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Abstract

To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia,
we used LC-MS/MS to construct a large-scale comparative proteome profile of human placentas from normal and
preeclamptic pregnancies. A total of 2636 proteins were detected in human placentas, and 171 different proteins
were definitively identified between control and preeclamptic placentas. Further bioinformatics analysis indicated that
these differentially expressed proteins correlate with several specific cellular processes which occur during
pathological changes of preeclamptic placenta. 6 proteins were randomly selected to verify their expression patterns
with Western blotting. Of which, 3 proteins’ cellular localizations were validated with immunohistochemistry.
Elucidation of how protein-expression changes coordinate the pathological development would provide researchers
with a better understanding of the critical biological processes of preeclampsia and potential targets for therapeutic
agents to regulate placenta function, and eventually benefit the treatment of preeclampsia.
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Introduction

Preeclampsia (PE) is a multi-system disorder and a serious
complication of pregnancy, which affects 5-8% of pregnancies
worldwide [1,2]. It is also known as one of the leading causes
of maternal or perinatal mortality and morbidity during
pregnancy. Although the primary mechanism of PE is still
unknown, a large amount of evidences suggest that PE could
be associated with many factors such as impaired placental
function, inadequate trophoblast invasion, aberrant spiral
arterial remodeling, and increased apoptosis of trophoblastic
cells [3,4]. Notably, recent researches indicate that impaired
placental function might potentially play as an inducer during
the pathological development of PE [5,6].

Placenta plays several critical roles in pregnancy such as
preventing the rejection of the fetal allograft, transporting
gases, nutrients, and waste products, and producing peptides
and hormones [1-6]. Moreover, presence of the placenta is
necessary for PE. Recently, some progresses have been made
helping understand the molecular mechanisms of the
pathological development of placenta in those patients with PE.

For examples, abnormalities of trophoblast invasion and villous
vascular development will lead to a failure of establishing
adequate uteroplacental blood flow and may promote an
exaggerated state of oxidative stress in placenta [7,8].
Dysfunctions of several molecules such as ECM antigens, focal
adhesion kinase, TGF-β3, VEGF and VEGF receptors, IGF-
binding protein-1, and HGF might correlate to the abnormal
trophoblast invasion and vascular development, and oxidative
stress in the placenta of PE [9-14]. In PE, there is excessive
fibrin deposition in the placenta (e.g., overexpression of PAI-1
and PAI-2). HSP70, TNF-α, very low-density or low-density
lipoprotein receptors are expressed in a spatial manner in
normal placenta but their expressions change during PE
development [15-18]. The aberrant up-regulations of OPG,
KiSS-1, VCAM, or PDGF-AA expression in placentas of
preeclamptic pregnancies might closely correlate with the
pathogenesis of PE [19-22]. Several enzymes, such as villous
trophoblast dypeptidyl peptidase IV, 11-β hydroxysteroid
dehydrogenase, and mitogen-activated protein kinase, are also
abnormally activated in PE [23-25]. Nevertheless, up to date,
there have been no attempts reported to screen the regulatory
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factors involved in placenta of preeclamptic pregnancies by
large-scale proteomic analysis. Therefore, in this study, we aim
to establish a comparative proteome profile of human
placentas in normal and preeclamptic pregnancies using LC-
MS/MS. A total of 2636 proteins were detected in human
placentas, and 171 differential proteins were identified between
normal and PE pregnancies. Further functional analysis of this
protein profile will provide people with deeper insights into
some molecular and cellular processes during the pathological
changes of placenta.

Materials and Methods

Sample Preparation
Placenta tissues were taken from twenty PE pregnant

women and twenty healthy pregnant women according to the
standard operating procedure. All of the mothers had cesarean
section delivery in Maternal and Child Health Hospital of
Nanjing and were within same age range and gestational
weeks. All the mothers provided written informed consent. This
study was approved by the Ethics Committee of Nanjing
Medical University with an Institutional Review Board (IRB)
number of 2012-NFLZ-32. PE was defined as a systolic blood
pressure of (or above) 150 mmHg or diastolic blood pressure of
(or above) 110 mmHg on two occasions in six hours. The
detailed patient characteristics are presented in Table S1. For
each placenta sample, 0.5 g of tissue was dissected from the
maternal side of the placentas (in the central part, exclusive of
calcified area) and rinsed in 0.9% saline, then frozen in liquid
nitrogen prior to use.

Protein Digestion and Dimethyl Labeling
1 mg of placenta protein from normal or PE was reduced

with 10 mM DTT at 60 °C for 1 h, and then alkylated with 55
mM IAA at 37 °C for 40 min. Tryptic peptides were desalted,
dried in vacuo (Speed Vac, Eppendorf), and resuspended in
100 μL of triethylammonium bicarbonate (100 mM).
Subsequently, formaldehyde-H2 (573 μmol) was added into the
suspension and vortexed for 2 min followed by the addition of
freshly prepared sodium cyanoborohydride (278 μmol). The
mixture was then vortexed for another 60 min at room
temperature. After that, a total of 60 μL ammonia (25%) was
added to consume the excess formaldehyde. Finally, 50 μL of
formic acid (100%) was added to acidify the solution. For heavy
labeling, 13C-D2-formaldehyde (573 μmol) and freshly prepared
cyanoborodeuteride (278 μmol) were used. The light and heavy
dimethyl-labeled samples were mixed at 1:1 ratio based on
total peptide amount, which was determined by running an
aliquot of the labeled samples on a regular LC-MS/MS and
comparing the total signal intensities of all peptides as
described [26-28].

Mass Spectrometry Data Acquisition and Identification
The labeled peptides were analyzed on the LTQ-Orbitrap

instrument (Thermo Fisher, USA) connecting to a Nano
ACQUITY UPLC system via a nanospray source. LC-MS/MS
was operated in positive ion model as described [26,27]. The

analytical condition was set at a linear gradient from 0 to 60%
of buffer B (CH3CN) in 150 min, and flow rate of 200 nL/min.
For analysis of proteins from human placenta, one full MS scan
was followed by five MS/MS scans on those five highest peaks
respectively. The MS/MS spectra acquired from precursor ions
were submitted to Maxquant (version 1.2.2.5) using the
following search parameters: the database for search was
Uniprot proteome (version20120418); the enzyme was trypsin
(full cleavage); dimethylation labeling for quantification; the
dynamic modifications were set for oxidized Met (+16);
carbamidomethylation of cysteine was set as static
modification; MS/MS tolerance was set at 10 ppm; the
minimum peptide length was 6; the false detection rates for
both peptides and proteins were all set below 0.01.

Western Blot and Immunohistochemical Analyses
Western blot analysis was performed as described [29].

Lysates from the placentas of normal or preeclamptic
pregnancy were separated on 15% SDS-PAGE gels and then
the proteins were transferred to nitrocellulose membranes
(Amersham Biosciences, RPR303D). The membranes were
blocked in TBST containing 5% nonfat milk powder for 1 hour,
incubated overnight with primary antibodies against ENG
(Abcam ab70993, Cambridge, UK; 1:1000), ANXA5 (Abcam
Ab14196, Cambridge, UK; 1:1000), CP (Abcam Ab48614,
Cambridge, UK; 1:1000), HAB1 (Abcam Ab55081, Cambridge,
UK; 1:1000), F2 (Abcam ab9262, Cambridge, UK; 1:1000), HP
(Abcam Ab135835, Cambridge, UK; 1:1000), and GAPDH
(Abcam Ab9485, Cambridge, UK; 1:2000), then washed three
times (10 minutes each) with TBST. Then the membranes were
incubated for 1 hour with alkaline phosphatase (AP)-
conjugated anti-mouse or rabbit IgG (Promega, S372B, WI,
USA; 1:1000). T protein levels were evaluated by the detection
of activity of alkaline phosphatase using a Lumi-Phos kit
(Pierce Biotechnol-ogy, KJ1243353).

For immunolocalization of ANXA5 (Abcam Ab14196,
Cambridge, UK; 1:200), and CP (Abcam Ab48614, Cambridge,
UK; 1:200), placenta sections (5 μm thickness) were obtained
as described [29] and then fixed with 4% (w/v)
paraformaldehyde (or 10% (w/v) formaldehyde) in PBS for 10
min. Then the slides were washed with PBS, blocked in 5%
BSA solution for 30 min at 37 °C and incubated with primary
antibodies overnight at 4 °C. Excess antibodies were removed
by incubation of the slides with 0.1% Tween-20 in TBS for 15
min. Then the sections were incubated with biotinylated and
streptomycin-labeled goat anti-mouse or rabbit antibody
(Maixin Bio, KIT-5010, Fujian, China) for 15 minutes at room
temperature. After 3 washes with TBST, the expression of the
proteins in placenta sections was detected by the reaction of
the second antibody with peroxidase and 3,3,9 -
diaminobenzidine etrahydrochloride (DAB), and then analyzed
under an Olympus BX61 fluorescence microscope.

Statistical Analysis
For Dimethyl Labeling, the following criteria were required to

consider a protein for further statistical analysis: two or more
high-confidence unique peptides had to be identified, the p
value had to be < 0.1 and the fold difference had to be greater
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than 1.5 or less than 0.5. Then Student’s T-test was used to
find the significantly changed proteins with the SPSS software
(version 18.0).

The visualized bands of western blot were quantified with
Bio-Rad QUANTITY ONE software. The volumes of target
bands were normalized to GAPDH. The average absolute
intensity and the standard deviation were determined. The
protein ratio was determined using these averaged values.
Student’s T-test was used to generate p values. Significant
difference was recognized as a p value less than 0.05.

Bioinformatics Analysis
To further investigate the significance of the differentially

expressed proteins, we used Pathway Studio (v5.00) software
(Ariadne Genomics,MD, USA) to search their relevant
molecular functions and cellular processes involved during the
pathological changes of placenta. Moreover, Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway and
gene ontology (GO) analyses were also applied to these
differentially expressed proteins as described [30].

Results

Global Profiling of Proteins in Human Placental Tissues
Several proteomic studies on human placenta have been

reported [33-48]. However, large-scale quantitative proteomic
analysis has not been reported. Therefore in this work, we
used high accuracy LC-MS/MS to quantitatively detect and
map proteins in the placenta at large scale. Using large-scale
proteomic analysis, we identified 2636 unique proteins
expressed in the human placental tissue with high confidence
(two or more unique peptides with an FDR less than 1%). The
distributions of these identified proteins in different
chromosomes were analyzed and compared to those of
protein-coding genes in human chromosomes. As shown in
Figure 1, the distributions of the identified proteins in
chromosomes are similar to those of human protein-coding
genes. KEGG pathway analyses were performed on the
identified proteins to find the important and representative

pathways in human placenta that they are involved in. As
shown in Figure 2, twenty-five pathways were identified for
these proteins (P < 0.05 and counts of the linked proteins >
25). Most of these identified pathways are well consistent with
previous observations of their roles for the development of
placental during pregnancy [1-6]. For example, 297 proteins
are predicted to be involved in the metabolic pathways (Figure
2). Since placenta is the critical channel between the mother
and fetus for the transportation of oxygen and nutrients, the
largest proportion of proteins (i.e., 297) linked to metabolic
pathway could be well anticipated.

Identification of Proteins Related to Pathological
Development of Placenta in Patients with PE

To identify those differentially expressed proteins between
the placenta samples from normal or preeclamptic
pregnancies, we analyzed the expression patterns of 2636
proteins identified. Examination of the mass spectrometry data
with Maxquant (version 1.2.2.5) revealed that 243 peptides
were significantly (p < 0.05) and differentially expressed
between normal and preeclamptic placentas. 171 differentially
expressed proteins corresponding to these 243 protein
peptides were successfully identified with LTQ-Orbitarp-Velos
(Table S2).

Bioinformatics Analysis of Differentially Expressed
Proteins

After further characterization the specific and unique
expression patterns of the 171 proteins, we subsequently
grouped these proteins into two clusters according to their
expression patterns (increased expression pattern and
decreased expression pattern, Table S2). Among them, 147
proteins have increased expression patterns while 24 proteins
have decreased expression patterns. The identified 171
proteins were then subjected to GO analysis for further
identification of important biological processes that they were
significantly involved in. Indeed we found these biological
processes are all present in PE development (Table S3). We
ranked these processes with p-vaules and found that the most

Figure 1.  Comparison of the distributions of protein-coding genes in chromosomes with those of proteins from forty
placentas (20 normal and 20 PE) identified with LC-MS/MS in this work.  
doi: 10.1371/journal.pone.0078025.g001
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significant biological processes include oxygen transport,
regulation of cell death, aminoglycan metabolic process, and
homeostatic process (Table S3). To further analyze the
networks between these important cellular processes and the
171 differentially expressed proteins, we used Pathway
StudioTM for pathway analysis. A pathway map can be drawn
for better visualization and understanding. Pathways
significantly represented (p < 0.05, squares) and their relevant
proteins (ovals) identified as differentially expressed proteins in
this work are shown in Figure 3. The results indicate that these
proteins are involved in pathways of "Abortion Habitual",
"Intracranial HADHA Hypertension", "Fetal Growth
Retardation", "Fetal Death", "Gestational hypertension",
"Therapeutic abortion", etc (Figure 3).

Western Blotting and Immunohistochemical Analyses
We randomly selected the following six proteins (ENG,

ANXA5, F2, and CP form those increased expressing proteins
in PE; HBA1 and HP form the decreased expressing proteins in
PE) to validate the LC-MS/MS results of the identified proteins
with western blotting using GAPDH as an internal reference. As
shown in Figure 4, western blotting results were essentially in
agreement with those of LC-MS/MS analyses. Next, we
employed immunohistochemistry to further verify the differential
expression of these proteins (ENG, ANXA5, and CP) in PE or
control placentas and the results satisfactorily confirmed the

increased expressions of these three proteins in PE placentas
(Figure 5).

Discussion

PE is a transient disorder which develops during the last
trimester of pregnancy or immediately after delivery and affects
3-8% of all pregnant women [1-3]. In pregnancies complicated
by PE, an increase in mortality and morbidity of both mother
and fetus has been described [1-4]. Fetal development is
closely related to adequate placental growth and function. In
spite of the major role of placenta in pregnancy, information
about the placental proteome and its changes during PE is
limited. Based on the above, we seek to obtain a
comprehensive map of the differentially expressed placental
proteins from PE placentas.

In this work, we performed comparative proteome studies to
determine the proteins differentially expressed in human
placenta between normal and preeclamptic pregnancies. 2636
unique proteins expressed in the human placental tissue were
identified with high confidence. 243 protein peptides,
corresponding to 171 differentially expressed proteins
identified, of which 147 proteins were down-regulated while the
remaining 24 proteins were up-regulated in placentas of PE.
The protein lists are shown in Table S2. As far as we know, this
work produced the highest number of differentially expressed
proteins identified from PE placentas.

Figure 2.  Representative significant biological pathways in which detected placental proteins are predicted to be
involved.  KEGG pathway analysis was performed using the identified placental proteins to evaluate which pathways are
significantly represented (p < 0.05 and counts of the linked proteins > 25).
doi: 10.1371/journal.pone.0078025.g002
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In the list of differentially expressed proteins (Table S2),
several proteins play key roles in the incidence and
development of PE has been reported, such as ENG, CP,
SOD, TGF-β and so on. The expressions of these proteins in
our proteome profile are also consistent with those previous
reports. ENG, also called CD105, is a 180-kDa homodimeric

transmembrane glycoprotein expressed mainly in endothelial
cells and also in many other cell types [31]. ENG is an
intriguing protein that functions as an auxiliary receptor for
several of the TGF-beta superfamily members. Plasma levels
of soluble ENG seem to be promising as an accurate marker
for PE, thus allowing early diagnosis and preventive therapy

Figure 3.  Pathways significantly represented (p < 0.05, squares) and their relevant proteins (ovals) identified as
differentially expressed proteins in this work.  
doi: 10.1371/journal.pone.0078025.g003
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Figure 4.  Western blotting analyses and proteome profiles of six proteins from preeclamptic and normal placentas.  (A)
Western blotting analyses of the six proteins. (B) Corresponding contrast analyses of the blots in A. (C) Proteome profiles of the six
proteins in total protein extracts with LC-MS/MS analyses. Student’s T-test was used to generate p values. Significant difference
was recognized as a p value less than 0.05.
doi: 10.1371/journal.pone.0078025.g004
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[31,32]. CP was first described as a member of a copper-
containing oxidase family of enzymes. The increased levels of
placental CP in PE may result in enhanced ferro-oxidative
activity in this tissue, thereby oxidizing excess ferrous iron to
the less toxic ferric form [49]. The syncytial CP induced by
severe PE, is important in an endogenous cellular program to
mitigate the damaging effects of subsequent reperfusion injury
[49]. SOD is a primary antioxidant enzyme whose expression is
essential for life in oxygen. In fact, lack of placentation or
reduced fertility was reported in SOD-1-deficient female mice
[50]. SOD is associated with oxidative stress which has gained
credence as a unifying hypothesis that may explain the
maternal vascular disease and placental dysfunction [45,46].
Increased urinary excretion of isoprostane or decreased
antioxidant production is consistent with oxidative stress, and it
precedes clinical recognition of PE [47]. In several reports,
using antioxidant (e.g., vitamins C or E) to treat pregnancies
with high risk of PE has showed positive effects of reducing the
incidence of maternal disease [45-47]. Therefore placental
oxidative stress caused by decreased SOD is likely to play a
pivotal role in PE. As the fetus grows, insulin resistance
becomes more apparent, causing many changes in the
expression of cytokines, such as transforming growth factor

beta (TGF-β) and interleukin. The differential expression level
of TGF- β relating to preeclampsia patients was reported in
previous research [51].

Many integrated bioinfomatics tools have been used to
uncover the hidden biological significance with convenient
functional annotation. To interpret the data easier and more
efficient, we used GO analysis to analyze genes from their
localizations to functions. But the pathway analysis (KEGG)
was used to analyze from gene function to biological function.
Detailedly, pathway analysis focuses on the regulated
relationship of a group of genes in a defined biological process.
This process is different from GO analysis, since GO analysis
simply describes how many genes are involved. The top three
networks involving the differentially expressed proteins in our
study were networks of metabolic process, immune system
process, and cell differentiation. The expression levels of 78
metabolism proteins were found changed. Hydroxyacyl-
coenzyme A dehydrogenase and mitochondrial respiratory
chain complexes were found down regulated in this work.
Hydroxyacyl-coenzyme A dehydrogenase plays an essential
role in the mitochondrial beta-oxidation of short chain fatty
acids. This protein is associated with 3-alpha-hydroxyacyl-CoA
dehydrogenase deficiency which is a metabolic disorder with

Figure 5.  Immunolocalization of ENG (A and B), ANXA5 (C and D), and CP (E and F) in the preeclamptic and control
placenta.  ENG protein was localized in the syncytiotrophoblast layer (A and B). The main localization of ANXA5 was at the apical
surface of placental syncytiotrophoblast (C and D). CP was localized in villi of the placenta (E and F). Scale bar: 50 μm.
doi: 10.1371/journal.pone.0078025.g005
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various clinical presentations [52]. Mitochondria provide the
main energy source for eukaryotic cells, oxidizing sugars and
fats to generate ATP via oxidative phosphorylation (OXPHOS),
which is accomplished by the respiratory chain. The proteins of
respiratory chain such as V-type proton ATPase subunit,
cytochrome b-c1 complex and NADH dehydrogenase were
found down-regulated. Therefore the disruption of metabolic
pathways in placenta may particular relevance to the incidence
and development of PE [48]. In addition, we also firstly
identified proteins such as UDP-glucose 6-dehydrogenase and
prenylcysteine oxidase 1 proteins down regulated in PE
placentas.

Recent data have demonstrated that down-regulated
immunoregulatory system may play a key role in the
development of preeclampsia [53]. In this regard, we identified
21 immunoregulatory proteins down expressed in PE patients,
including interleukin-27 subunit beta, hemoglobin subunit zeta,
etc. Interleukin and its receptor complex participate in a
number of critical biological activities through several signaling
pathways. Placental dysfunction and increased inflammation
are believed to underlie the pathogenesis of severe
preeclampsia (PE), which may involve interleukin-induced
signaling [54]. In addition, researches have shown that
maternal hemoglobin concentrations are significantly changed
prior to delivery in women with preeclampsia [55]. In this work,
hemoglobin subunit zeta was found down regulated about 4.9
fold. Therefore, systematical immunoactivation may be one
cause of PE.

We also found that 53 proteins participating in cell
differentiation and apoptosis regulation pathways were
differentially expressed in PE. During human placental
development, trophoblast cells differentiate through two major
pathways (i.e., villous pathway and extravillous pathway). In
the villous pathway, cytotrophoblast cells fuse to form
multinucleated syncytiotrophoblast. In the extravillous pathway,
cytotrophoblast cells acquire an invasive phenotype and
differentiate into either (1) interstitial extravillous trophoblasts,
which invade the decidua and a portion of the myometrium, or
(2) endovascular extravillous trophoblasts, which remodel the
maternal vasculature. Abnormal differentiation events,
particularly the limited invasion of trophoblast cells into the
uterus and the subsequent failure of the remodeling of
maternal spiral arteries, are believed to induce preeclampsia
[56].  Programmed cell death occurring in the extravillous
trophoblast of PE is also associated to abnormal invasion
[42,43]. The decreased invasion of trophoblast is associated
with the existence of excessive macrophages around these
arteries, secretion of TNF-α, or depletion of tryptophan [43,44].

In addition, Dimethyl Labeling quantitative proteomic
analysis, which analyzes complex peptide mixtures with LC
followed by MS/MS, might avoid many of the intrinsic
shortcomings of protein-centric proteomic screens (2-D gel),
particularly with respect to low-abundance molecules, due to its
higher dynamic range [57]. In this work, some low-abundance
proteins, such as intermediate conductance calcium-activated
potassium channel protein, protein S100-A11, etc were firstly
found differentially expressed in PE placentas. Further
functional analyses of these PE-associating proteins are
underway.

In summary, through comparative proteome analysis of
placenta of normal and preeclamptic pregnancies, we
constructed a protein expression profile, outlined several
proteins which have been reported play key roles in the
incidence and development of PE, such as ENG, CP, SOD,
TGF-β, etc. We also identified proteins such as UDP-glucose
6-dehydrogenase, prenylcysteine oxidase 1 proteins,
intermediate conductance calcium-activated potassium channel
protein, protein S100-A11 were differentially expressed in PE
placentas for the first time, to the best of our knowledge. This
research might facilitate further researches on the discovery of
potential biomarkers and therapeutic targets.
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