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Abstract

Deep sequencing of transcriptomes has become an indispensable tool for biology, enabling expression levels for thousands
of genes to be compared across multiple samples. Since transcript counts scale with sequencing depth, counts from
different samples must be normalized to a common scale prior to comparison. We analyzed fifteen existing and novel
algorithms for normalizing transcript counts, and evaluated the effectiveness of the resulting normalizations. For this
purpose we defined two novel and mutually independent metrics: (1) the number of ‘‘uniform’’ genes (genes whose
normalized expression levels have a sufficiently low coefficient of variation), and (2) low Spearman correlation between
normalized expression profiles of gene pairs. We also define four novel algorithms, one of which explicitly maximizes the
number of uniform genes, and compared the performance of all fifteen algorithms. The two most commonly used methods
(scaling to a fixed total value, or equalizing the expression of certain ‘housekeeping’ genes) yielded particularly poor results,
surpassed even by normalization based on randomly selected gene sets. Conversely, seven of the algorithms approached
what appears to be optimal normalization. Three of these algorithms rely on the identification of ‘‘ubiquitous’’ genes: genes
expressed in all the samples studied, but never at very high or very low levels. We demonstrate that these include a ‘‘core’’
of genes expressed in many tissues in a mutually consistent pattern, which is suitable for use as an internal normalization
guide. The new methods yield robustly normalized expression values, which is a prerequisite for the identification of
differentially expressed and tissue-specific genes as potential biomarkers.
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Introduction

Modern sequencing technologies have enabled measurement of

gene expression by ‘‘digital transcript counting’’. Transcript

counting has a number of compelling advantages, including high

sensitivity and the ability to discover previously unknown

transcripts [1]. Transcript counting started with the original Serial

Analysis of Gene Expression method (SAGE) [2], gained

momentum with Massively Parallel Signature Sequencing (MPSS)

[3] and is coming to maturity with the application of ‘‘next

generation’’ high throughput sequencing technologies. In partic-

ular, the modern RNA-seq technology [4] sequences the full

extent of each transcript, and therefore has the added advantage of

being able to characterize alternative splice forms for the same

gene [5]. Alternative splicing can be cell type-specific, tissue-

specific, sex-specific and lineage-specific [6]. More recently,

SAGE-Seq was described [7], applying next-generation sequenc-

ing to obtaining SAGE-like data.

After correcting for gene length [4,8] and for composition and

sequence-specific effects, particularly GC-content [9,10], the

expression levels of different genes and transcripts within the

same sample are directly comparable. On the other hand, the

comparison of gene expression levels across samples (to identify

differentially expressed and tissue-specific genes) necessitates

normalization of counts for each sample to a common scale.

Digital transcript counting methods measure transcript expression

as observation of a transcript k times at a sequencing depth of N

sequenced transcripts, and thus relative to the total expressed

content of the sample. Thus differential expression of any

transcript between two samples implicitly affects the measurement

of all transcripts, complicating the process of determining the

relative scale of counts from different samples. When attempting to

identify differentially expressed genes from transcript count data,

incorrect normalization may therefore lead to both false positives

and false negatives [11,12].

Many count normalization methods have been proposed to date

(Fig. 1), most frequently by effectively determining a single sample-

specific scaling factor [11,12]. The most commonly used method

normalizes expression values to the total number of reads observed

in each sample: gene expression values are thus expressed in terms

of ‘‘transcripts per million’’ or ‘‘counts per million’’ (CPM); for

RNA-seq, the equivalent measure is ‘‘reads per kb per million’’

(RPKM) [4]. This method implicitly assumes that all cell types

express total RNA to equivalent levels, and therefore that CPM/

RPKM values are directly comparable across samples [13]. This

method has the advantage of simplicity as samples can be

normalized independently, but there is no a priori reason to assume

that the total RNA content should be constant across cell types

[14,15]. Importantly, the results are sensitive to the expression

levels of highly expressed genes [16]: since much sequencing

output is spent on them, the presence of a few, highly-expressed

tissue-specific genes can significantly lower the CPM values for all

other genes in the same sample, often leading to the wrong

conclusion that the latter are ‘‘down-regulated’’.

A way to reduce sensitivity to highly expressed genes is to

choose a scaling factor using a rank statistic; the median expression
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value is commonly used for normalization of microarray data

[11,17]. Due to the preponderance of zero and low-count genes in

digital transcriptomes, the median count may be zero or reflect

stochastic sampling of rare transcripts and thus be an inaccurate

measure of overall scale, but the scaling factor can be estimated

from a higher rank statistic, such as the upper quartile [16];

however in our experience even the upper quartile value may be

unsuitable, depending on the sparseness of the expression data

matrix. Alternatively, it is possible to normalize samples quantile

by quantile or rank by rank, rescaling relative expression levels

within each sample to follow a common distribution [18]. This

nonlinear method cancels global biases between samples, but

destroys the inherently linear relationship between transcript

counts and expression level within each sample and reduces power

to detect differential expression [19]. Conditional quantile

normalization improves the precision of this method by removing

first systematic biases caused by GC-content and other determin-

istic features [20].

A different class of normalization methods relies on the

expression level of a subset of the genes to ‘‘guide’’ the

normalization. It is often assumed that the expression levels of

certain ‘‘housekeeping’’ genes (e.g. GAPDH, ACTB) are constant

across cell types, and can therefore be used individually as an

internal normalization tool [14]. This assumption has been shown

to be invalid in various scenarios, leading to incorrect results [21].

More elaborate methods in this class rely on minimizing the

sample-to-sample variance of not just one, but a small set of guide

genes [22], or estimate scaling factors from the trimmed mean of

between-sample log-ratios for each gene, under the assumption

that the majority of genes are not differentially expressed [12].

Finally, spiked-in standards have been used as an exogenous

reference for determining the correct scaling factors for normal-

ization [23]. This method has the advantage of being able to

expose global changes in total RNA production [15] but are not

yet in widespread use, and significant legacy data exist without

spiked-in standards.

Each normalization method produces its own set of ‘‘corrected’’

expression values, leading to the identification of different, and

usually conflicting, lists of differentially expressed genes. There is thus

need to evaluate the relative success of different normalization

protocols. Methods for validating normalization factors have relied

on two kinds of metrics: performance in downstream analyses, and

analysis of sample-to-sample variance remaining after normalization.

Results from qRT-PCR experiments (and earlier, Northern

blots) have been used as a ‘‘gold standard’’ to determine the

differential expression status of genes, and thus to evaluate

normalization success [8,16]. False positive and false negative

rates have also been assessed in simulation experiments, where the

set of differentially expressed genes is specified in the simulation

[12, Dillies, 2012 #41]. A more complex evaluation assesses the

Figure 1. Conceptual taxonomy of scaling methods. Blue: published methods. Pink: variations on published methods. Red: novel methods.
Dashed lines connect related methods.
doi:10.1371/journal.pone.0077885.g001
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ability of sets of normalized data to yield gene regulatory networks

that translate between data sets [24].

Under the assumption that most genes are not differentially

expressed, normalization is expected to reduce overall sample-to-

sample variation in gene expression. Post-normalization variation

has thus been used to evaluate success, in various ways: at the level

of the individual housekeeping gene [22], by correlating one

housekeeping gene to several others [14], and by computing the

average coefficient of variation across all genes [18].

We present insights derived from the study of many normal-

ization algorithms, including novel methods, with an emphasis on

data driven approaches. We also present a framework for

evaluating how successful normalization methods are at rendering

the gene expression levels comparable across samples, without

relying on specific applications (e.g., identifying differentially

expressed genes). Our evaluation methods are entirely data driven

and do not require ‘‘gold standard’’ RT-PCR data or simulations.

We demonstrate that some algorithms independently produce very

similar solutions, which are particularly successful and very

different from that resulting from standard normalization meth-

ods. These results have deep implications for studies attempting to

identify differentially expressed genes from RNA-seq data.

Materials and Methods

RNA-seq Analysis in Human Tissues
We obtained from Illumina, Inc. a set of 16 raw RNA-seq

datasets (75 bp, single-end reads) from the following human

tissues: adipose (HCT20158), adrenal (HCT20159), brain

(HCT20160), breast (HCT20161), colon (HCT20162), kidney

(HCT20142), heart (HCT20143), liver (HCT20144), lung

(HCT20145), lymph node (HCT20146), prostate (HCT20147),

skeletal muscle (HCT20148), white blood cells (HCT20149), ovary

(HCT20150), testes (HCT20151) and thyroid (HCT20152). This

data set is collectively referred to as BodyMap 2.0, and is available

from the Gene Expression Omnibus as series GSE30611. To

maximize mapped fraction in the presence of genetic variation, we

aligned the sequence reads to the human reference genome

(version hg19/GRCh37) using Blat v34 [25] with default

parameters. We used custom Perl scripts to remove reads that

map to more than 10 different genomic positions, to select the best

alignment for each read, and to convert the output to SAM

format. Blat is a more sensitive (and more computationally

expensive) algorithm than the short read mappers typically used to

map RNA-seq reads, and it can directly model long gaps

corresponding to introns. Compared to TopHat/Bowtie [26],

Blat mapped an additional 7.94% +/22.3% of the total reads in

each sample (from a sample average of 89.2% to 97.2%). Uniquely

mapped reads increased by 8.85% +/22.05% (from a sample

average of 82.3% to 91.1%). We then assembled the mapped reads

and correlated them with annotated transcripts (Ensembl Gene

Models GRCh37.62) using Cufflinks v1.0.3 [27], keeping only

reads uniquely mapped inside exonic regions of known genes,

correcting for GC content and multiple mapping, and ignoring

novel isoforms and pseudogenes, rRNAs and mitochondrial

sequences (Cufflinks parameters: -b -G -u -M). We used custom

Perl scripts to parse the Cufflinks output files and to summarize the

expression levels of 133,810 observed transcripts as a table, using

the ‘‘coverage’’ column to report the average fold coverage per

transcribed base, avoiding the additional standard normalization

to million reads (RPKM). Finally, we computed from these values

the average fold coverage per transcribed base for each of 29,665

genes, as the average of its various transcripts, weighted by

transcript length. Nearly one third of the genes (9,588, 32.2%)

were observed in all samples.

Housekeeping Genes
We considered the ten housekeeping genes used in the geNorm

study [22], namely: ACTB, B2M, GAPDH, HMBS, HPRT1,

RPL13A, SDHA, TBP, UBC and YWHAZ. All of these had nonzero

expression values in all 16 BodyMap 2.0 samples except for

YWHAZ (observed in 9 out of 16 samples), which we therefore

excluded from our study.

Definition of Ubiquitous Genes
Following the lead of Robinson and Oshlack [12], we identify

for each sample a trimmed set of genes by 1) excluding genes with

zero values, 2) sorting the non-zero genes by expression level in

that sample, and 3) removing the upper and lower ends of the

sample-specific expression distribution. To select the upper and

lower cutoffs, we tested all possible combinations of lower and

upper cutoffs at 5% resolution, and computed the number of

resulting uniform genes for each combination (Fig. S7). This fitness

terrain analysis shows that the upper cutoff is robust in the range of

70%–95%, while the lower cutoff can range from 0% to 60%. We

retain genes from the 30th to 85th percentiles: these cutoffs

maximize the number of uniform genes.

We define the set of ‘‘ubiquitous genes’’ as the intersection of the

trimmed sets of all samples being considered. In other words, for a

gene to be considered ubiquitous, it has to be expressed with

nonzero values in all samples, and furthermore it cannot be in the

top 15% or bottom 30% in any of the samples. Thus, by definition

the set of ‘‘ubiquitous genes’’ excludes most if not all differentially

expressed genes. This trimming method therefore implements

Kadota’s normalization strategy [28]. Using this definition and

these cutoffs, we identified 2,507 ubiquitous genes in the 16-

sample Illumina BodyMap 2.0 data set.

Some methods (e.g. Stability and NCS) are less affected by

extremely expressed genes, and benefit from having a wider pool

of options to select from. For these, we used the more inclusive

cutoffs of Robinson and Oshlack [12], namely 5% from each end

of the distribution. Using these cutoffs, we retained 6944 genes

from the 16-sample Illumina BodyMap 2.0 data set.

Depending on the data set, it is possible that the resulting set of

ubiquitous genes might be very small, or even empty. In such

cases, we expand the definition to include genes that are included

in the trimmed set of most samples (e.g., at least 80% of them).

Conversely, if the set of ubiquitous genes is too large (e.g., for

methods performing pairwise comparisons) or becomes too large

after relaxing the inclusion cutoff, it is possible to select a subset of

the ubiquitous genes by keeping those with higher expression

values.

Definition of Specific Genes
We defined genes specific to a sample as those with a positive

value for Jongeneel’s specificity measure [29], i.e., the gene was

observed in one sample at a level higher than the sum of all other

samples combined. We further require that the gene be observed

in at least half of the samples.

Computation of Relative Scaling Factors
Given a set of sample-specific scaling factors fk, we compute an

adjusted set f’k that maintains the global scale of the data set, by

applying the constraint that the product of the values in the
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adjusted set should be equal to 1: f
0

k~
fk

2scale
, where scale~

P

k

log2fk

N
and N is the number of samples.

Decorrelation Analysis
Our second metric for qualifying the success of normalization

methods is based on minimizing the correlation between the

normalized expression profiles of gene pairs. To compute this, we

analyzed the distribution of gene pair correlations of sample

rankings, in three steps, as follows.

1) For each gene, independently of other genes, we sorted the

samples based on the gene’s expression levels. Each gene thus

suggests a ranking of the samples. The ranking may change

according to the normalization applied.

2) We compared ubiquitous genes in a pairwise fashion: for each

pair of genes, we computed the Spearman correlation

between the sample rankings suggested by each of the genes.

High correlation values may reflect similarity in expression

profiles of functionally related genes, but in the vast majority

of the cases, correlation is inadvertently caused by distorted

expression values. As an example of this effect, consider the

gene expression values in testes vs. liver (Fig. 2A) as scaled by

the ‘‘Total Counts’’ method (blue diagonal in the figure). For

most genes in this comparison, the expression level in testes is

higher than that observed in liver; most gene pairs would

therefore rank the ‘‘testes’’ sample over the ‘‘liver’’ sample,

leading to high Spearman correlation values. When consid-

ering the relative scaling of the two samples produced by the

NCS method (red diagonal in the figure), approximately half

the gene pairs rank ‘‘testes’’ over ‘‘liver’’, while the other half

rank ‘‘liver’’ over ‘‘testes’’, leading to much lower Spearman

correlation values.

For typical data sets, the number of gene pairs is too large; we

therefore randomly selected a large sample of 100,000 gene pairs

to characterize the distribution.

3) We summarized the results by computing the average

correlation as the characteristic value of the distribution.

We interpreted higher average correlations as indicative of

less successful normalization, and average values near zero as

denoting full decorrelation. We obtained similar results by

using the median value.

Full List of Normalization Methods Implemented
We implemented six published normalization methods as well

as some variations on them:

1) CPM/RPKM [4,13]. This method scales each sample to the

same total count (one million). It differs from all other

methods in that samples are scaled independently of each

other.

Variant 1a) Total Counts. Instead of a fixed count, it scales

each sample to the average total count per sample (equivalently: to

the total number of reads in the entire data set, divided by the

number of samples).

2) Upper Quartile [16]. This method scales the expression

level at the 75th percentile in each sample to the average

across all samples.

Variant 2a) Upper Decile. Scales the expression level at the

90th percentile in each sample to the average across all samples.

3) Housekeeping [14]. This method scales samples to

equalize the observed expression level of a single, pre-

selected guide gene. We considered nine known housekeep-

ing genes: HPRT, ACTB, GAPDH, TBP, UBC, SDHA,

RPL13A, B2M and HMBS.

4) geNorm. This method scales each sample to equalize the

geometric mean of the expression levels of 3 to 9 control

genes, selected among housekeeping genes (see 3 above) by a

‘‘gene stability’’ measure [22].

Variant 4a) Stability. Scales to equalize the geometric mean of

the expression levels of the hundred most stable ubiquitous genes

(using 5% trimming).

Variant 4b) All Ubiquitous. Scales using the geometric mean

of expression levels of all ubiquitous genes.

Variant 4c) Random Ubiquitous. Scales using the geometric

mean of the expression levels of n randomly-picked ubiquitous

genes. We examined both n = 10 and n = 100, corresponding to

the typical number of genes considered in the geNorm and NCS

methods, respectively.

5) Trimmed Mean of M-values (TMM) [12]. Letting Fgk

denote the fraction of transcript counts for gene g in sample

k, this method analyzes each pair of samples as follows. After

excluding genes that are not expressed in both samples, the

genes with the top and bottom 5% geometric mean

expression level Ag = log(Fgi)+log(Fgj) are trimmed; the

asymptotic variance is also estimated as a function of Ag.

Of the remaining genes, the genes with the top and bottom

30% log-expression ratio Mg = log(Fgi) - log(Fgi) are also

trimmed. The log-ratio of the normalization constants for the

two samples is then estimated as a weighted average of Mg

over the remaining genes, using the inverse of the asymptotic

variance corresponding to Ag as weights.

6) Quantile Normalization [18]. This nonlinear method

makes the expression level distributions identical for all

samples. In our implementation and as described [18], in

each sample the normalized expression at each rank (not

quantile) is set to the average at that rank across all samples.

We also implemented the following novel algorithms:

7) Random. A mock normalization method that scales each

sample by a randomly picked factor 2r, with r drawn

uniformly in the range [20.5,0.5). Thus, normalization

factors were limited to 0.707 to 1.414.

8) Total Ubiquitous. Scales each sample to equalize the

total counts for ubiquitous genes to the same value, the

average across all samples.

9) Network Centrality Scaling. As detailed below.

10) Evolution Strategy. As detailed below.

Network Centrality Scaling
We developed a novel scaling algorithm based on network

centrality analysis. Our method involves five computational stages:

Stage 1: Selection of ubiquitous genes. To be useful for

normalization, a gene needs to be expressed in as many samples as

possible and yet avoid extreme expression values. The first stage in

our algorithm identifies ubiquitous genes (using 5% trimming) and

retains them for further consideration as potential guide genes.

Normalization Methods for Digital Transcriptomics
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Non-ubiquitous genes are temporarily ignored, but are considered

again when doing the final scaling step. Depending on the data set,

a large number of genes may be considered ubiquitous. Therefore,

for efficiency purposes, one may use expression levels to sort the

genes, and select an arbitrary number (e.g. 2000) of most highly

expressed ubiquitous genes for further computation.

Stage 2: Pairwise comparison of ubiquitous genes. Appro-

priate guide genes are expected to be consistently proportional

to each other across samples. The second stage in our algorithm

performs all pairwise comparisons of expression levels between

ubiquitous genes, and identifies mutually consistent gene pairs that

display proportional levels of expression across samples. Let k be

a sample and n be the number of samples studied; let Ygk be the

expression value of gene g in sample k. First we compute

expression ratios Rijk = Yik/Yjk for all pairs of ubiquitous genes i

and j. Then, we identify the maximal and minimal ratios

maxij = max_k(Rijk) and minij = min_k(Rijk), and compute the ratio

dispersal metric Dij = log2(maxij)-log2(minij). Lower values of Dij

indicate genes with more mutually consistent expression levels:

two genes expressed at identical levels, or at proportional levels,

would achieve a dispersal value of zero. We discard gene pairs

with Dij .1, i.e., for which the highest ratio of expression in a

sample is over twice higher than the lowest ratio of expression

in another sample.

Stage 3: Network analysis. The ensemble of mutually

consistent gene pairs can be modeled as a weighted, undirected

network, with the most central genes being the most informative.

For edge weights, we use the pairwise similarity metric between

two genes i and j: simij = 1/(1+ Dij). This similarity metric ranges

from zero (or 0.5, with our current Dij cutoff) to one, with a value

of one being achieved by gene pairs expressed at identical or

perfectly proportional levels in all shared samples. We then use the

PageRank algorithm [30] to identify the most central nodes in the

gene expression similarity network. PageRank is the algorithm

originally used in the Google search engine to identify web pages

of interest based on web link patterns, and can be applied as a

general tool for computing node centrality in a network. The

algorithm starts by giving all nodes equal values, and then

iteratively redistributes the node values according to the linkage

structure and edge weights. Upon convergence, the most central

nodes have the highest PageRank value, at the expense of more

peripheral nodes. Finally, we transform the PageRank values into

gene-specific weights Wg defined as Wg = PageRankgNG - 1 where G

is the number of nodes (genes) included in the network. Negative

weights are set to zero and discarded.

Stage 4: Computation of sample-specific scaling

factors. Each gene can be used to suggest individual scaling

factors for each sample, and the factors suggested by several genes

can be combined, taking gene weights into account. This stage

computes a scaling factor per sample (fk), which satisfyP

g

(Wg
:log2(Ygk

:fk))~C, where C is an arbitrary value, constant

across samples.

Stage 5: Data scaling. Having computed the scaling factors

for each sample, this stage simply performs the final scaling, which

renders gene expression levels comparable across samples, by

multiplying each Ygk by the corresponding fk.

Solution Optimization via Evolution Strategy
We implemented a randomized Evolution Strategy (ES)

algorithm [31] aiming to maximize the number of uniform genes.

For each individual solution in the ES, the object parameter vector

y corresponds to a vector of scaling factors, one factor per sample

in the data set. The individual’s observed fitness F(y) equals the

objective function of normalization success, namely the number of

uniform genes observed after scaling the raw data using the scaling

factors specified by y.

We create an initial population of solutions, either randomly

generating 10 individual solutions, or based on a user-specified set of

previously computed solutions. The population is then grown, sorted

and trimmed in rounds. At each round, we generate and add to the

population: a) 5 mutant offspring of the highest-ranked individual so

far, each offspring modifying each value in the parameter vector by a

small, randomly picked value, b) 5 mutant offspring of randomly

picked parents from individuals ranked #2 through #10, c) 5 mutant

offspring of randomly picked parents from the remaining individuals

in the population, d) 5 offspring produced by recombining two

different, randomly picked individuals.

Finally, all individual solutions (including parents and offspring)

are sorted by decreasing fitness, and the population is limited to

the 200 top individuals. The process is repeated until either a) the

system reaches convergence, as determined by no further increase

in the fitness of the highest ranked individual for 100 consecutive

rounds, or b) a user-specified amount of total time has elapsed.

Implementation and Availability
We have encapsulated the various normalizing methods into an

easy to use Perl module, ‘‘Normalizer.pm’’. The module is built in a

‘‘cascade of functions’’ format, embodying the pipeline of the

method. Each function in the pipeline automatically executes the

function that precedes it if its results are not yet available. This

means that a script can simply instantiate a new Normalizer object,

specify the location of the data set, and call the module’s normalize

function directly. This will trigger execution of the entire analysis

pipeline. Alternatively, one could set the data, specify gene weights

(e.g. listing housekeeping genes), and use the normalize function to

achieve the normalization based on the selected genes. Therefore

the module can be used to perform different types of normalizations.

Intermediate results are optionally stored on disk for efficiency,

making it easier to test different parameters for each step in the

pipeline. To compute PageRank, we use the Graph::Centrality::

PageRank v. 1.05 Perl module by Jeff Kubina (http://search.cpan.

org/,kubina/Graph-Centrality-Pagerank-1.05/lib/Graph/Centrality/

Pagerank.pm), and Graph v. 0.94 by Jarkko Hietaniemi (http://search.

cpan.org/,jhi/Graph-0.94/lib/Graph.pod). Our Normalizer.pm mod-

ule implements several normalization algorithms (see Methods) and

can be used flexibly to normalize data by one or more methods, and

to evaluate the results.

In addition to the Perl module, we provide a simple command-

line tool for normalizing data sets. The tool is a short Perl script

that uses the Normalizer.pm module. This tool is distributed

together with the Normalizer code, to serve both as a simple

method to use the code, and as an example of how to develop code

that uses the Normalizer.

Figure 2. Pairwise comparison of expression levels. We compared the levels of expression of 15,861 genes with nonzero expression levels in
both liver and testes, expressed in terms of average coverage per base. Each point represents one gene. A) Data prior to normalization. Housekeeping
genes are highlighted as green points and labeled. The blue and red diagonals represent the relative correction factors computed based on total
counts or the NCS method, relative to no normalization (black). The magenta and orange curves depict the percentiles when considering all genes or
genes with nonzero values, respectively. B) Values after correction by NCS. Points in black or red denote genes with positive weights, and that
therefore guided the scaling. Points in red denote the 39 genes with weight .0.5.
doi:10.1371/journal.pone.0077885.g002

Normalization Methods for Digital Transcriptomics

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e77885



All the software has been released as open source (GNU General

Public License) and is available at http://db.systemsbiology.net/

gestalt/normalizer/. The Perl code was also deposited in GitHub at

https://github.com/gglusman/Normalizer.

Results

A Conceptual Taxonomy of Scaling Methods
We studied a wide variety of normalization algorithms, some

published and some of our own devising (see Methods), and

identified a small number of core concepts on which they are

based. With the single exception of the Quantile Normalization

method [18], all the algorithms we considered are global

procedures that scale all the values in each sample using a single

scaling factor [11,16]: we present their conceptual taxonomy in

Fig. 1.

Some of the scaling methods are based on a global characteristic of

each sample (Fig. 1, left), i.e., they study each sample independently

and identify a characteristic value used for normalization. This

characteristic value can be the sum of all counts (CPM method)

[13], or a specific expression level, e.g., at the upper quartile [16].

We added two variations on these methods: scaling each sample’s

total count to the average count per sample (‘‘Total’’ method), and

scaling to the upper decile.

Alternatively, some scaling methods are based on pre-selected genes

(Fig. 1, right), either using the expression value of a single

housekeeping gene to guide normalization [14], or selecting the

subset of housekeeping genes that are most consistent with each

other (‘‘most stable’’) and using the geometric mean of their

expression values to guide normalization (geNorm method) [22].

Methods of the third class, which are based on genes selected from the

data (Fig. 1, bottom), start by identifying a (usually large) set of

genes expressed in the samples to be compared, and then use

various combinations of these genes to derive the scaling factors

that render the samples comparable. The TMM algorithm [12] is

one such fully data-driven method, based on pairwise sample

comparison of ‘‘double-trimmed’’ genes (i.e., trimmed first by

absolute expression level ranks within each sample, and then by

expression ratios between the two samples). We explored a variety

of novel methods that use single trimming (by expression level

ranks within each sample) and that scale all samples simulta-

neously. In particular, we created the novel Network Centrality

Scaling (NCS) algorithm that uses pairwise correlation of gene

expression levels as a similarity metric, and identifies the most

central genes in the resulting network. These central genes are

then used as normalization guides. We also implemented methods

that select random sets of genes to serve as controls for the

methods that choose gene subsets rationally.

Finally, scaling methods can be devised using randomly picked values

(Fig. 1, top). In particular, we implemented an Evolution Strategy

algorithm that stochastically identifies solutions that maximize, as

objective function, the number of genes expressed uniformly across

samples.

Computational Dissection of Normalization Methods
Even when based on very different concepts, the various

normalization methods may share one or more computational

procedures in common. We dissected the methods into distinct

computational steps and identified shared components among the

various algorithms (Fig. S1). There are four different initial actions:

1) ignore the data except for the pre-determined housekeeping

genes; 2) ignore the data entirely and select random scaling values;

3) use the data solely to compute the total expression in each

sample; 4) sort the data matrix in preparation for a variety of more

complex computations. The sorted data matrix can then be used

to compute rank-specific averages (for the Quantile Normalization

method), to identify the expression levels at different percentiles of

the distribution (for the upper quartile and upper decile methods),

or to identify ubiquitous genes (see Methods). Ubiquitous genes are

then used by several methods in diverse ways.

We identified three different possible endpoints (Fig. S1). The

Quantile Normalization method produces a set of jointly

normalized distributions. The CPM method produces absolutely

scaled values. All the algorithms we describe here yield a set of

relative scaling factors, which we adjust to keep the global scale of

the data set (see Methods). These scaling factors can be computed

from: 1) equal gene weights, 2) variable gene weights, 3) whole-

sample weighted means, 4) a target value per sample, or 5) random

values.

We found that best results are obtained with methods involving

stochastic optimization, and with certain methods based on

analysis of ubiquitous genes.

Application to a Real Dataset
We used the Illumina Bodymap 2.0 data set to compare the

expression levels of 29,665 genes across a panel of 16 tissues; for

each gene in each sample, we computed the expression level in

terms of average coverage per base (see Methods). We then

applied a series of normalization methods to this expression

matrix. The normalization algorithms are described in the

Methods.

Since expression levels may span several orders of magnitude,

the comparison of gene expression levels in two samples may be

visualized in a log-log scatterplot; as an example, we show the

pairwise comparison of the expression levels of 15,861 genes

observed in both liver and testes (Fig. 2). The effect of the various

scaling methods considered here (all methods except for Quantile

Normalization) is to shift the plot in one direction, without

distortion: multiplying all observed values by a scaling factor is

mathematically equivalent to a uniform shift in logarithmic scale.

As expected, the expression levels are largely correlated, but the

bulk of the point cloud is shifted to one side of the diagonal (black).

While some of this shift is due to differences in gene expression

levels among the two samples, the main effect is due to different

sequencing depth, and different allocations of reads among

different genes, in each of the two samples. Without any

normalization, 9,972 genes were observed in testes at coverage

at least double that observed in liver, and conversely just 1,516

genes were expressed in liver at least twice as strongly as in testes.

Only two genes (PTGDS and PRM2) were observed in testes at

coverage slightly higher than 10,000/base, compared to 13 genes

in liver, some of which exceeded coverage of 50,000/base (ALB,

HP, SAA1, FGB, SERPINA1, CRP).

After scaling to CPM or Total counts (see Methods), the

expression levels of 10,837 genes in testes were higher than twice

their liver values, but the reverse relation only held for 1,516

genes; 15 genes had coverage higher than 10,000/base in liver, but

none in testes. Therefore, the simple normalization based on the

total number of reads in each sample (blue diagonal) only

increased the skews observed in the expression values prior to

normalization, demonstrating the main flaw of this method.

We next considered scaling guided by individual housekeeping

genes (large green circles in Fig. 2A), for example the ubiquitous

and abundant GAPDH gene. This correction decreased the skew

between the liver and testes samples. Nevertheless, many more

genes still displayed an apparent higher expression level in testes

than in liver (7,468 and 2,369 for testes and liver, respectively, at

or above the 2-fold cutoff). While either RPL13A or ACTB could
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have served as successful individual guide genes in this specific

two-tissue comparison, they did not perform well when comparing

other samples, e.g., skeletal muscle vs. lymph node (Fig. S2).

Scaling to the level of expression at a given percentile (e.g.,

median value, upper quartile, upper decile) was very sensitive to

the precise cutoff used (magenta curve in Fig. 2A). Scaling to a

percentile after exclusion of nonzero values yielded much more

consistent results across possible cutoffs up to the upper decile

(orange curve in Fig. 2A), but was consistently skewed away from

the center of the point cloud, and towards highly expressed genes.

Scaling the liver vs. testes expression values via the NCS

algorithm (Fig. 2A, red line; levels after scaling are shown in

Fig. 2B) corresponds to similar expression of most genes in these

tissues at all expression levels, and yields similar numbers of genes

more highly expressed in either sample (4,628 testes .2x liver,

4,373 liver .2x testes). The NCS method finds and exploits genes

(89 for this data set, Fig. 2B; red points, centrality weight .0.5;

black points, centrality weight ,0.5) that are central in a graph

representing similarity of expression level between genes. This

network property corresponds to ‘‘depth’’ within the point cloud.

The ten most central genes were XPO7, TNKS2, AMBRA1,

C4orf41, C17orf85, GLG1, CCAR1, EXOC1, RBBP6 and WDR33.

While none of these genes are usually considered ‘‘housekeeping’’

genes, most function in basic cellular maintenance processes, and

CCAR1, GLG1 and EXOC1 were previously recognized as

candidate housekeeping genes [32].

We next compared the scaling factors for each sample in the set,

as suggested by several scaling methods. In every case we observe

discrepant results, as exemplified by the heart sample (Fig. 3, lower

left). Scalings based on single housekeeping genes usually yield the

most extreme scaling factors and are most frequently at odds with

most other methods. The ‘‘total counts’’ method usually (but not

always) agrees with other methods in the direction of change

needed, but its magnitude is strongly affected by highly expressed

tissue-specific genes.

We considered whether the solutions offered by the different

algorithms (and yielding varying numbers of uniform genes) are

substantially different. To assess this, we computed all pairwise

correlations between the vector of scaling factors produced by the

various algorithms (Fig. 3, upper right). This computation

confirms that scalings based on single housekeeping genes are

significantly different from each other and from other solutions;

scaling based on the SDHA gene is frequently anti-correlated with

most other solutions. On the other hand, several independent

methods produce very similar solutions, as reflected by the high

correlation between their respective vectors of scaling factors. We

show next that these solutions are also among the most successful,

as assessed by two different metrics: 1) ability to identify uniformly

expressed genes, and 2) decorrelation of sample ranking.

Quantifying Success by Identifying Uniform Genes
The first metric is based on the analysis of gene-specific

coefficients of variation (CoV). The average CoV can be used to

assess the level of dispersion in the data: a lower average CoV

reflects stronger reduction of technical noise [18]. This measure is

sensitive to outlier high CoV values, which is expected of sample-

specific genes. Additionally, the distribution of CoV values is long-

tailed, and its shape depends on the normalization (Fig. S3). We

therefore concluded that the average CoV is not a suitable measure

of normalization success. Nevertheless, the CoV of an individual

gene is a valuable metric for quantifying how successful the

normalization was at rendering its expression values consistent

across samples.

We defined a gene as uniformly expressed (or simply ‘‘uniform’’) if

the CoV of its post-normalization expression levels across all

samples is less than a low cutoff, arbitrarily but judiciously chosen

to be strict and to maximize the separation between the various

methods (Fig. S4). The absolute number of ‘‘uniform’’ genes thus

identified will strongly depend on the cutoff value, but the relative

values among different normalization methods are quite stable,

yielding similar results for a variety of possible cutoff values (Fig.

S5). We reasoned that methods that are more successful at

equalizing gene expression values across samples would yield

larger numbers of uniform genes. The number of uniform genes as

defined here is largely unaffected by the presence of sample-

Figure 3. Comparison between the scaling factors suggested by the different methods. Lower left: the resulting scaling factors for the
heart sample. Upper right: Pairwise correlations between the methods, for all samples. Red shades denote high correlation values (above 0.75), blue
denotes low correlation (or anticorrelation). The column to the right indicates the number of uniform genes identified by the method. The Quantile
Normalization method is not included in this analysis since it does not produce scaling factors.
doi:10.1371/journal.pone.0077885.g003
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specific genes, and is therefore a more stable metric of

normalization success than the CoV.

Using these definitions and a gene CoV cutoff of 0.25, we

observed 58 uniform genes and 2,525 specific genes in the data

prior to normalization. We explored the performance of the

different normalization methods by comparing the number of

uniform genes and the number of specific genes after normaliza-

tion (Fig. 4). Most (but not all) scaling methods significantly

increase the number of uniform genes, as expected and desired for

successfully normalized data, with more modest changes in the

number of specific genes. In contrast, mock normalization in

which samples were scaled by a randomly picked factor resulted in

far fewer uniform genes and frequently created many more

‘‘specific’’ genes.

Scaling based on single housekeeping genes identified a

surprisingly small number of uniform genes, in a range similar

to the random scaling (13 with TBP, 10 with RPL13A, 9 with

GAPDH, etc.). In particular, scaling based on three of the

housekeeping genes tested (ACTB, HPRT1 and HMBS) failed to

render any other genes uniform. This demonstrates that single

housekeeping genes are not appropriate guides for normalizing

this data set. On the other hand, geometric averaging of several

housekeeping genes identified many more uniform genes (geNorm

method, orange circles in Fig. 4); best results (305 uniform genes)

were achieved by combining seven housekeeping genes (UBC,

HMBS, TBP, GAPDH, HPRT1, RPL13A and ACTB).

Scaling to total expression (CPM), to the upper quartile, or via

the TMM method was only moderately successful at producing

uniform genes; many more uniform genes were produced by

scaling to the upper decile (373 genes). The expression levels

normalized by the non-proportional Quantile Normalization

method identified 374 uniform genes, but a much reduced

number of specific genes; this is consistent with the variance loss

inherent in this method. The very simple scaling to the total

expression in ubiquitous genes outperformed all these methods,

yielding 492 uniform genes.

While the simple mock normalization by randomly picked

scaling factors is strong enough a control for assessing single

housekeeping genes, it is a weak negative control for more

complex algorithms. Most of the algorithms we consider are based

on selecting a set of genes and combining them to produce scaling

factors; the number of genes is up to 10 for some methods (e.g.,

geNorm) and ,100 for others (e.g., stability, NCS). We therefore

implemented a stronger negative control in which we select 10 or

100 randomly picked ubiquitous genes, and use them to guide

normalization (gray circles and triangles in Fig. 4), or simply use all

ubiquitous genes (yellow square). We find that scaling based on

100 randomly picked ubiquitous genes, or all ubiquitous genes,

always produces superior results to those attained by the CPM,

Figure 4. Comparison of performance of various normalization methods. Each method is evaluated by the number of genes observed to be
consistently expressed across samples (abscissa); different methods also yield different numbers of genes identified as specific to one sample. The
numbers in the orange circles denote the number of housekeeping genes combined using the geNorm algorithm. The dashed arrows show one
stochastic path of the ES from the data prior to normalization (white square, ‘‘None’’) to the best approximation to the optimal solution (gray square,
ES). Brown squares represent the results obtained via the TMM method, using each of the 16 samples as reference.
doi:10.1371/journal.pone.0077885.g004
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upper quartile, upper decile, Quantile Normalization, TMM and

geNorm methods. The success level of scaling via a smaller set of

10 randomly selected ubiquitous genes is much less consistent, but

is almost always superior to CPM, upper quartile and TMM

normalization.

We note that certain random subsets of 100 ubiquitous genes

outperform the results of the entire set of ubiquitous genes. This

indicates that there is opportunity for improved success by

algorithms that judiciously select among the ubiquitous genes to

be used to guide normalization. Indeed, applying the ‘‘gene

stability’’ metric [22] to select 100 guides from the entire set of

ubiquitous genes yielded excellent results (481 uniform genes),

again highlighting the inadequacy of small sets of pre-selected

housekeeping genes for guiding normalization efforts. Similarly,

using gene network centrality to select guide genes (i.e., the NCS

method) identified 492 uniform genes (Fig. 4).

The availability of an objective function (number of uniform

genes) for quantifying the success level of normalization methods

provides a unique opportunity: it is now possible to use a variety of

optimization algorithms to search the solution space of possible

scaling normalizations, aiming to identify solutions maximizing the

objective function. We considered using traditional gradient-based

optimization algorithms, but rejected this option since the ‘‘fitness

terrain’’ of this objective function is not smooth and presents many

local maxima (Fig. S6). We therefore decided to implement a

stochastic Evolution Strategy (ES) algorithm to search for high-

scoring sets of scaling factors. Starting from no normalization (all

factors equal to 1), the ES 1) generates solutions by a variety of

deterministic and random methods, 2) selects the most successful

among these solutions, and 3) iterates this process and progres-

sively identifies solutions with increased fitness relative to those

observed until that moment. By analyzing intermediate results at

regular intervals, it is possible to visualize the progress of the ES

run, as shown by the dashed arrows in Fig. 4. The ES gradually

produces solutions as good as those identified by the other

methods, and eventually surpasses them. In our current example

(Illumina BodyMap 2.0), the ES identified a set of sample-specific

scaling factors that bring 539 genes to uniform expression levels,

while identifying 2,487 sample-specific genes (rightmost point in

Fig. 4). Repeated runs of the ES consistently produced results with

over 530 uniform genes.

Quantifying Success by Decorrelation Analysis
The second metric, inspired by the gene decorrelation analysis

of Shmulevich [11], measures the mutual information content of

gene pairs. In short, we first ranked the samples independently for

each gene, according to gene expression values; we then computed

the Spearman correlation of these rankings for gene pairs, and

assessed the global mutual information content in the expression

matrix by the average correlation (see Methods). Consider the two-

sample comparison in Fig. 2. By expression level prior to

normalization (Fig. 2A), the vast majority of the genes ranked

the testes sample over the liver sample. Similarly skewed relations

were apparent for other sample pairs (e.g., Fig. S2). Therefore, the

sample ranking correlations were high for most gene pairs.

Unsuccessful normalization methods increased sample ranking

correlations, shifting the distribution further to the right (Fig. 5).

In contrast, after successful normalization (e.g., Fig. 2B) many

gene pairs disagreed on sample ranking, leading to lower average

correlation. We found that the most successful normalization

methods (ES, NCS, Total ubiquitous) yield symmetric correlation

distributions centered around zero (Fig. 5), suggesting these

methods are approaching the optimal solution.

Discussion

Data standardization is a crucial first step in the analysis of

RNA-seq and other digital transcriptome data. In particular, any

Figure 5. Density distribution of Spearman correlations of sample rankings for some normalization methods.
doi:10.1371/journal.pone.0077885.g005
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attempt to identify differential expression requires careful scaling

of the data to make different samples comparable. Distorted results

may produce both false leads, suggesting differential expression

due to incorrect upscaling, and missed opportunities, when true

differential expression is masked by improperly downscaled values.

We have developed novel data-driven scaling algorithms that

use combinations of ubiquitously expressed genes as the basis to

compute sample-specific scaling factors. These sample-specific

scaling factors are correct only in the context of their comparison

to other samples: the same sample may be scaled differently

depending on what other samples it is being compared to. This

stands in contrast with the absolute scaling factors computed via

the CPM method.

We applied these and other algorithms to study sets of human

RNA-seq data. The results revealed very significant distortions in

gene expression values as normalized by simpler methods,

consistent with previous reports [33]. For the very commonly

used CPM normalization method, these distortions can be traced

to the presence of very highly expressed tissue-specific genes. The

other commonly used method, which relies on individual

‘‘housekeeping’’ genes presumed to be expressed at constant

levels, also leads to significant distortions and to misdirected

conclusions about tissue specificity of genes. While judicious

combinations of housekeeping genes yield more reliable results, we

found that these can still be much improved.

We analyzed the Illumina BodyMap data sets, which include

samples from a variety of normal human tissues. We also applied

the analysis methods to RNA-seq data sets including sample

replicates (not shown). The CPM/Total methods perform

significantly better when analyzing data sets dominated by

replicates (technical or biological) from the same tissues than

when analyzing samples from diverse tissues. This is the expected

result since replicates are not expected to include sample-specific

genes. The presence of replicates may also affect the decorrelation

analysis: in a data set dominated by sample replicates (technical or

biological), all correlation values may be inflated relative to more

diverse data sets. For a given data set, optimal scaling will

nevertheless minimize correlation.

The effectiveness of normalization methods is typically mea-

sured in terms of their ability to identify differentially expressed

genes [33]. We proposed a novel approach for evaluating the

success of normalization algorithms, based on their ability to

identify ‘‘uniform’’ genes. The set of broadly expressed genes can

be several thousand strong [32]. We further focus on the subset of

genes whose expression pattern is not only broad and defined as

‘‘housekeeping’’ a priori, but are also essentially invariant across

samples based on examination of the dataset of interest. The

biological hypothesis behind this approach is that, while different

cell types have their characteristic patterns of expression of specific

genes, there exists a large ‘‘core’’ of genes that are expressed in a

consistent pattern across cell types. The alternative hypothesis is

that in different tissues most genes are differentially regulated, and

that such ‘‘core’’ of uniformly expressed genes does not exist, or is

very limited. In this case, the expectation is for the set of computed

uniform genes to be small and unstable, strongly depending on the

specific sample scaling factors used. Our results confirm that it is

possible to identify a large set of genes that are consistently

expressed across samples representing disparate tissues. Stochastic

sampling via the Evolutionary Strategy algorithm robustly

converged on nearly identical sets of uniform genes. Moreover,

this set of genes is similar to those identified as uniform after

scaling using the geNorm, Upper Quartile and Upper Decile

algorithms - neither of which relies on precomputation of uniform

genes.

Previous evaluation methods have been based on the concept of

reducing variation of gene expression across samples, but have

either focused on very small sets of pre-selected genes, or

considered the global variation of all genes in the sample. We

find that the former uses only a small fraction of the available

information in the data, and the latter is inappropriate due to the

long-tailed distribution of gene expression variations (Fig. S3). Our

approach takes advantage of the expression patterns of hundreds

of genes, which we directly select from the data, avoiding such

distortions.

The total amount of RNA produced by a cell may have

significant implications on cellular size and metabolism – a

biological fact that data-driven normalization methods may fail to

model [15]. Normalization based on the core of ‘‘uniform’’ genes

will have this same deficiency if most core genes are expressed at a

proportionally higher or lower rate. Nevertheless, these methods

should detect deviations from such proportionality.

Our Network Centrality Scaling method is based on the

PageRank algorithm [30], which uses the link structure of the Web

to compute a web page’s authority and hence rank search results.

The concepts and methodology behind PageRank have been

fruitfully used in other contexts, e.g., ranking proteins based on the

similarity network [34] and identifying genes responsible for

adverse drug reactions [35]. In our implementation, the links in

the network of genes represent the extent to which their expression

patterns are mutually consistent. Thus, in similarity with social

network analysis, in which the number, strength and topology of

interpersonal links can define popularity, the number, strength and

topology of coexpression links identifies the most ‘‘central’’ genes

in the expression network. We proposed and verified that these

genes, weighted by their centrality, can serve as effective scaling

guides.

In addition to the deterministic methods based on analysis of

ubiquitously expressed genes, we implemented a stochastic

Evolutionary Strategy search for solutions that maximize the

number of uniform genes across samples. This algorithm has two

disadvantages. First, being non-deterministic, repeated runs

produce slightly different results; there is no guarantee that the

optimal solution will be reached in any particular run. While

results from different runs are slightly different, they are

nevertheless highly similar to each other. Second, the ES is

computationally intensive, since it requires testing very large

numbers of solutions. It takes much longer for the ES to converge

on an optimal solution than the time required to compute any of

the deterministic methods: typically in the order of a few hours for

our current implementation, as opposed to a few seconds. On the

other hand, there is room for optimization by parallelization, and

normalization of sets of RNA-seq samples is not a performance

bottleneck in current analysis pipelines. Therefore, these two

deficiencies are not fatal.

An interesting result emerges from the implementation and

application of a large number of algorithms to analyzing the same

data set: while many of them produce disparate and incompatible

results, several algorithms produce solutions that are strongly

correlated (Fig. 5). We obtained similar solutions from seven

disparate algorithms: ES, NCS, Stability, Total Ubiquitous, Upper

Decile, All Ubiquitous, and the combinations of the geNorm

method that rely on several housekeeping genes. These algorithms

are based on many different concepts and involve very different

computational procedures (Fig. 1). Using the upper quartile

algorithm, or random selections of 100 ubiquitous genes, also tend

to produce similar results. Results from the TMM method are also

reasonably well correlated with those of the seven algorithms. Of

all the single housekeeping genes we considered, only TBP yielded
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a scaling solution that is somewhat similar to all these methods.

Importantly, there was no other, separate cluster of solutions from

independent methods. This suggests that an optimal solution to the

scaling problem exists, and that some of the algorithms indepen-

dently approach it.

One characteristic of this optimal solution is that it presents the

largest number of uniform genes, a result intuitively expected from

successful normalization. We stress that, with the sole exception of

the ES, the identification of uniform genes is not directly part of

any of the algorithms described. The NCS algorithm and the

Stability method ultimately rely on pairwise comparisons of gene

expression levels, not on homogenization of individual genes.

Finally, the Total Ubiquitous method combines the expression

levels of several thousand genes by simple addition, without

attempting to homogenize the expression level of any one of them,

and yet it reaches a similar scaling solution.

Another characteristic of the optimal solution is that it fully

decorrelates sample ranking as assessed by comparing gene pairs, a

result again expected for successful normalizations. We stress that

this metric is conceptually and computationally independent from

the identification of uniform genes, and that it was not explicitly

optimized by any of the algorithms.

Based on the combined evidence from these three independent

considerations (similarity of results, maximization of uniform

genes, and maximal decorrelation), we conclude that the ES

algorithm provides the best approximation to the optimal solution

to the scaling task. The Total Ubiquitous, NCS and Stability

algorithms are significantly faster, and reach very similar solutions

in a deterministic fashion. In situations where computation speed

is a prime consideration, we recommend using these methods to

achieve the fastest approximation to the optimal solution.

We expect these novel approaches to provide accurate and

robustly scaled expression values, leading to improvements in the

identification of differentially expressed and tissue-specific genes.

Supporting Information

Figure S1 ‘‘Bus map’’ graph of normalization algo-
rithms. Each normalization method is represented by a path

from the raw data matrix (green rounded square) to one of three

types of outcomes (red rounded squares). Open rounded rectangle

‘‘stations’’ denote intermediary results. Large rectangles with blue

background label the first unique step of each method. Non-

deterministic methods are indicated with dotted or dashed lines.

(TIFF)

Figure S2 Comparison of expression levels of 12834
genes with nonzero expression levels in both skeletal
muscle and lymph node, expressed in terms of average
coverage per base. Each point represents one gene. House-

keeping genes are highlighted as green points and labeled. The

blue and red diagonals represent the relative correction factors

computed based on total counts or the NCS method, relative to no

normalization (black). The magenta and orange curves depict the

percentiles when considering all genes or genes with nonzero

values, respectively.

(TIFF)

Figure S3 Distribution of gene Coefficients of Variation
after normalization based on several methods.
(TIFF)

Figure S4 Cumulative distribution of gene Coefficients
of Variation after normalization based on several
methods.
(TIFF)

Figure S5 Specific vs. uniform genes, by several nor-
malization methods, using four different Coefficient of
Variance (CoV) cutoffs for defining genes as uniform.
Graphics used are the same as in Fig. 4. Too few uniform genes

are identified using a too-stringent cutoff (0.15). Conversely, using

a too-lax cutoff (0.5) leads to identification of several thousand

uniform genes by all methods, losing separation among the

methods. Intermediate cutoffs (0.25–0.3) are most effective at

distinguishing between different normalization methods.

(TIFF)

Figure S6 Fitness terrain when modifying the scaling
factor for a single sample (liver) relative to the best
solution found via the ES algorithm (539 uniform genes,
using liver scaling factor of 1.6978). The upper-left and

lower-left insets show increasing detail; the red portions of the

curves indicate the range expanded in the subsequent graph.

Several local maxima are observed. The ES solution (red arrow)

falls within the global maximum range observed (liver scaling

factors 1.6954–1.6988).

(TIFF)

Figure S7 Fitness terrain of the Total Ubiquitous
method, testing all possible combinations of lower and
upper cutoffs at 5% resolution. Numbers represent the

resulting uniform genes; red and black backgrounds highlight

increasingly successful combinations. The maximal values ob-

served are highlighted in white font.

(TIFF)
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