PAGE sample buffer (62.5 mM Tris, pH 6.8, 2% SDS, 5%

2-mercaptoethanol, 10% glycerol and 0.0025% bromophenol

blue), and then boiled for 5 min. For APP695 detection, samples

were resolved by 8% Tris-glycine SDS-PAGE, and for APP CTFs

detection, samples were resolved by 16.5% Tris-tricine SDS-

PAGE (cathode buffer: 0.1 M Tris, 0.1 M tricine, 0.1% SDS;

anode buffer: 0.2 M Tris-HCl, pH 8.9). After gel electrophoresis,

proteins were transferred to 0.45 mm nitrocellulose (GE, Health-

care, Piscataway, NJ) for APP695 detection, or 0.2 mm Immobilon

PVDF membranes (Millipore, Billerica, MA) for APP CTFs

detection. Immunoblotting for APP695 was performed using

primary polyclonal APP antibody CT20 (1:20,000 dilution) and

horseradish peroxidase-conjugated goat-anti-rabbit IgG secondary

antibody (1:20,000 dilution). Immunoblotting for APP-CTFs was

performed using primary polyclonal APP antibodies CT20

(1:75,000 dilution) and horseradish peroxidase-conjugated goat-

anti-rabbit IgG secondary antibody (1:200,000 dilution). APP695

bands were detected using the ECL system (GE Healthcare,

Piscataway, NJ), and APP CTFs bands were detected using the

ECL Advance system (GE Healthcare, Piscataway, NJ), followed

by exposure to Hyperfilm ECL according to the manufacturer’s

instructions (GE Healthcare, Piscataway, NJ).

Detection of Soluble APP (sAPP)
For detection of sAPP in the neuronal culture medium, primary

neurons cultured for 10 DIV were treated as detailed in the legend

to figures, followed by removal of the neuronal culture medium

into tubes containing Complete Protease Inhibitor Cocktail.

Samples were then centrifuged at 20,0006 g for 15 min at 4uC
to remove cell debris, and boiled for 5 min in SDS-PAGE sample

buffer. Samples were resolved by 8% SDS-PAGE and transferred

to 0.2 mm Immobilon PVDF membranes (Millipore, Billerica,

MA). Immunoblotting was performed using primary monoclonal

antibody APP 13-M (1:2,500 dilution) and horseradish peroxidase-

conjugated goat-anti-mouse IgG secondary antibody (1:50,000

dilution), and immunoreactive bands were detected using the ECL

Plus detection system and Hyperfilm ECL according to the

manufacturer’s instructions (GE Healthcare, Piscataway, NJ).

Assessment of neuronal cell death
Lactate dehydrogenase (LDH) release. Primary cortical

neurons cultured for 10 DIV were treated with AMPA (50 mM) for

20 min to 24 h. AMPA-induced cytotoxicity was evaluated by

release of the cytosolic enzyme LDH into the culture medium

using the CytoTox 96 non-radioactive cytotoxicity assay according

to the manufacturer’s instructions (Promega, Madison, WI), as

described previously [24]. Absorbance was measured at 490 nm

using a VersaMax microplate reader. Background LDH release

(neuronal culture medium alone) was subtracted from the

experimental values.

Phase contrast microscopy. Assessment of the effect of

AMPA on neuronal morphology was made by phase contrast

microscopy. Images were captured with a Zeiss AxioCam MRm

cooled mono digital camera set at 1388X1040 pixels resolution

and AxioVision (release 4.6) imaging software, using an Achros-

tigmat LD 32X0.4 NA Ph1 objective, fitted to a Zeiss Axiovert

S100 microscope (Carl Zeiss, Thornwood, NY).

Mouse Ab1–40 ELISA
To determine the effect of AMPA receptor activity on Ab1–40

release, conditioned medium from primary cortical neurons at 10

DIV was removed and neurons were washed twice with warm

(37uC) PBS (pH 7.4) in order to remove Ab that had accumulated

with time in culture. Fresh warm (37uC) Neurobasal medium

without Phenol Red, supplemented with B-27, containing vehicle

or drug treatments, was added to the neurons for 6 h. Neurobasal

medium was subsequently incubated with Complete Protease

Inhibitor Cocktail and centrifuged at 100,0006 g for 30 min at

4uC. Samples were then added to a mouse/rat Ab1–40 ELISA

plate (Immuno-Biological Laboratories (IBL), Code No. 27720),

and processed for detection of Ab1–40 according to the manufac-

turer’s instructions (Immuno-Biological Laboratories (IBL), Min-

neapolis, MN). Mouse Ab1–40 levels were calculated from a

mouse/rat Ab1–40 standard curve.

Transfection of primary cortical neurons and Dual-Glo
luciferase reporter gene activity assay for quantification
of bc -secretase-mediated cleavage of a human APP695-
Gal4 fusion protein

pFR-Luciferase reporter plasmid (0.5 mg) was transfected in

combination with an APP695-GAL4 plasmid (0.5 mg), into

primary cortical neurons at 8 DIV using Lipofectamine 2000

(Invitrogen, Carlsbad, CA). All wells were co-transfected with

phRL-TK plasmid (0.5 mg) that constitutively expresses moderate

levels of Renilla luciferase. The total amount of DNA transfected

into each well was 2 mg. Transfection mixes containing lipid and

DNA were prepared in Opti-MEM I reduced serum medium

(Invitrogen, Carlsbad, CA) by vortexing for 1 second and leaving

for 25 min. Neuronal cultures were removed from the incubator

and transfection mixes (150 ml per well) added dropwise onto the

neuronal culture medium, after which, neuronal cultures were

returned to the incubator. Neurons were treated with various

compounds, as described processed 24 h after transfection for

quantification of firefly luciferase reporter and constitutive Renilla

luciferase expression as described previously [17]. Briefly, neurons

were lysed with Glo Lysis Buffer (40 ml per well) (Promega,

Madison, WI), and the Dual-Glo luciferase activity assay

performed according to the manufacturer’s instructions (Promega,

Madison, WI). Luciferase signals were captured using a Veritas

microplate luminometer (Turner BioSystems, Sunnyvale, CA).

Firefly luciferase reporter activity was normalized using the

constitutive Renilla luciferase activity, which helps to differentiate

between specific and non-specific cellular responses and also

controls for transfection efficiencies across experiments.

Quantification and statistics
Immunoblot Hyperfilm ECL bands were quantified by scanning

into ImageJ software at a resolution of 1200 dpi using an Epson

Perfection V700 Photo flatbed scanner fitted with a Transparency

Unit, and the mean background-corrected optical density (O.D.)

of each band was interpolated from an O.D. calibration curve

created using an O.D. step-tablet. Only Hyperfilm exposures that

gave band O.D. values that were within the linear range of the

O.D. calibration curve were used for statistical analysis. Meaned

data 6SEM were graphed using GraphPad Prism software (La
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Jolla, CA). Immunoblot, Ab1–40 ELISA and Dual-Glo luciferase

activity assay data were analyzed by one-way ANOVA with either

Dunnett’s or Bonferroni post hoc tests, or by two-tailed Student’s t

tests, using GraphPad Instat software (La Jolla, CA). Differences

between experimental treatments were considered to be statisti-

cally significant when p,0.05.

Results

Cortical neurons express postsynaptic AMPAR that are
functionally coupled to ERK phosphorylation and APP
cleavage

APP is sorted equally to the axonal and somatodendritic

compartment in primary neurons [25] with extensive expression

found postsynaptically [17,26,27]. We conducted an analysis of the

distribution pattern of endogenous APP in cultured cortical

neurons and similarly found widespread expression of APP, with

some co-localisation with the nerve terminal marker synaptophy-

sin and the postsynaptic marker PSD-95 (Fig 1A upper panels).

We subsequently analysed the distribution of two AMPAR

subunits, GluA1 and GluA2, and detected extensive co-localisation

of these subunits with PSD-95 and staining around the cell soma

but very little co-localisation with synaptophysin, suggesting that

synaptic AMPAR are predominately postsynaptic in cultured

cortical neurons and not located at nerve terminals (Fig 1A, middle

and lower panels). Collectively, these data suggest that a pool of

APP is expressed postsynaptically along with GluA1, GluA2 and

PSD-95. The subunit composition of AMPA receptors determines

their ion channel properties; receptors that possess the edited

GluA2 subunit show low calcium permeability in comparison to

unedited GluA2 receptors, which have high calcium permeability

[28]. To determine the calcium permeability status of AMPAR in

our cultures we examined AMPA-mediated increases in intracel-

lular calcium using single cell Fura-2 AM microfluorimetry.

Application of AMPA (50 mM) caused a rapid increase in

intracellular calcium levels in the majority of neurons (Fig 1B,

1C) which was not blocked by the NMDAR open channel blocker

MK801 (Fig 1D) or by L-type voltage sensitive calcium channel

Nimodipine (not shown). This suggests that despite widespread

expression of GluA2 the majority of cultured cortical neurons

possess calcium permeable AMPAR, consistent with our previous

findings [29]. AMPA stimulation of ERK phosphorylation was

then investigated to confirm functional coupling of AMPAR to

downstream physiological effectors. Treatment of neurons with

AMPA (50 mM) for up to 1 h, caused a robust increase in ERK

phosphorylation, to a similar level seen upon exposure to NMDA

(50 mM) and with no detectable changes in the level of total ERK

(Fig 1E). We next determined if stimulation of AMPAR led to the

cleavage of full length of APP, which would be expected if

AMPAR couple to APP processing. Cell lysates from cortical

neurons treated with vehicle control, AMPA (50 mM) or NMDA

(50 mM) for 1 h, were immunoblotted with APP antibody CT20

that is specific for the C-terminal residues 676–695 of APP695,

and which will detect all full-length unprocessed cellular APP

isoforms. We observed one discrete polypeptide band and two

diffuse bands running just above the 98 kDa molecular weight

marker (Fig 1E). Based on previous findings [17,30] we assigned

the lowest and major band as N-linked immature APP695, and the

diffuse bands as the N- and O-linked mature forms of APP695.

Upon stimulation with either AMPA or NMDA there was a

reduction in the levels of the higher diffuse APP bands, indicative

of processing of mature APP695. We also assessed the profile of

APP-CTFs in the same cell lysates. We observed three discrete

bands in the 7–16 kDa marker range, and based on our previous

extensive characterisation [17] we concluded that the lowest

molecular weight band was non-phosphorylated C83 generated

from a-secretase activity (a-CTF). The next and noticeably

stronger band was a mixture of phosphorylated C83 and b-

secretase-generated non-phosphorylated C89, and the third band

phosphorylated C89 and C99 generated from b-secretase cleavage

(b-CTF). Treatment with AMPA, similarly to NMDA, increased

a-secretase-generated C83 levels compared with control, consis-

tent with enhanced a-secretase activity (Fig 1E). Having confirmed

that AMPAR activation was able to modulate full length APP695

levels, a more detailed kinetic analysis was undertaken. Neurons

were treated with AMPA (50 mM) for between 20 min to 24 h.

Cells were lysed and samples immunoblotted for APP, pERK,

total ERK and synaptophysin. Stimulation of AMPAR led to a

time-dependent loss of mature APP, clearly detected at 20 min,

reaching a maximum at 3 h and maintained for up to 24 h,

although there was some indication of a partial recovery in APP

levels at the longest time point (Fig 2A and 2B). In parallel to loss

of full length APP, a time-dependent increase in the level of a-

CTFs was also seen, consistent with enhanced a-secretase activity.

The increase in a-CTFs was maintained above basal level for 3–

6 h (Fig 2A, 2C) and at these longer time points there was a

marked decrease in the level of the highest molecular weight CTF

band. This is consistent with a reduction in the production of b-

CTFs, and suggesting a reciprocal relationship between a- and b-

secretase processing pathways following AMPAR activation. ERK

phosphorylation followed the same kinetic as full length APP

reduction and increased a-CTF generation, which peaked at

20 min and was still detectable at 1 h, and diminished thereafter,

consistent with increased ERK phosphatase activity. Over 24 h

treatment there was no change to either total ERK or

synaptophysin levels and no detectable increase in LDH release

(data not shown), suggesting no significant cell or synaptic damage

was occurring during periods of prolonged AMPAR stimulation.

AMPAR-evoked APP processing is only partially ERK-
dependent

NMDAR-mediated non-amyloidogenic APP processing is

dependent on the ERK pathway and AMPAR couple to this

cascade via PI3-kinase [21]. To investigate whether AMPAR-

evoked APP processing involved the ERK signaling pathway,

cultured neurons were pre-treated with the MEK inhibitors

PD184352 (2 mM) or U0126 (5 mM) for 5 min prior to bath

application of AMPA (50 mM) for 1 h. Inhibition of MEK with

either PD184352 or U0126 abolished basal and AMPAR-induced

ERK phosphorylation as expected and caused a modest (,15%)

increase in APP levels (Fig 2D, 2E) suggesting a potential role for

ERK in tonic constitutive APP processing. AMPAR-evoked loss of

total APP was partially blocked by PD184352 and U0126, the

extent of the reduction could be accounted for by the loss of

constitutive APP processing in cultured neurons.

AMPAR -mediated a-CTF production is independent of
NMDARs and L-VSCC-dependent Ca2+-influx but requires
ADAM metalloprotease activity

Although the majority of neurons in our cultures appeared to

express Ca2+-permeable AMPAR determining whether AMPA-

evoked ERK phosphorylation and APP processing was direct or

secondary to membrane depolarization and activation of

NMDAR or L-VSCCs was next investigated. Cultured neurons

were therefore pre-treated with the non-competitive NMDA

receptor antagonist MK801 (2.5 mM) or the L-VSCC blocker

Nimodipine (10 mM), prior to bath application of AMPA (50 mM)

AMPA Receptor Regulation of APP Processing
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Figure 1. Cortical neurons express postsynaptic Ca2+-permeable AMPAR that are functionally coupled to ERK phosphorylation and
APP cleavage. A, Immunofluorescence staining of primary cortical neurons at 10 DIV. Left hand panels; single immunofluorescence staining for APP,
GluA1 and GluA2. Middle panels; double immunofluorescence staining for APP, GluA1 and GluA2 (all green) with the nerve terminal marker
synaptophysin (Syn, red). Right hand panels; double immunofluorescence staining for APP, GluA1 and GluA2 (all green) with the postsynaptic marker
PSD95 (red). Nuclei are counterstained with DAPI (blue), scale bar 20 mM. B, Fura-2 AM microfluorimetry demonstrating AMPA-evoked increases in
Ca2+ in primary cortical neurons. Pseudocoloured images illustrating [Ca2+]i at baseline (left hand panel) and maximum [Ca2+]i response evoked by
50 mM AMPA (right hand panel), scale bar 150 mM. C, Representative ratiometric 340 nm:380 nm trace against time (s) for Fura-2 AM loaded cortical

AMPA Receptor Regulation of APP Processing
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neurons microperfused with 50 mM AMPA. D, Average changes in [Ca2+]i (340 nm:380 nm ratio) of 40 individual neurons in response to sequential
application of 50 mM AMPA, 50 mM AMPA+2.5 mM MK801 and reapplication of 50 mM AMPA (AMPA Reapp) expressed as % of the initial AMPA
response. E, Primary cultured cortical neurons at 10 DIV were treated with vehicle (Control), 50 mM AMPA or 50 mM NMDA for 1 h followed by
immunoblotting of neuronal lysates with antibodies to APP CT20 to detect full length APP695 (APP) and APP CTFs, phosphorylated ERK2 (pERK2), and
ERK2.
doi:10.1371/journal.pone.0078155.g001

Figure 2. AMPAR-stimulation increases time-dependent APP processing that is not completely dependent on ERK activation. A,
Primary cultured cortical neurons at 10 DIV were treated with vehicle (Control) or 50 mM AMPA for 0.3, 1, 3, 6 and 24 h followed by immunoblotting
of neuronal lysates with antibodies to APP CT20 to detect full length APP695 (APP) and APP CTFs (a-CTF), phospho ERK1/ERK2 (pERK1/pERK2), ERK2
and synaptophysin (Syn). B, Full length APP695 levels (tAPP) and C, APP CTF (a-CTF) levels were analysed by ECL protein band densitometry using
calibrated ImageJ software. Each column is the mean of +/2SEM of five independent experiments (n = 5; *p,0.05, **p,0.01, control (time 0, grey
bar) vs treatment (black bars), one-way ANOVA with Dunnett’s post hoc test). D, Primary cultured cortical neurons at 9 DIV were treated with vehicle
(Control), 50 mM AMPA, 2 mM PD184352, 5 mM U0126 or AMPA in the presence of either PD184352 (AMPA+PD) or U0126 (AMPA+U0) for 1 h followed
by immunoblotting of neuronal lysates with antibodies to APP CT20 to detect full length APP695 (APP), phospho ERK1/ERK2 (pERK1/pERK2) and
ERK2. E, Full length APP695 levels (tAPP) were analysed by ECL protein band densitometry using calibrated ImageJ software. Each column is the mean
of +/2SEM of five independent experiments (n = 4; *p,0.05, control (grey bar) vs AMPA (black bars), one-way ANOVA with Dunnett’s post hoc test).
doi:10.1371/journal.pone.0078155.g002

AMPA Receptor Regulation of APP Processing

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e78155



for 1 h. AMPAR activation induced a significant increase in a-

CTF generation and ERK phosphorylation, which were not

inhibited by either MK801 or Nimodipine (Fig 3A and 3B). These

data suggest the AMPA-mediated signaling and regulated APP

metabolism are direct, and independent of the subsequent

activation of either NMDA receptors or L-VSCCs following

membrane depolarisation. Our previous investigations strongly

implicated Ca2+ influx through NMDA receptors as a requirement

for non-amyloidogenic processing of APP [17]. However, since

secondary sources of Ca2+ influx through either NMDA receptors

or L-VSCCs did not appear to contribute to AMPA-mediated

APP metabolism, we set out to determine the extent to which the

AMPA response depended upon extracellular Ca2+. Neurons were

pre-treated with the selective non-competitive AMPAR antagonist

GYKI53655 (50 mM), to confirm the direct involvement of

AMPAR, or with the Ca2+ chelator EGTA (2 mM) to address

the requirement for extracellular Ca2+, prior to bath application of

AMPA (50 mM) for 1 h. As expected AMPAR activation resulted

in a significant increase in ERK phosphorylation which was

abolished by GYKI53655 and by chelation of extracellular Ca2+.

These data confirm that in cultured neurons, ERK phosphoryla-

tion is mediated by influx of extracellular Ca2+ through AMPAR

[21]. Similarly, treatment with AMPA resulted in a significant

increase in a-CTF levels which was also abolished by GYKI53655.

However, in contrast to ERK phosphorylation AMPA-mediated

increases in a-CTFs were not completely blocked by EGTA

suggesting that a-CTF production was only partially dependent on

extracellular Ca2+ (Figure 3C and 3D). We previously demon-

strated that NMDA-stimulated non-amyloidogenic metabolism of

APP required an ADAM metalloprotease activity [17], most likely

ADAM10 [18,19]. As activity at AMPAR also appeared capable

of promoting non-amyloidogenic APP metabolism to enhance the

level of aCTFs, we sought to determine if these effects were also

mediated by ADAM metalloprotease activity. Cultured neurons

were pre-treated with the broad spectrum ADAM inhibitor TAPI-

1 (50 mM) and stimulated with AMPA (50 mM) or NMDA (50 mM)

for 1 h. Stimulation of AMPAR and NMDAR resulted in a robust

increase in a-CTF levels with a concurrent reduction in full length

APP and both of these effects were strongly inhibited by TAPI-1.

AMPA and NMDA-induced ERK phosphorylation were unaf-

fected by TAPI-1 and there were no changes in total ERK levels

(Fig 3E and 3F). Collectively, these data provide strong evidence to

support the involvement of ADAM metalloprotease activity in a-

secretase-mediated cleavage of APP following AMPAR stimula-

tion.

AMPAR stimulation enhances sAPP release, inhibits bc-
secretase activity and reduces Ab secretion

During non-amyloidogenic processing, APP is cleaved by a-

secretase to produce a membrane embedded a-CTF and releases a

large soluble sAPPa ectodomain fragment from the cell surface.

This ectodomain fragment is secreted into the extracellular space,

decreases Ab generation by directly associating with BACE-1 [31]

and may have neuroprotective and memory enhancing properties

[32–34]. It is thought that most amyloidogenic APP metabolism

occurs intracellularly [35]. Therefore, levels of sAPP in the culture

medium can be used as a general marker of non-amyloidogenic

APP processing. Our observation that AMPA increased a-CTF

levels, suggested that activation of AMPAR should also increase

sAPP release. We stimulated cortical neurons with AMPA (50 mM)

for up to 3 h and assessed subsequent sAPP release. Samples of

conditioned medium were immunoblotted with an APP antibody

(APP13-M) raised against a 21 amino acid sequence in the N-

terminal ectodomain of human APP that also detects mouse, and

rat sAPP. APP13-M detected a single band migrating just below

the 98 kDa molecular weight marker compared with uncleaved

full-length APP695 which runs above the 98 kDa molecular

weight marker. No full-length APP immunoreactivity was detected

in our neuronal medium samples, as judged by immunoblotting

with a C-terminally directed APPCT20, which detects APP695

but not sAPP (data not shown). Stimulation of AMPAR produced

a time-dependent increase in the levels of sAPP release concurrent

with a decrease of mature full length cellular APP. Following 3 h

of AMPAR activation the levels of sAPP in the medium were

approximately double those detected at baseline which taken with

the observed increase in a-CTF production and the overall

sensitivity to TAPI-1 strongly suggests that stimulation of AMPAR

promotes non-amyloidogenic APP processing (Figure 4A and 4B).

Furthermore, we also tested the ability of AMPA to influence an

AICD-Gal4-driven luciferase reporter which we have previously

shown preferentially reports bc-secretase-mediated APP process-

ing in primary cortical neurons [17,36]. The assay utilizes a

reporter protein consisting of human APP695 fused at the C-

terminus to the yeast transcription factor Gal4 containing both the

DNA-binding and activation domains (APP695-Gal4). Upon

normal proteolytic processing of APP695-Gal4 by c-secretase an

AICD-Gal4 fragment is formed that induces transcription through

a UAS-luciferase reporter gene (pFR-Luc) by virtue of its

transactivation domain and specific binding to a Gal4-UAS

promoter via its DNA-binding domain. In order to confirm

sensitivity to bc-secretase processing cortical neurons were treated

with the c-secretase inhibitor DAPT or a small molecule BACE-1

inhibitor (Figure 4C). Consistent with our previous report [17],

DAPT reduced luciferase activity by 85% and the BACE-1

inhibitor by 65%. Conversely, the a-secretase (ADAM) inhibitor

TAPI-1 did not inhibit luciferase activity (data not shown). This

confirms that in primary cultured neurons the b-secretase cleavage

pathway of APP preferentially mediates AICD nuclear signalling

and that this assay system preferentially monitors amyloidogenic

(Ab-forming) APP processing by b- and c-secretase [37]. We found

that treatment of primary cortical neurons with AMPA (50 mM)

for 6 h, decreased the total luciferase activity by 40% compared

with control activity (Figure 4C). AMPA had no significant effect

on basal luciferase activity arising from the firefly luciferase

reporter alone nor did it significantly alter the constitutive Renilla

luciferase activity that was used to normalize firefly luciferase

activity (not shown). Collectively this data strongly suggested that

AMPAR activity inhibits b/c-secretase-mediated APP processing.

If this conclusion were correct then it followed that AMPAR

stimulation should also reduce Ab formation. To address this we

investigated Ab1–40 release in cultured cortical neurons using a

rodent specific ELISA. This was carried out by replacing

conditioned medium with fresh treatment media containing either

vehicle or AMPA (50 mM) for 1, 3 or 6 h. Conditioned medium

was replaced as Ab accumulates in the medium with time, such

that the extracellular levels become too high to be quantified by

high sensitivity ELISA. In the absence of AMPA, Ab1–40 release

was cumulative such that at 6 h the levels of Ab1–40 were more

than double the values measured at 1 h. Ab1–42 levels were below

the detection limit (data not shown). In the presence of AMPA,

there was a trend towards reduced levels of Ab1–40 as early as 1 h

and a significant reduction by 3 h when compared to control

(Figure 4D). At 6 h, control levels of Ab1–40 were substantially

increased while Ab1–40 levels in the AMPA (6 h) treatment group

were not significantly different from control (1 h) levels, suggesting

that AMPAR activation effectively reduces amyloidogenic metab-

olism over a wide range of time points such that there is almost no

increase in Ab levels within this time frame.
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Figure 3. AMPAR-stimulation of APP processing is independent of NMDAR and L-type calcium channels is partially dependent on
extracellular Ca2+ and is blocked by the ADAM inhibitor TAPI-1. A, Primary cultured cortical neurons at 10 DIV were treated for 1 h with
vehicle (Control), 50 mM AMPA, 2.5 mM MK801 (MK), 10 mM Nimodipine (Nim) or AMPA in the presence of either MK801 (AMPA+MK) or Nimodipine
(AMPA+Nim) followed by immunoblotting of neuronal lysates with antibodies to APP CT20 to detect APP CTFs (a-CTF), phospho ERK1/ERK2 (pERK1/
pERK2) and ERK2. B, APP CTF (a-CTF) levels were analysed by ECL protein band densitometry using calibrated ImageJ software. Each column is the
mean of +/2SEM of six independent experiments (n = 6; *p,0.05, **p,0.01, control (white bar) vs AMPA, AMPA+MK801 and AMPA+Nimodipine
(black bars), one-way ANOVA with Dunnett’s post hoc test). C, Primary cultured cortical neurons at 10 DIV were treated for 1 h with vehicle (Control),
50 mM AMPA, 10 mM GYKI53655 (GYKI), 2 mM EGTA or AMPA in the presence of either GYKI53655 (AMPA+GYKI) or EGTA (AMPA+EGTA) followed by
immunoblotting of neuronal lysates with antibodies to APP CT20 to detect APP CTFs (a-CTF), phospho ERK1/ERK2 (pERK1/pERK2) or ERK2. D, APP CTF
(a-CTF) levels were analysed by ECL protein band densitometry using calibrated ImageJ software. Each column is the mean of +/2SEM of five
independent experiments (n = 5; **p,0.01, control (white bar) vs AMPA (black bar) and AMPA vs AMPA+GYKI (black bars) one-way ANOVA with
Bonferroni post hoc test). E, Primary cultured cortical neurons at 10 DIV were treated for 1 h with vehicle (Control), 50 mM AMPA or 50 mM NMDA, in
the absence and presence of 50 mM TAPI-1 (AMPA+TAPI, NMDA+TAPI) followed by immunoblotting of neuronal lysates with antibodies to APP CT20
to detect APP CTFs (a-CTF), phospho ERK1/ERK2 (pERK1/pERK2) or ERK2. F, APP CTF (a-CTF) levels were analysed by ECL protein band densitometry
using calibrated ImageJ software. Each column is the mean of +/2SEM of five independent experiments (n = 5; **p,0.01, AMPA vs and AMPA+TAPI
(black bars) one-way ANOVA with Bonferroni post hoc test).
doi:10.1371/journal.pone.0078155.g003
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Discussion

AMPAR have long been considered as potential therapeutic

targets for neurological diseases associated with aberrant excitato-

ry neurotransmission and excitotoxicity [38]. With respect to AD,

this has focused mainly on assessing the potential use of AMPAR

modulators to boost cognitive performance with rather disap-

pointing results to date [39]. However, AMPAR may also be a

potentially important locus for the actions of Ab within the

synapse since Ab interacts with and internalizes AMPAR [40–43],

and disrupts GluA trafficking to the cell surface [44]. These

interactions could then lead to deficits in AMPAR-evoked

transmission [45] and loss of the molecular events that are central

to synaptic plasticity and survival, similar to the aberrant Ca2+

signaling, Akt and CREB phosphorylation that results from Ab
acting at NMDAR [46–48]. In contrast to AMPAR mediating the

actions of Ab, much less consideration has been given to the role

that AMPAR might play in the development and progression of

AD pathology by directly regulating APP metabolism, sAPP

secretion and Ab production. Here we report that activation of

endogenous AMPAR in primary cultured cortical neurons

enhances non-amyloidogenic APP processing to significantly

increase a-secretase-generated aCTF and sAPP levels, and

decrease Ab release. The mechanism is independent of NMDAR

and L-VSCCs, and is partially dependent on extracellular Ca2+

To provide a dynamic readout of a- and b-secretase-mediated

proteolytic processing of APP we first analysed APP CTF

production. We found that bath application of AMPA to cortical

neurons for 20 min caused a strong upregulation in the levels of a-

CTFs with no increase in b-CTFs, consistent with promotion of

the a-secretase pathway. The increase in a-CTF levels was

maintained for at least 6 h after application of AMPA, during

which time there was a marked loss of b-CTFs suggesting a

reciprocal relationship between the a- and b-secretase pathways

following AMPAR stimulation which is consistent with the

hypothesis that a- and b-secretase compete for APP as a substrate

[49–50]. AMPA-evoked increase in the a-CTFs was blocked by

the non-competitive AMPAR antagonist GYKI53655 but was

Figure 4. AMPAR-activity stimulates sAPP release, inhibits b-secretase processing and reduces Ab secretion from primary cultured
cortical neurons. A, Primary cultured cortical neurons at 10 DIV were treated with vehicle (Control) or 50 mM AMPA for 0.3, 1 or 3 h, followed by
immunoblotting of the growth media with an N-terminal APP antibody APP13M to detect secreted APP (sAPP) and immunoblotting of the
corresponding neuronal lysates with APP CT20 and ERK2. B, sAPP levels in the media from vehicle (Control) and following treatment with AMPA for
3 h were analysed by ECL protein band densitometry using calibrated ImageJ software. Each column is the mean +/2SEM of four independent
experiments (n = 4; **p,0.05, Control (white bar) vs AMPA (black bar) unpaired two-tailed Student’s t-test). C, Primary cultured cortical neurons at 8
DIV were cotransfected with APP695-GAL4, pFR-Luc Firefly luciferase reporter gene and phRL-TK plasmids and then treated with vehicle (Control),
10 mM DAPT, 10 mM b-secretase inhibitor (BSI) or 50 mM AMPA. Dual-Glo luciferase activity assays were performed 24 h after transfection for
quantification of Firefly and Renilla luciferase expression. Firefly luciferase reporter activity was normalized using the constitutive Renilla activity. Each
column is the mean +/2SEM of 12 separate transfections prepared from 3 independent cultures (n = 12; *p,0.05; **p,0.01; ***p,0,001; control vs
DAPT, control vs BSI, control vs AMPA one-way ANOVA with Dunnett’s post hoc test). D, Primary cultured cortical neurons at 10 DIV had a media
change and were then treated with vehicle (Control) or 50 mM AMPA for 1, 3 or 6 h. The neuronal culture medium was removed and Ab1–40 levels
were measured by ELISA. Each column represents the mean +/2SEM of three independent experiments (n = 3; *p,0.05; ***p,0.001; control (white
bars) vs AMPA (black bars).
doi:10.1371/journal.pone.0078155.g004
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unaffected by the NMDA receptor channel blocker MK801 or by

the L-type VSCC blocker Nimodipine, suggesting direct coupling

from AMPAR to APP cleavage. The increase in a-CTFs was

however, only partially dependent on extracellular calcium despite

AMPA-evoked ERK phosphorylation being abolished by EGTA.

This is in contrast with our previous findings which showed that

NMDAR stimulation of a-CTFs were entirely dependent on Ca2+

influx [17]. Possible explanations for the apparent Ca2+-indepen-

dent component of APP processing is a mechanism relating to the

known metabotropic signalling actions of AMPA receptors,

independent of ion influx [20,51] or signaling evoked from

intracellular Ca2+ stores but this has not been explored.

The MEK/ERK pathway is known to regulate signal-respon-

sive APP processing [52,53] and NMDAR coupling to non-

amyloidogenic processing has been strongly linked to activation of

ERK [15,19]. We found that APP levels were modestly increased

in the presence of MEK inhibitors suggesting that basal turnover

or processing of APP is ERK sensitive. NMDAR antagonists and

channel blockers inhibit the a-secretase component of basal APP

processing in cultured cortical neurons [17] and so this effect of

MEK inhibitors alone is likely to be due to inhibition of

endogenously released glutamate acting through NMDAR to

regulate APP processing via the ERK pathway. Although AMPAR

stimulation robustly activated ERK phosphorylation we could find

no clear evidence that AMPAR activation of APP processing was

strongly dependent on this pathway and the reduction in

processing seen in the presence of MEK inhibitors was probably

due to inhibition of the basal activity rather than effects on the

AMPA-responsive component directly.

AMPAR-evoked increase in a-CTFs was blocked by TAPI-1

which is a general ADAM inhibitor acting at a range of ADAMs

including ADAM10 and ADAM17 which are the most likely

candidate signal-responsive a-secretases in neurons [6,54,55].

Whether AMPAR receptors recruit ADAMs to the cell surface via

interactions with SAP97 as described for NMDAR [18] is not yet

clear, but AMPAR subunit trafficking is mediated by SAP97 [56]

so this is possible. Our findings that AMPAR activity increased a-

CTF levels suggested to us that AMPAR receptor activation

should also increase sAPPa release and in support of this we

detected around a one and a half fold increase in the levels of sAPP

in the medium after treatment with AMPA. To determine whether

this increase in non-amyloidogenic APP cleavage was due to a shift

from b- to a-secretase-mediated APP processing, we utilised an

APP-GAL4 cleavage assay. b-secretase expression and activity is

high in embryonic neurons and the APP-GAL4 assay preferen-

tially reports bc-secretase processing in this cell type [17] thus

factors which increase the activity of a-secretase would be

predicted to reduce UAS-driven luciferase expression. Indeed,

AMPA caused a ,40% reduction in luciferase expression

consistent with a potentiation of a-secretase activity and a parallel

reduction in b-secretase activity. We further reasoned that a

sustained reduction in b-secretase-mediated processing should

lower the levels of Ab and to address this we employed an ELISA

that detects rodent Ab1–40. Background levels of Ab are high in

cultured neurons due to the strong preference for b-secretase

processing and so ELISA detection of secreted Ab needed to be

conducted after a media change. Following the addition of fresh

medium there was a time-dependent increase in the levels of Ab1–

40 which was very strongly inhibited by AMPAR stimulation

suggesting that AMPAR can promote a-secretase processing and

in doing so reduce b-secretase-mediated generation of Ab
although it is not yet clear to what extent this occurs in vivo.

Somewhat in contrast to our findings here, infusion of AMPAR

antagonists into mouse hippocampus suppresses ISF Ab levels

suggesting baseline glutamate signaling through AMPAR increases

Ab [15]. However, the effects of direct stimulation of AMPAR

with agonists or potentiators was not reported so similar to

NMDAR a strong stimulus could perhaps reduce Ab production.

Regulation of APP processing following the release of endogenous

glutamate appears to favour a synaptic NMDAR route [17] but at

AMPAR-enriched potentiated synapses a more direct pathway to

regulate sAPP and Ab levels might occur and in doing so exert

additional control over excitability. In summary, we have shown

that AMPAR can be added to the repertoire of receptors that

couple to non-amyloidogenic APP processing at glutamatergic

synapses and our results suggest that direct pharmacological

targeting with AMPAR modulators or indeed with interventions

that regulate GluA expression and signaling [57,58] could

potentially be exploited to slow the development and progression

of Ab pathology.
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