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Abstract

High-throughput sequencing technology, also called next-generation sequencing (NGS), has the potential to revolutionize
the whole process of genome sequencing, transcriptomics, and epigenetics. Sequencing data is captured in a public
primary data archive, the Sequence Read Archive (SRA). As of January 2013, data from more than 14,000 projects have been
submitted to SRA, which is double that of the previous year. Researchers can download raw sequence data from SRA
website to perform further analyses and to compare with their own data. However, it is extremely difficult to search entries
and download raw sequences of interests with SRA because the data structure is complicated, and experimental conditions
along with raw sequences are partly described in natural language. Additionally, some sequences are of inconsistent quality
because anyone can submit sequencing data to SRA with no quality check. Therefore, as a criterion of data quality, we
focused on SRA entries that were cited in journal articles. We extracted SRA IDs and PubMed IDs (PMIDs) from SRA and full-
text versions of journal articles and retrieved 2748 SRA ID-PMID pairs. We constructed a publication list referring to SRA
entries. Since, one of the main themes of -omics analyses is clarification of disease mechanisms, we also characterized SRA
entries by disease keywords, according to the Medical Subject Headings (MeSH) extracted from articles assigned to each
SRA entry. We obtained 989 SRA ID-MeSH disease term pairs, and constructed a disease list referring to SRA data. We
previously developed feature profiles of diseases in a system called ‘‘Gendoo’’. We generated hyperlinks between diseases
extracted from SRA and the feature profiles of it. The developed project, publication and disease lists resulting from this
study are available at our web service, called ‘‘DBCLS SRA’’ (http://sra.dbcls.jp/). This service will improve accessibility to
high-quality data from SRA.
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Introduction

High-throughput sequencing technology is a powerful tech-

nique for determination of an entire genome sequence and

quantification of the transcriptome at base-pair resolution with a

large dynamic range. The sequencers using massively parallel

sequencing technology, also called next-generation sequencer

(NGS), drastically reduce the cost and time of sequencing,

compared with previous methods, and is rapidly becoming the

technology of choice for such purposes [1]. This type sequencers

yields a vast quantity of captured images, in-process files, and

numerous sequence reads, requiring an extensive amount of disk

space [2]. However, such data are important for researchers and

should be shared, as are the nucleotide sequences in GenBank and

microarray data in the Gene Expression Omnibus (GEO). Thus,

raw sequencing data from a high-throughput sequencing platform

are submitted into a public international archive resource called

the Sequence Read Archive (SRA) as a primary data archive. The

SRA database is maintained by the National Center for

Biotechnology Information (NCBI), the European Bioinformatics

Institute (EBI), and the DNA Data Bank of Japan (DDBJ) as NCBI

SRA [3], the European Nucleotide Archive (ENA) [4], and DDBJ

SRA (DRA) [5], respectively. The archived data is collaboratively

synchronized by these three institutes as part of the International

Nucleotide Sequence Database Collaboration (INSDC) [6], thus

researchers can search and download high-throughput sequencing

data submitted to one of the institutes from the website of others.

As of January 2013, data from more than 14,000 projects have

been archived in SRA. SRA accepts the data produced by various

sequencing platforms such as Illumina HiSeq 2000, Illumina

MiSeq, Illumina Genome Analyzer IIx, Roche 454 GS FLX,

Applied Biosystems SOLiD 5500xl, Complete Genomics, Ion

Torrent PGM, and PacBio RS.

The archived SRA data contains not only raw read sequences

but also information on the experimental design including project

titles, species or cell lines, names of samples, and sequencing

platforms as metadata. The metadata consists of six files in XML

format: submission, study, experiment, run, sample, and analysis

(Figure S1, http://trace.ddbj.nig.ac.jp/dra/metadata_e.shtml).

For example, the title and abstract of a project is described in

the "study" file, the experimental conditions and sequencing

platforms are included in the "experiment" file, and scientific

names and sample preparation methods are recorded in the
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"sample" file. Researchers can search SRA database, download

data to compare with their own, and analyze archived data using

their own software. However, the structure of SRA data is

complex, and each submission has not all of six types of metadata

files. Since additional experiments assigned to a previous project

are often submitted as a new submission, and raw sequence data

under a same project is divided to multiple directories on the FTP

site. Furthermore, resultant data is usually giga-byte order, thus

downloading sequence data from SRA is time-consuming.

Further, the data qualities depend on their sequencing platforms

and occasionally of questionable quality because anyone can

submit data to SRA with no quality check. To overcome these

difficulties, we constructed ID mapping tables and a list of

publications that refer to high-throughput sequencing data. By

means of this list, researchers can select captured sequencing data

of high quality.

A major aim of -omics analyses is to understand disease

mechanisms. In SRA, a large quantity of data relevant to diseases

is archived. Therefore, we characterized and indexed SRA entries

by disease keyword, using the Medical Subject Headings (MeSH),

which is the National Library of Medicine’s (NLM’s) controlled

vocabulary for indexing articles [7]. We provide the constructed

lists on a web service, allowing researchers to easily find disease-

relevant SRA entries.

Methods

Indexing each submission to a corresponding project in
SRA database

We downloaded all of the metadata in the SRA database from

the DDBJ FTP site (ftp://ftp.ddbj.nig.ac.jp/ddbj_database/dra/)

in March 2012. The experimental information including sequenc-

ing platforms and species of samples are separately recorded in six

types of XML files: submission, study, experiment, run, sample

and analysis (Figure S1). However, in the SRA database, each

submission has not all those objects of metadata (Figure 1). The

relationships between objects are often one-to-many, and raw

sequence data under a same project is archived to separate

directories. Since the corresponding IDs of other types of objects

are described in each file as a reference link, we extracted each

type of SRA ID (e.g., SRP000001 for ‘‘study’’, SRX000001 for

‘‘experiment’’, and SRS000001 for ‘‘samples’’) from the metadata

XML files and determined the connections among corresponding

IDs. Accordingly, we constructed an ID mapping table.

Articles extraction related to each SRA entry
We constructed a publication list that refers SRA data to assist

to access high-throughput sequencing data of sufficiently high

quality for analysis. A schematic view of the pipeline for generating

SRA-PMID pairs is shown in Figure S2. We first retrieved the

PubMed IDs (PMIDs) cited in the reference sections of the entire

downloaded SRA metadata. Next, we extracted SRA IDs from

journal articles in MEDLINE. Many IDs of external databases,

including GenBank and OMIM, referred to in journal articles are

cited in the external database section of MEDLINE, but the SRA

IDs are not contained in this section. Therefore, we extracted SRA

IDs from the full-text versions of articles in PubMed Central

(PMC) and the websites of the journals that were freely available

for parsing using regular expression pattern matching. In

particular, we focused on articles assigned with MeSH term of

‘‘High-throughput Nucleotide Sequencing’’. The SRA IDs

extracted from journal articles are often not the same IDs used

for submissions (i.e., start from SRA, ERA and DRA) or study (i.e.

SRP, ERP and DRP), but are the IDs used for experiment (start

from SRX, ERX and DRX) or run (SRR, ERR and DRR). Thus,

we converted the extracted IDs to the corresponding SRA study

IDs by the ID mapping table previously constructed.

Some transcriptome data captured by massively parallel

sequencers are submitted not only to SRA but also to the GEO,

and reference articles often cite GEO IDs as links to the captured

data. Therefore, in addition to SRA IDs, we retrieved the GEO

IDs and their corresponding referring PMIDs, using the same

methods as described above, from the entire set of GEO data

downloaded from the NCBI FTP site (ftp://ftp.ncbi.nlm.nih.gov/

pub/geo/), and PMC article data. Referred GEO IDs contain a

GEO dataset start from GDS, and the GEO series has a prefix of

GSE. To convert the GEO IDs to the corresponding SRA IDs, we

extracted SRA IDs from the GEO data and GEO IDs from the

SRA metadata, and then constructed pairs of SRA and GEO IDs.

Accordingly, we constructed a publication list referring to SRA

data, showing publication title, journal name, PMID and referring

SRA ID and data title.

Figure 1. The presence or absence of six objects of Sequence
Read Archive (SRA) metadata for each submission (top 15). The
experimental designs including project titles, sequencing platforms and
sample species are archived in SRA along with raw sequence data as six
types of XML files: submission, study, experiment, run, sample and
analysis. Analysis files are optional for submission. Each submission has
not all those objects of metadata.
doi:10.1371/journal.pone.0077910.g001

Characterization of Public NGS Data
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Characterization of each SRA entry by disease keywords
To characterize each SRA entry by other criteria, we used the

MeSH controlled vocabulary. MeSH contains more than 23,000

keywords and hierarchically categorized into 15 concepts includ-

ing ‘‘disease’’, ‘‘chemicals and drugs’’, and ‘‘anatomy’’. It is

originally curated for indexing MEDLINE articles by NLM.

We obtained MeSH terms (2012 release) from the NLM website

(http://www.nlm.nih.gov/mesh/meshhome.html). We extracted

assigned MeSH terms from retrieved journal articles, and then

constructed pairs of SRA IDs and MeSH terms. We divided these

SRA-MeSH pairs according to MeSH categories, such as diseases

and chemicals, and obtained disease-relevant SRA entries by

restricting these pairs to MeSH terms belonging to the "Disease"

[C] branch or "Mental Disorders" [F03] sub-branch. To visualize

the associations between SRA entries and relevant MeSH terms,

we developed an association list showing the SRA IDs, SRA titles,

relevant diseases and PMIDs from the source articles. We also

generated a frequency list, according to the number of SRA entries

associated with each disease, which allows researchers to restrict

the list to a sub-category of disease, including neoplasms and

mental disorders.

We previously constructed feature profiles of diseases referred to

in Online Mendelian Inheritance in Man (OMIM) entries [8] by

extracting disease MeSH terms from journal articles related to

each OMIM entry. The feature profiles are available at our web

service, which is called the Gene and Disease Features Ontology-

based Overview System (Gendoo) (http://gendoo.dbcls.jp/)

[9,10]. We generated hyperlinks to corresponding Gendoo entries

for each disease in the generated SRA-disease list by converting

MeSH terms to their corresponding OMIM entries with Disease

Ontology (DO) [11]; these were released in September 2012.

Diseases are often referred to by lexical variations, such as "lung

cancer" and "lung neoplasms". To cope with this multiplicity of

terms, we constructed a hierarchical tree view of MeSH disease

terms so that researchers can search for SRA entries associated

with a particular disease by referring to the MeSH hierarchy.

Website implementation
We developed the web service called DBCLS SRA to make

public high-throughput sequencing data more searchable and

usable. DBCLS SRA provides a project list categorized by study

types, sequencing platforms, and sample species. Additionally, it

offers a publication list and a disease list.

The SRA data at INSDC databases is growing so fast, thus

DBCLS SRA data updated weekly.

DBCLS SRA can be openly accessed at http://sra.dbcls.jp/

under Creative Commons Attribution 2.1 Japan license (http://

creativecommons.org/licences/by/2.1/jp/deed.en).

Results

Indexing each submission to a corresponding project in
SRA database

The SRA database is a primary archive of public high-

throughput sequencing data, and provides experimental designs

such as project titles and sequencers along with raw sequences as

six objects of metadata XML files. As of January 2013, there have

been more than 85,000 submissions in SRA database, comprising

approximately 14,000 projects. In SRA, additional experiments

are often assigned to a previous project and deposited as a new

submission, thus the number of submission exceeds that of

projects, and many submissions contain only a partial set of

metadata files, even excluded ‘‘analysis’’ files from consideration,

which are optional for submission (Figure 1). Therefore, we

established connections between each type of metadata and

constructed an ID mapping table. We provide a project list

according to this table on our website, the DBCLS SRA.

Researchers can sort and narrow the list by project types (e.g.,

whole genome sequencing and transcriptome analysis), species,

and sequencing platforms, and can sort the data by scale and

submission date. Table S1 shows the project list sorted according

to the number of experiment files in a project.

Extracting articles and constructing a publication list
The captured raw sequences in SRA are not always of a quality

sufficient for meaningful analysis. Thus, we assessed the impor-

tance of each SRA entry according to the presence or absence of

journal articles referring to it. To construct this publication list, we

first obtained reference PMIDs from metadata XML files of SRA,

and retrieved the 2666 pairs of SRA IDs and PMIDs. Then we

extracted SRA IDs from full texts of journal articles in PMC and

on the websites of the journals, and retrieved 863 SRA ID-PMID

pairs (0.88 precision and 0.97 recall). The SRA IDs extracted from

journal articles are often not the IDs used for submissions or study,

thus we converted the extracted IDs to their corresponding study

IDs using the ID mapping table previously constructed. The pairs

of false positive were omitted from a publication list because there

is no corresponding project information including SRA study ID,

study title and sequencing platform name. Although we used

regular expression pattern matching to retrieve SRA IDs from

PMC articles, many methods are reported for extracting IDs of

biological databases such as GEO and PDB [12–14]. We will

attempt to apply these methods to extract SRA IDs from PMC.

Even though we attempted to extract SRA IDs from journal

articles in PMC, IDs are frequently described in supplementary

files, which is located on journal’s web site as PDF format, so that

we cannot obtain such IDs. In addition, the full text journal

articles in PMC produced by some publishers are prohibited to

download and access automatically. We therefore complemented

the publication list by submitting these SRA ID-PMID pairs to it

manually.

Furthermore, in May 2011, NCBI began requiring that RNA

sequencing (RNA-Seq), ChIP-sequencing (ChIP-Seq), and epige-

nomic data be submitted to the GEO [15], so for some

transcriptomics data, only metadata is captured in SRA, while

the raw sequence data are archived in GEO with the experimental

designs stored as metadata [3]. Therefore, in addition to collecting

SRA ID-PMID pairs, we retrieved the GEO IDs and related

PMIDs and converted the GEO IDs to the corresponding SRA

IDs. Accordingly, we retrieved 2748 SRA ID-PMID pairs as of

October 2012.

Characterization of SRA entries with disease keywords
To characterize the SRA entries by diseases, we utilized MeSH

controlled vocabulary [7]. MeSH was originally designed for the

indexing of MEDLINE articles by the NLM, thus we constructed

SRA ID-MeSH pairs by extracting assigned MeSH terms from

retrieved journal articles and restricted these pairs to disease

related one. Accordingly, we obtained 989 SRA ID-disease MeSH

pairs. A list of associations between SRA entries and related

diseases, showing the SRA title, related disease, and hyperlinks to

source articles is provided by our web service. We also constructed

a disease frequency list (Table 1), according to the number of

associated SRA entries.

We previously used assigned relevant MeSH terms to establish

feature profiles OMIM entries on another web service called

Gendoo. For example, Gendoo shows that Alzheimer Disease

(OMIM ID: 104300) is related to the MeSH terms "Alzheimer

Characterization of Public NGS Data
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Disease" for disease, "Amyloid Beta Protein" for chemicals and

drugs, and "Brain" for anatomy. Moreover, Gendoo can illustrate

the differences between diseases: type 1 diabetes mellitus (OMIM

ID: 222100) is associated with "Autoimmune Disease" and

"Spleen", and type 2 diabetes mellitus (OMIM ID: 125853) is

associated with "Obesity" and "Adipocytes" [9,10]. In the present

study, we made connections between target diseases extracted

from SRA entries and feature profiles in Gendoo by using DO. We

established links between 56 diseases and 303 keywords extracted

from SRA to corresponding Gendoo entries.

A keyword search involves the problem of lexical variations,

such as "breast cancer" and "breast neoplasms". Therefore, we

provide a tree view of diseases, and researchers can narrow their

search by disease category using this list.

Discussion

Trends and growth of SRA entries
The high-throughput sequencing technology is utilized in

various purposes including whole genome sequencing, transcrip-

tome analysis, and metagenomics. We extracted such study type

information from each study file and classified SRA projects

according to it (Figure 2A). SRA contains approximately 14,000

projects as ‘‘study’’, which is double that of the previous year.

About a half of projects is an entry for whole genome sequencing

(6630 projects). The major study types of other half are

transcriptome analysis, metagenomics, and epigenetics (1983,

1240, and 1183 projects, respectively).

Further, we organized SRA dataset by sequencing platform

(Figure 2B). Each study consists of multiple experiments: SRA

archives over 200,000 experiments under 14,000 projects. Before

2010, Illumina Genome Analyzer II was the most popular

sequencer, but in 2012, experiments using Illumina HiSeq 2000

were drastically increased. The top 3 of most used sequencer are

Illumina HiSeq 2000, Illumina Genome Analyzer II, and 454 GS

FLX Titanium (92,888, 42,274, and 19,463 experiments, respec-

tively), and experiments with new sequencing platforms such as

Complete Genomics, Helicos HeliScope, PacBio RS, and Ion

Torrent PGM are also archived (1133, 437, 431, and 304

experiments, respectively).

Additionally, we categorized SRA data by species of samples.

Table 2 shows the top-15 list of sample species in SRA studies.

According to NCBI Taxonomy ID, 9060 taxonomic entries are

referred in SRA database. Model organisms such as human,

mouse, and fruit fly are major (1488, 898, and 322 projects,

respectively) for approximately 14,000 projects, and many

metagenome projects related to marine metagenome, soil

metagenome are also performed (165 and 144 projects, respec-

tively).

We developed a project list that shows project titles and

hyperlinks to corresponding experiment data, and researchers can

restrict search results by study types, sequencers and species.

SRA and other databases
In May 2011, NCBI announced it would handle RNA-Seq,

ChIP-Seq and epigenomic data submitted to GEO, genomic and

transcriptomic assemblies submitted to GenBank, and 16S

ribosomal RNA with metagenomics submitted to GenBank [3].

After this announcement, many transcriptomic sequence data

were archived not in SRA but in GEO. Therefore, we downloaded

and parsed GEO data. Furthermore, recent projects are some-

times so large that the results are submitted to various databases,

such as GenBank, GEO and SRA. Thus, the INSDC created a

new database for a project, called ‘‘BioProject’’ [16], that made

cross-references to various entries from the same projects. INSDC

also launched a database for biological samples, called ‘‘BioSam-

ple’’ [16], because various experiments refer to the same samples.

INSDC fosters the development of detailed data scheme of

BioProject and BioSample, thus we plan to extend our web service

to cover these databases and improve accessibility to archived

data.

To retrieve easily public high-throughput sequencing data of

sufficient quality for analysis, we collected articles referred to the

IDs of GEO entry performed by massively parallel sequencers in

conjunction with IDs of SRA. The resultant publication list is also

useful to develop and evaluate the performance of software for

assemble and mapping of high-throughput sequencing data.

Researchers can restrict this list by study types and sequencers.

Although about a half project of SRA entries is for whole genome

sequencing (6630 projects) and transcriptome analysis is less than

15% (1983 projects) of 14,244 total projects, transcriptome

analysis and epigenetics is referred by more journal articles (937

and 629 SRA ID-PMID pairs, respectively) than whole genome

Table 1. List of top 10 diseases extracted from the Sequence Read Archive (SRA).

Disease name Online Mendelian Inheritance in Man (OMIM) ID Number of projects

Breast Neoplasms 114480 43

Prostatic Neoplasms 176807 22

Disease Models, Animal N/A 21

Genetic Predisposition to Disease N/A 20

Disease Progression N/A 15

Translocation, Genetic N/A 14

Cell Transformation, Neoplastic N/A 12

Lung Neoplasms N/A (211980) 11

Staphylococcal infections N/A 10

Malaria N/A (611162) 9

We extracted disease terms of the Medical Subject Headings (MeSH) from assigned journal articles referring to the SRA entries. The MeSH disease category contains not
only the disease name but also symptoms. The OMIM ID was converted from the MeSH terms to the Disease Name by using the Disease Ontology (DO). ‘‘Lung
Neoplasms’’ should be assigned to the OMIM entry ‘‘Lung Cancer’’ (OMIM ID: 211980); however, there is no link in the DO.
doi:10.1371/journal.pone.0077910.t001

Characterization of Public NGS Data
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Figure 2. The growth of SRA data categorized by project types, and sequencing platforms. (A) The growth of the number of SRA studies
categorized by project types. The number of studies are double that of the previous year. (B) The growth of the number of SRA experiments
categorized by sequencing platforms. Over 200,000 experiments are submitted under approximately 14,000 studies. The experiments using Illumina
HiSeq 2000 are dramatically increasing.
doi:10.1371/journal.pone.0077910.g002
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sequencing (599 pairs) for approximately 3000 of SRA ID-PMID

pairs.

Disease-relevant SRA entries
One of the major themes of molecular biology and medical

science is to identify disease-relevant genes and to elucidate the

mechanisms of action of the gene products. In SRA, a large

amount of sequencing data is relevant to diseases and that

archived as transcriptome analyses, epigenetics and cancer

genome data.

Table S1 lists the top 10 projects captured in SRA database,

determined by the number of experiments corresponding to each

study. Four of the top 10 projects are related to disease, including

the ARRA Autism Sequencing Collaboration (SRP003279), the

Jackson Heart Study Allelic Spectrum Sequencing Discovery

(SRP014601), and the Lung Adenocarcinoma Tumor Exome

Sequencing Project (SRP012692) (the numbers of associated

experiment files are 2257, 2030 and 1865, respectively). The

Cancer Genome Atlas (TCGA) [17–21], however, included more

than 30,000 experiments. The data were initially archived in SRA

but were eventually moved to a website specific to the project.

Table 1 lists the top 10 terms of 303 disease keywords extracted

from SRA entries. The list includes not only diseases but also

symptoms. Restricting the list to diseases only, the major terms are

‘‘breast neoplasms’’, ‘‘prostatic neoplasms’’ and ‘‘lung neoplasms’’

(43, 22 and 11 projects, respectively). The tree view of disease

keywords also indicates that ‘‘neoplasms’’ is the area with the

greatest focus. The SRA entries assigned to digestive system

diseases and male urogenital diseases are also major because

colorectal neoplasms and prostatic neoplasms, respectively, are

included in these categories in addition to neoplasms sub-branch.

In this study, we constructed a disease-relevant project list that is

referred by journal articles because we focused on entries referred

by journal articles as quality evidence. We will increase disease-

relevant entries by applying text-mining technology to descriptions

and abstract sections of SRA database.

In addition, we made connections between disease extracted

from SRA and corresponding feature profiles in Gendoo. Gendoo

uses OMIM entries as a disease dictionary. OMIM contains

disease-relevant genes and genetic disorders; subtypes of genetic

diseases are also captured in OMIM. For example, ‘‘Diabetes

Mellitus, Noninsulin-dependent, 3’’ (OMIM ID: 6036894) is a

genetic subtype of type 2 diabetes mellitus (OMIM ID: 125853),

which is linked to chromosome 20q12-q13.1. The differences

between clinical features of NIDDM genetic subtypes are unclear,

although the genetic mechanisms are probably different. In this

study, we used DO to map diseases extracted from SRA to

corresponding Gendoo entries because DO integrates and

connects various ontologies, including MeSH, OMIM and

ICD9CM [22]. In this case, the MeSH term ‘‘Lung Neoplasms’’

is not mapped to the OMIM entry ‘‘Lung Cancer’’ (OMIM ID:

211980). Inclusion or exclusion of these genetic subtypes in

ontology is a matter of policy. Here, we plan to improve on the

connections between MeSH and OMIM to link SRA disease

entries to the Gendoo feature profiles by using MeSH terms

corresponding to the feature profiles in Gendoo without genetic

subtypes. Additionally, in OMIM, although entries for both type 1

and type 2 diabetes mellitus are present, an entry for simply

‘‘diabetes mellitus’’ is missing. We plan to use other dictionaries

and ontologies of diseases, such as DO, to complete these missing

entries.

Conclusions

We characterized public high-throughput sequencing data by

experimental designs including study type, sequencer, and species

described in metadata. In addition, we produced a publication list

to search SRA entries with enough quality to analysis, and a

disease list by extracting disease MeSH terms from retrieved

journal articles. We developed a web-based service called DBCLS

SRA to visualize these lists. DBCLS SRA will accelerate to find

and analyze datasets of interests.

Supporting Information

Figure S1 Data Structure of SRA. The Sequence Read

Archive (SRA) provides experiment designs along with raw

sequences as metadata. The metadata composes of six objects of

XML files: submission, study, experiment, run, sample, and

analysis. The relationships between objects can be one-to-many.

Original content is on http://trace.ddbj.nig.ac.jp/dra/

metadata_e.html.

(EPS)

Figure S2 A schematic view of pipeline for generating
SRA-PMID pairs. First, PubMed IDs (PMIDs) cited in reference

section of the Sequence Read Archive (SRA) database are

collected (a). Next, SRA IDs referred in abstracts of MEDLINE

articles are extracted (b). In addition, SRA IDs described in the

full-text version of articles in PubMed Central (PMC) and the

website of the journals are parsed. Some transcriptome data using

NGS are submitted not only to SRA but also to Gene Expression

Omnibus (GEO), and reference articles often cite GEO IDs as

links to the archived data. We therefore PMIDs cited in GEO

database (c), and GEO IDs referred in MEDLINE, PMC, and

journal websites (d).

(EPS)

Table 2. List of top 15 species archived in SRA database.

Species of sample The number of studies

Homo sapiens 1488

Mus musculus 898

unidentified 883

Drosophila melanogaster 322

Caenorhabditis elegans 206

Arabidopsis thaliana 191

marine metagenome 165

soil metagenome 144

Saccharomyces cerevisiae 142

Escherichia coli str. K-12 substr. MG1655 139

Bacteria 79

Zea mays 63

uncultured bacterium 60

Danio rerio 60

Plasmodium falciparum 55

Total 17319

We categorized SRA studies by species of samples. The number of total studies
is larger than true one (i.e. approximately 14,000 studies) because one study can
refer to multiple species. Model organisms such as human, mouse, and fruit fly
are employed widely, and metagenome project are also intensively
investigated.
doi:10.1371/journal.pone.0077910.t002
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Table S1 List of top 10 projects in the Sequence Read Archive

(SRA). We sorted the projects archived in SRA database according

to the number of assigned experiment files. Four of the top 10

projects were related to diseases (shown by asterisk *). The Cancer

Genome Atlas (TCGA), containing over 30,000 experiments, was

initially archived in SRA but eventually was moved to a website

specific to that project.
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