OPEN a ACCESS Freely available online

@'PLOS ‘ ONE

Performance Monitoring and Analysis of Task-Based

OpenMP

Yi Ding*, Kai Hu, Kai Wu, Zhenlong Zhao

School of Computer Science and Engineering, Beihang University, Beijing, People’s Republic of China

Abstract

demonstration graphs using the BOTS benchmarks.

journal.pone.0077742
Editor: Maria Schilstra, University of Hertfordshire, United Kingdom

* E-mail: georgedingyi@cse.buaa.edu.cn

OpenMP, a typical shared memory programming paradigm, has been extensively applied in high performance computing
community due to the popularity of multicore architectures in recent years. The most significant feature of the OpenMP 3.0
specification is the introduction of the task constructs to express parallelism at a much finer level of detail. This feature,
however, has posed new challenges for performance monitoring and analysis. In particular, task creation is separated from
its execution, causing the traditional monitoring methods to be ineffective. This paper presents a mechanism to monitor
task-based OpenMP programs with interposition and proposes two demonstration graphs for performance analysis as well.
The results of two experiments are discussed to evaluate the overhead of monitoring mechanism and to verify the effects of

Citation: Ding Y, Hu K, Wu K, Zhao Z (2013) Performance Monitoring and Analysis of Task-Based OpenMP. PLoS ONE 8(10): e77742. doi:10.1371/

Received June 15, 2013; Accepted September 6, 2013; Published October 30, 2013

Copyright: © 2013 Ding et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This research is supported by Aeronautical Science Foundation of China (2010ZA04001) and National Natural Science Foundation of China (61073013).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Nowadays, multicore CPU design has been widely adopted in
current supercomputers and the performance of these systems
depends on not only the processor frequency, but also the number
of cores. Therefore, how to effectively manage concurrency and
contention among cores has become a crucial question for
performance improvement.

OpenMP, an API regarded as the de facto standard for
multithreaded shared-memory programming, is well suited for
current multicore architecture, providing both directives of
OpenMP constructs such as parallel regions, sections, and single,
etc., and API functions to parallelize the regular structures in
version 2.5 [1]. However, the irregular and dynamic structures like
recursive routines widely used in current real programs are not
well supported in version 2.5 of OpenMP. Therefore, the
conception of task is proposed in version 3.0 [2], which allows
irregular and independent task constructs to be executed in
parallel so as to increase flexibility and efficiency. The task
construct in this version is represented by two separate entities: one
for task creation and the other for task execution. These entities
could be performed in two different dimensions: time and space.

The introduction of the task constructs in OpenMP 3.0 has
posed challenges for performance monitoring and analysis, which
is still an indispensable means to tune and optimize parallel
applications as well as make full use of supercomputers. One major
challenge is in order to accurately analyze the programs, we must
modify the traditional monitoring and analysis pattern to adapt to
the special execution behavior of the tasks. To resolve the
challenge, we propose a new method in this study to monitor and
analyze task-based OpenMP applications with tied mode,
addressing the question how performance tools can include this

PLOS ONE | www.plosone.org

new dimension (task) in OpenMP paradigm and provide all
necessary data to performance analysts so that the application
performance could be optimized.

The rest of this paper is organized as follows. Related work is
examined in section 2 and the problems of monitoring and
analysis in task-based OpenMP program are analyzed in section 3.
A proposed solution to the problems identified is described in the
following section. In section 5, two experiments are analyzed to
validate this solution’s efficiency and effectiveness, which 1is
followed by a conclusion of this study and an outline of future
work.

Related Work

Unlike MPI with PMPI interface, OpenMP specification does
not offer a performance profiling standard. To date, three data
acquiring methods have been proposed and applied in previous
work.

The first method is statistical sampling. The tools subgroup of
the OpenMP ARB (Architecture Review Board) has agreed on
publishing a runtime API based on this method for profiling
applications, as proposed by Sun (Oracle) [3]. Though encouraged
to follow this specification, few OpenMP compiler vendors have
implemented it in their compilers (with the exception of Sun and
Intel [4]). [5] extends this proposal and implements a prototype
tool named Sun (Oracle) Studio Performance Analyzer to support
tasks. The main shortage of this method is its lack of accuracy to
obtain related information.

Another method is built upon direct instrumentation. POMP is
the first interface and OPARI [6] as its prototype implementation
has been commonly used in performance tools, such as TAU [7]
and Scalasca [8]. However, tasks are not currently supported for
these tools. The initial work on task instrumentation presented by

October 2013 | Volume 8 | Issue 10 | e77742

Performance Tunning of Task-Based OpenMP

[9] is simple, without task-identification. [4] proposes a mechanism
to identify task instance via extension of OPARI (called OPARI2)
and implements it in Score-P [10]. However, its code modification
and recompilation are found to be time-consuming and complex
because OPARI is a source-to-source instrumentation tool.

Interposition is the third solution to intercept performance data.
Although Extrae supports monitoring task-related information for
its new version 2.3 [11], the method is still too simple to identify
the task instances and their relationships.

With respect to task-based performance visualization analysis,
most of the work fails to clearly describe the tasks’ execution
behaviors and the relationships among task instances. [5] and [9]
just display task execution and waiting time in a coarse grain, while
[11] and [12] do not reveal the relationships among task instances.
Though [10] maintains the tasks with detailed profiling informa-
tion, and the tasks in the visualization are independent of main
program in the call tree, the dependency relationships among the
task instances cannot be clearly presented.

Problem Analysis

This work intends to offer a promising new approach to monitor
and analyze task-based OpenMP paradigm and to overcome the
weaknesses mentioned in the above section.

The introduction of the task constructs is the most visible feature
of OpenMP 3.0, which adds an additional concurrency dimension
for work execution and shifts the paradigm from being thread-
centric in nature to task-centric. The thread-centric mode has little
control over the work distribution across threads, which could
casily cause a problem of load imbalance and has difficulties in
processing irregular and dynamic structures. The task in task-
centric mode, however, can be constructed in any form of
computation, and it is not bound to any particular thread. The
scheduling here indicates the assignment of the tasks to OpenMP
threads. Their reasonable match would greatly improve the
execution efficiency [13]. Using the new concept of task, all the
work units are defined as tasks, which include implicit (traditional

Table 2. The list of execution behavior.

Table 1. The list of static attributes.

Name Description

ID It is used to identify current task instance, being required to present the execution level and position on the form
parentlD It is used to identify the task instance which generates current one

nature It is used to indicate the nature of current taskins (implicit or explicit)

threadID It is used to identify the thread which executes current taskins

scheduMode It is used to indicate whether current taskins is required to immediately execute by the restricted conditions

state It is used to describe the execution state of current taskins (see Table 3)

data It represents the required data and context for task execution

doi:10.1371/journal.pone.0077742.t001

work units) and explicit ones. In addition, explicit tasks could also
be divided into two types: tied and untied tasks [14]. Our
approach in this work is limited to tied tasks, mainly because most
implementations of untied tasks are immature. At present, the
famous GCC compiler and libgomp library for example have not
implemented the mode of untied tasks.

Interposition [15] is an effective means to collect performance-
related information without source, special compilation or linking.
It is defined by the process of placing a new or different library
function between the application and its reference to a library
function. In real implementation, the library function in the
middle, also called wrapper function, is often designed to wrap the
real function.

Our goal is to obtain useful task-related performance data with
a monitoring library composed of all the wrapper functions and to
represent the data in a reasonable pattern to identify performance
problems. Three problems are required to be solved owing to the
complexity of task-based OpenMP paradigm.

1) Identification of the behavior of task regions, especially of
explicit tasks. As an additional dimension of OpenMP
programming paradigm, these tasks display different execu-
tion behavior. Once created, the OpenMP runtime system
will face two choices: it could be either executed immediately
or queued for later execution (decided by scheduling policies
or related directives). The tracing of task instances is not
straightforward, since it integrates all the related information
such as their relationships.

2) Integration of explicit tasks with traditional implicit ones. The
different behavior of the two types entails different monitoring
methods. However, as a whole system, their nomenclature,
related information, etc, should be consistent and mutually
compatible.

3) Reasonable description of task related information. The two
dimensions of the threads and the tasks are required to be

Name Description
execute It indicates the execution operation of current taskins
create It indicates the operation of creating new taskins

synchronize

resume

It indicates the operation of synchronization for current taskins

It indicates the operation of resuming for current taskins as it is suspended before

doi:10.1371/journal.pone.0077742.t002

PLOS ONE | www.plosone.org

October 2013 | Volume 8 | Issue 10 | e77742

Table 3. The list of execution states.

Performance Tunning of Task-Based OpenMP

State Description

EMERING

It describes the state of the generation of current taskins, being abbreviated to EMER

It describes the waiting state of current taskins, which is placed into Task Pool before execution, being abbreviated to WAIT

It describes the suspending state of current taskins, which is caused by the operation of synchronization as well as terminated by the

WAITING
RUNNING It describes the executing state of current taskins, being abbreviated to RUN
SUSPENDING
operation of resuming, being abbreviated to PEND
CREATING It describes the phase of creation operation, being abbreviated to CREAT

doi:10.1371/journal.pone.0077742.t003

displayed in one graph to represent the execution behavior,
which is a necessary step for further performance analysis.

Methods

This section describes a tasked-based monitoring mechanism
with the technique of interposition, and introduces two demon-
stration graphs to reveal, from different perspectives, the
relationships among task instances hosted on related threads.

Task-based Monitoring Mechanism
OpenMP ARP releases only the specification of OpenMP but
not the implementation in detail; thus, different compilers have

tasklns is created

tasklns is placed
into Task Pool

taskIns.execute()

taskIns.execute()

taskIns.create() taskIns.synchronize() JtaskIns.resume()

Figure 1. The state transition graph of task execution flow.
doi:10.1371/journal.pone.0077742.g001

PLOS ONE | www.plosone.org

their own specific instantiations. A generalized abstract model is
necessary to describe the task execution and monitoring control
flows. Then the implementation approaches of the monitoring
mechanism, based on a typical compiler, can be studied as a
demonstration.

In addition, based on the technology of interposition, the
monitoring library (wrapper library) between application layer and
OpenMP runtime library is transparent to the user. The runtime
library is not allowed to be changed, and some internal data
structures cannot be accessed directly either. These factors should
be considered in construction of the description model.

The description model with six components is defined as
follows.

taskIns is completed

October 2013 | Volume 8 | Issue 10 | e77742

taskins is created

record entry metric

record exit metric

.

preprocess task instance

tasklIns is placed

. record entry metric
into Task Pool y

raskIns.execute()

identify task instance by a special resolving method.

N

record entry metric

taskIns.create()

vaskIns.execute()

Performance Tunning of Task-Based OpenMP

tasklns is completed

record entry metric

record entry metric

record exit metric

record exit metric record exit metric

Figure 2. The monitoring principle diagram.
doi:10.1371/journal.pone.0077742.g002

Definition 4.1. (Task Instance) Task Instance, represented as
tasklns, is an instance of the basic execution unit in the program,
presenting similar behavior to the conception of task in the
specification of OpenMP 3.0. It is composed of a series of
attributes and behavior depicted below.

(@) static attribute. It is used to describe the inherent characters of
taskIns, being illustrated as “taskIns.ID = xxx”. The common
attributes are listed in Table 1.

(b) execution behavior. It is used to describe the operations of tasklns
in its life-time, being illustrated as “faskns.execute()”. The
operations are listed in Table 2.

(c) execution state. It is one of the static atiributes, represented as

“taskIns.state = xxx’. The common states are listed in
Table 3.

PLOS ONE | www.plosone.org

taskIns.resume()

taskIns.synchronize()

Definition 4.2. (Task Pool) Task Pool, is the space organized in
a certain pattern to store task instances with related information
(including required data, context, and possibly static attributes
such as task identifier). Usually, this space is hosted in the memory
buffer, and the task instances are organized in the form of linked
lists.

Definition 4.3. (7hread Pool) The term “Thread” here indicates
the execution unit of OpenMP paradigm (it is provided by the
OpenMP runtime system as a user-level thread, not by the
operating system as a kernel thread). Thread Pool is composed of
two layers: thread team and thread. While the implicit task
instances bind fixed threads to be executed, the explicit ones are in
turn scheduled by Scheduling Engine to map the threads in Thread
Pool.

October 2013 | Volume 8 | Issue 10 | e77742

Performance Tunning of Task-Based OpenMP

EV/Funcitons

~

Application Layer OpenMP Apphcatlon
Task creation)
directive S.ynck.lromzat l:n
Gomp_task(fn)) ectives(e.g.byr -
rieNaskwait,etc) . . Traditional
Other instructions directives
e.g. if(false),final)
Scheduling Layer Task Control Data
Engine operation h 4
Thread Pool
next_child
childretn Add tasks T Thread, I itask I I
paren
to the Scheduling Engine E
queue Queue Al e
2 —R. " .
ﬁ Task task, | task, | tasks task, Thread, I itask I I
= Pool
= 1
@ Function | F—————e s) eeeee
E pointer Schedule the tasks 7| Thread, I itask | I
Rt
= .
é Exection Function Scheduling Rules o
A (data) (i.e.real ICI
execution unit(task; Thread, itask
: [e
o
=2
=)

~

Executing Etask -|

N

o~ y

| Executing Itask I

Execution Layer

Execution Pool

Figure 3. The task execution mechanism of GCC.
doi:10.1371/journal.pone.0077742.g003

Definition 4.4. (Scheduling Engine) Scheduling Engine, a user-level
scheduling control center mainly aimed at the explicit task
instances, monitors the states of Thread Pool as well as Task Pool
online and maps the task instances to threads by the scheduling
rules. The concrete scheduling policies depend highly on the
implementation mechanism of the special compiler and the
runtime library.

Definition 4.5. (Task Control Engine) It is responsible for the
two aspects of preprocessing the task instances: operating the
required data and the contexts of these task instances, and
assigning the task instances to Task Pool.

Definition 4.6. (Execution Pool) It is an abstract conception for
the execution of task instances. Once some task instances enter this
pool, the real functions they points to (explicit task instances) or
their function entities (implicit task instances) will be executed
immediately.

The task execution flow could be described as a state transition
graph based on the model described above. It is displayed as
Figure 1, starting as the state of “START” and ending at “END”
with red circles. In the life-time of a task instance, different
contexts, restricted conditions (such as if clause) and execution
behavior may cause different state transitions. The key question
for performance monitoring using the technique of interposition is
to identify the task instance and to record related metrics for each
state. The monitoring principle diagram is shown in Figure 2. The
monitoring operations, indicated in the blue rectangles at different
phases, record related metrics (the most common one is time-

PLOS ONE | www.plosone.org

stamp). Especially, preprocessing tasklns before “WAI'T” state is to
design and store the identification information as well as necessary
static attributes of the task instance, and in turn to resolve them by
special methods after “WAI'T” state (before current taskins begins
to execute). Then the recording metrics could be mapped to
related task instances to reflect correct performance behavior. In
addition, our proposal here only support tied tasks for the reason
stated above.

As mentioned earlier, a typical implementation of the monitor-
ing mechanism will be studied in the following. Since GNU
compiler (GCC) is open source and widely used, its implementa-
tion of OpenMP is chosen as our research basis.

We first analyze the task execution mechanism of GCC runtime
library (libgomp), shown in Figure 3, and then design a monitoring
library. Some abstract terms are used in this figure for a better and
simple description. The whole system is divided into three layers:
application, scheduling and execution, with the last two involved
in OpenMP runtime library. The traditional directives (OpenMP
2.5), environment variables, etc, are independent of Scheduling
Engine, and corresponding work units (implicit tasks) are binding to
a particular thread in one team of Thread Pool to be executed
immediately. Once created, the explicit task shall enter Task Control
FEngine, which processes related data and makes tasks enqueue into
Task Pool (in fact, two linked lists are maintained for it). Meanwhile,
the scheduling conditions such as synchronization directives, if
clause, etc, are accepted by Scheduling Engine which also monitors
Thread Pool. Schedulable tasks, available threads and scheduling

October 2013 | Volume 8 | Issue 10 | e77742

Performance Tunning of Task-Based OpenMP

OpenMP Application Application Layer
Task creation Lo . . .
Nreotive Synchronization Traditional Other instructions
(Gomptask(fn)) irectives(e.g.bar directives (c.g. if(false),final)
e r,taskwait,etc)
Record task info. and Remove \I Scheduli
it Record Entry Information e eascwIng,
State
t_child
o "Ghitdren
= parent -
= Record “ EV/Funcitons
= exit Add tasks]
o Info. to the
§ tasky | task, | tasks | | | tasky | quene
Task s —I Task creation directive | Scheduling Rules I
Pool (Gomp_task(callme_task))
TGSk_
Monitoring info(task_id, =
Layer task parent
—{uncﬁon Scheduling Layer Task Control
- Y.
>
v Thread Pool

rary

b

Pool

Al

. Engine Data
inter \ g— operation
next_child Add tasks
children
et to the
queue
= \ Queue
Task Fﬁh | task; | tasks | A | ‘a"‘n—l
.

Callme_task
Schedule the tasks

Exection Function
(data) (i.e.real
execution unit(task))

N

Thread, I itask | I

Scheduling Engine

2rm-

Scheduling Rules

|

S >m-

I Executing Etask |

A’IP Runtime Li

I Executing Itask I

=

Execution Layer Execution Pool |

Figure 4. The mechanism of self-scheduling. The flow lines with the same color represent the same execution flow and the circled numbers

show execution orders with the same functional module.
doi:10.1371/journal.pone.0077742.g004

rules are combined to decide the order of task execution. Once a
task is scheduled, its executive entity will be placed to Execution Pool
to be performed.

In order to acquire the desired information about the task
instances, the monitoring library has to have means to store the
task identifier attaching necessary static atiributes, and resolve it
before execution, mapping task instance to related performance
data. Two possible ways to implement the monitoring library are
discussed in the following part.

Our first scheme described as Figure 4 is to design an
independent Scheduling FEngine similar to the one in OpenMP
runtime library. When an explicit task instance is created, Task
Control Engine in the monitoring library puts it into a Task Pool (task
enqueue) outside (in the monitoring layer) with its related
information and then places it into normal execution flow (the
real function pointer is still wrapped). As the real function is
invoked in the runtime, the wrapper function is actually executed.
Then the monitoring library realizes the task instance and
schedules it from the self-maintaining Zask Pool by the outer
Scheduling Engine (in the wrap library) according to the rules. This
task instance related information is resolved and stored, and then

PLOS ONE | www.plosone.org

the real function will be called to execute in execution layer. In
spite of its accuracy of data acquiring, this proposal causes high
overhead because of the overhead-prone locking mechanism used
to maintain a 7ask Pool in the monitoring library.

To improve efficiency, another proposal is presented as follows.
The amount of the key task identification information required to
be tracked is limited so that we could attach it to the data region
carried by task instance. As scheduled at runtime, the wrapper
function intercepts it and resolves the data to record the task
instance related information. The original data region is restored
as well, with which the real function (executive entity) is invoked to
Execution Pool. The mechanism is described in detail in Figure 5.
The wrapper data is not simply attached. To ensure accuracys, it is
necessary to preprocess the data in different situations implicated
with the parameters of task creation function.

In addition, the explicit task instance may be suspended in some
situations (for example, when the taskwait or barrier directive is
encountered). The scheduling mechanism embedded in the
runtime library (GUN libgomp) is consistent with the rule of call
stack, which is very different from the FIFO scheduler described in
[4]. Therefore, the wrapper library could record the performance

October 2013 | Volume 8 | Issue 10 | e77742

Performance Tunning of Task-Based OpenMP

OpenMP Application Application Layer

Task creation . - ; :
dirdetive Synchronization Traditional Other instructions

(Gomp. task(fn,data)) irectives(e.g.bar directives (c.g. if(false),final)
- Y rier,taskwait,etc)
Monitori Record task info. and remove | \ T
OLn;yllel:llg it Record entry info. /_,_———bl@i
—-_-——/' -
Resolve and @ Resolve wrap_data,
E. Process original AcquirAe }aSk infl
E Record data and original data EV, /Fun(:1t0ns
=~ exit A@
% info. Genemts{ A b Record entry task
; task id \ execution info.
N Acquire related Record Exit info. . o Restore original data
info.(parent_id,etc) of task creation Task creation directive and invoke execution
= (Gomp_task(callme_task, futiction
| ‘wrap_data))
Scheduling Layer Task Control Data /
Engine operation ~— >
= Add tasks \ 4 Thread Pool
= 5| — :
C:lﬂl:::(" to the T Thread, I itask | I
queu Queue Scheduling Engine E
5 > V2 - A
9
2 Task |_l;sk, task; | tasks | / | task,,.l \ M Thread, I itask | |
=2 Pool ‘k
]
@ Callme_task t—m——ee—™..—.d | eeeeee
_E Schedule the tasks " 1| Thread, itask | |
= A
é Exection Function | Scheduling Rules I B
% (data) (i.e. real A
= execution unit(task)) Function | M Thread, | itask | |
£ pointer Thread
° v
| Executing Itask |

| Executing Etask |

/

Execution Pool |
-

Execution Layer |

Figure 5. The mechanism of data wrapping. The flow lines with the same color represent the same execution flow and the circled numbers
show execution orders with the same functional module. Task Resolution Engine and Task Wrap Engine are key components in the monitoring library.
doi:10.1371/journal.pone.0077742.g005

library, especially by consistent naming conventions. OPARI2
utilizes OpenMP thread identifier attaching task count for task
identifier definition [4]. However, in OpenMP runtime library, a
thread pool is often exploited to reduce the overhead of thread

metrics in this case without extra efforts. The main problem is
caused by the separation of task creation and execution.

To integrate explicit task instances with traditional ones, the
same information is maintained for them in the monitoring

/@ —_— ,"J Task0 4\/@- T \ —_—
@ @ parent-child relationship
[=9\ A
—> Taskl <~ © Task2 - -
| /® /\ ()£ @\\ \ dependency relationship
\({ Task3 Task4 \ } Task5 Task6 /

Figure 6. The case of RDRP instances. TaskO is the implicit task instance, while the others are explicit ones.

doi:10.1371/journal.pone.0077742.g006

PLOS ONE | www.plosone.org 7 October 2013 | Volume 8 | Issue 10 | e77742

Table 4. The description of Redundancy Pruning Method
(RPM) (Algorithm 1).

1: for each taski, i€[0...n-1] do
2: if taski.bar is equal to 1 (1 represents it has a barrier property) then

3: for each descendant of taski -taskj do

4 if taskj.tw is equal to 1 (1 represents it has a taskwait property) then
5 if one edge or DRPS exists between taski and taskj then

6: if one child task of taskj has one edge to taski then

7 this edge is one instance of RDRP and will be removed;

8 end if

9 end if

10: end if

11: end for

12: end if

13:end for

Algorithm 1: For each task instance, a property of bar means whether it has a
synchronization point caused by barrier directive, while the property of tw
means whether it has a synchronization point caused by taskwait directive; n:
the number of task instances.

doi:10.1371/journal.pone.0077742.t004

creation and destroying. When a parallel region is encountered,
several threads in the thread pool could be activated to execute the
program. Then, these threads will be set to sleep until they
encounter another parallel construct and several parallel regions
could also be constructed in one program with different thread
numbers. In this case, the traditional expression is not suitable to
be used to represent the unique identifier for the global program
with several parallel regions in real meaning. We propose a new
nomenclature described as (1)

task_id = team_id + thead _id + task _count (1)

team_id is generated as countering a parallel region, while thread_id
is the system thread ID which could clearly represent the real
execution thread. fask_count indicates the created task instance with
the particular parallel region and system thread. team_id and
lask_count are both sequential nature numbers starting from zero.
In addition, + is the concatenation symbol. lask_id is unique and
globally accessible, which is acquired at the point of task creation
and remains unchanged and valid during the lifetime of a task
instance.

Task-based Demonstration Graphs

Classic performance profiles and timeline displays are often in
units of functions. The additional parallelization dimension of task
imn OpenMP paradigm, however, requires new demonstration
graphs to clearly present performance behavior. To overcome the
limitation of classic visualization pattern, two graphs are intro-
duced and defined as follows.

Definition 4.7. (Task Timeline Graph (TTG)) A graph describes
the execution behavior of different threads with respective task
mnstances working on them as time goes by. Different from the
traditional timeline graph, the functions are replaced by task-
related behaviors and the parent-child relationships are still
concatenated in the graph.

Definition 4.8. (Dynamic Task Relationship Graph (DTRG)) A
dynamic task relationship graph of OpenMP program P with the
execution of task instances is defined by a directed flow graph

PLOS ONE | www.plosone.org

Performance Tunning of Task-Based OpenMP

G={T, E,, E,, I} with a set of nodes T and a set of edges £, as
well as £, A node (€T represents a task instance executed by a
different thread. This execution is still the node’s property which is
labeled by a different color (if several task instances execute on the
same thread, the respective nodes are also labeled by the same
color). An edge <t,, t,>€ E, is a pair of ¢;, t,€T where £, is one
child of ¢; and ¢, is the sole parent of /. This edge describes the
parent-child relationship between the task instances. Likewise, an
edge <3, {,~€ E,is a pair of {3, t,€T where 1, is dependent of .
This edge describes the dependency relationship between the task
mnstances. The edges belonging to a different set are represented by
different shapes in the graph. The first task instance during the i
parallel region of P is defined as f; eF. If E; is empty and the
number of parallel regions is one, the graph will become a tree
structure representing the parent-child relationships among task
instances, which is defined as Dynamic Task Relationship Tree
(DTRT).

DTRG could accurately describe the task relationships during
program lifetime with related profiling information attached.
However, E, still has many redundant edges interwoven in the
graph, which will influence the analysis effect and efficiency. To
address the problem, two other definitions are then introduced.

Definition 4.9. (Dependency Relationship Path Stack (DRPS)) A
dependency relationship path stack is the sequential dependency
relationship composed of parts of edges contained in £, of DTRG.
It is denoted by DRPS= (t,;—>t,s—>ts— ...— 1,) (n>2 and n is a
natural number), starting with a node ¢,;, followed by ¢,» dependent
of ¢,;, followed by ¢35 dependent of ¢, and so on. This definition
implies that the same node may appear in various DRPS. In
addition, the dependency relationships in DRPS are provided with
transitivity (e.g.

Definition 4.10. (Redundant Dependency Relationship — Path
(RDRP)) Let ¢4, = <{,,, {,>> be an edge contained in E,; of DTRG,
and DRPS, = (t;; — t,2 — ... t,) (n>2 and n is a natural number)
be one instance of DRPS. e is called Redundant Dependency
Relationship Path iff both of them (¢5, and DRPS,) satisfy the
following conditions: (i) £, =t,; and t,, = 1,,; (i) DRPS;=¢,, but not the
opposite.

A case is provided here to explain the definitions above, with the
core pseudocodes described below. To keep things simple, only
one thread is executed in the parallel region. Two task instances
are created by the implicit task instance and then they create their
own task instances respectively. The DTRG of this case is displayed
as Figure 6 in which the instances of RDRP are labeled with ® in
red color. TaskO is the implicit task instance and its two child task
instances are Taskl and Task2. Taskl creates its child task
instances: Task3 and Task4, while Task2 has its child task
instances of Taskd and Task6. TaskO is dependent of all the
descendent task instances because of the implicit barrier directive.
In addition, Taskl is dependent of its child task instances due to
the taskwait directive. According to the definitions of DRPS and
RDRP, a conclusion is easily drawn. (Task3—Taskl—Task0) and
(Task4— Taskl—Task0) are DRPS instances, while <Task3,
Task0>((B)),<Task4, Task0>(®)) are RDRP instances and redun-
dant in this figure.

#pragma omp parallel num_threads(1)

{
#pragma omp task //taskl

{
funl();

}
#pragma omp task //task2

{
fun2();

October 2013 | Volume 8 | Issue 10 | e77742

}

do some work;
}
do some work.
void funl()
{
do some work;
#pragma omp task //task3
{

do some work;

}
#pragma omp task //task4

{

do some work;
}
#pragma omp taskwait
do some work;

}
void fun2()

{
do some work;
#pragma omp task //taskd
{

do some work;

}
#pragma omp task //task6

{

do some work;

}

do some work;

Based on these definitions, a Redundancy Pruning Method (RPM) is
required to efficiently remove RDRP in the graph. An obvious
method is to go through all the nodes and edges to find the
instances of RDRP. However, significant costs make this scheme
impractical. We thus propose an algorithm based on the feature of
GCC, briefly described as Algorithm 1 (Table 4), which could be
casily extended to other implementations and integrated with the
generation of DTRG. The instances of RDRP are mainly generated
owing to the synchronization dependency relationships of barrier
and taskwait directives in current GNU OpenMP implementation.

In short, 77G focuses on task execution flow with the related
thread, while DTRG on the relationships between the task
instances. They depict the task behavior from different perspec-
tives and help identify the performance problems. The real
examples will be displayed in the experimental part.

Experiments and Results

Based on the monitoring mechanism and the demonstration
graphs described above, we implemented a prototype monitoring
library and some demonstration modules which were integrated
into the framework of PAPMAS (Parallel Application Performance
Monitoring and Analysis System) [16-17]. Two experiments were
conducted to evaluate the overhead of performance monitoring
and to verify the effect of demonstration graphs with the prototype
implementations.

Experimental Evaluation of Monitoring Overhead

In this part, we monitored the BOTS (Barcelona OpenMP Task
Suite) [18] benchmarks and compared execution time with those
of the unmonitored version. The experimental platform is an
ASUS high performance server (Intel Xeon W3520, 4 cores, 8
threads, 2.67 GHz, 8 G memory capacity, 500 GB hard disk

PLOS ONE | www.plosone.org

Performance Tunning of Task-Based OpenMP

capacity, etc). Nine test programs were compiled with GCC
version 4.72. The function of storing performance data was closed
for two reasons: first, this part of overhead is necessary for every
system and dependent of the storage device; and second, this
function is not the focus of this study. Since untied tasks are not
supported in our system at present, we evaluated only the tied
version of the codes. Otherwise, the cut-off (fib, floorplan, health,
nqueens and strassen) and single (alignment and sparselu) versions
were chosen if they were provided. The monitored and
unmonitored versions were executed with 1, 2, 4, 8 threads
respectively and the results are shown in Figure 7. The
measurement overheads for alignment, fib, sparselu and strassen
are not obvious (less than 10%), while the overheads of fft,
floorplan, sort are medium (approximately between 10% and
20%). The program of nqueens was measured with higher
overhead (about 30%). Their varied behavior was similar except
the result of health was so strange that the overhead gradually
tapers with the growth of thread number.

As the new dimension introduced, explicit task instances and
their related operations are undoubtedly important factors for the
overhead. Therefore, another trial was conducted to acquire the
number of task instances and the execution times of taskwait (other
functions were executed with fixed counts) for all the test codes
with sprof tool. The results are displayed in Figure 8. From the
graph, it is concluded that there is an approximate linear
relationship between the overhead and task count. With a large
number of task instances, the overhead of processing and
recording performance information could not be ignored. The
number of task instance and taskwait for health are both the
largest. The lock mechanism is exploited as low level implemen-
tation of taskwait, which would increase overhead with growth of
thread number owing to the increasing competitions. Since the
monitoring library would enlarge task execution time due to the
overhead of information processing and recording, the effect of
competition lock may be diminished. This explains the phenom-
ena of health.

On the whole, the overhead generated from the monitoring
library could be considered acceptable since the measurements
provide quite detailed information about the runtime behavior of
the application.

Experimental Verification of Demonstration Graphs

In this part, a trial was designed for verifying the effect of T7G
and DTRG. Like our first experiment, fib (cut-off = 3, input size is
set as “‘small”) program in BOTS benchmarks was chosen to be
monitored and visualized. The two graphs are displayed as
Figure 9 and Figure 10 respectively. In T7G, the length of abscissa
is directly proportional to the time spent in the program. The task
behavior with the two dimensions of time and thread is clearly
displayed: one thread basically created 2 child task instances,
waited for them and then made some summing operations. These
steps proceeded recursively from each child task instance until the
level of recursion was reached. In Figure 10, the parent-child
relationships represented by solid arrows with full lines, the
dependency relationships among explicit task instances represent-
ed by hollow arrows with dashed lines and the attached related
information such as task type, execution time, etc, are all displayed
in the graph. To simplify the discussion, we ignored the
dependency relationships generated by implicit task instances
and barrier directives. Different threads are described by different
colors to be easily distinguished. The graph shows quite clearly the
relationships of the task instances and their distribution among
threads, which could easily identify the issue of load balance and
find the performance spot.

October 2013 | Volume 8 | Issue 10 | e77742

Performance Tunning of Task-Based OpenMP

Alignment-single (medium) FFT . "
small =
. oo 16 () 1005 Fib (medium,cutoff=10) oo
20 - 90% . i evi - 90 |- 90%
—b— time_original % 14 | —b— time_original % 40 | —& time_original %
18 —— time_monitor L 80% ¢ time_monitor L 80% s - time_monitor [0% 9
A A 1 °
16 -A- overhead o 124) A overhead 0% A overhead o 3
—_ o
L 14 L 60% i L60% 9
. 10 2
E 12 L 50% Lsow &
= 8| a
g 10 F 40% Lao% o
- 3
= F3
§ 8- 30% € 3% 8
o
o6 F2o% | F20% 3
4 F 10% [10% ~
2
2 L o% Fo%
0 . . . —L 0% 0 0%
D 1 2 4 8
Thread Number E Thread Number F Thread Number
Floorplan (medium,cutoff=10) - 100% 32 Health (medium,cutoff=10) 70, Nqueens (medium,cutoff=8) - 100%
144 90% * [280% 90%
— . * —&— time_original 28 | i o 60l * b time_original
2] - time_monitor |- 80% L ? time_original |- 240% 4 time_monitor | -80% Q
—A— overhead 2 - time_monitor H
| 70% o --&- overhead Lro% 3
—~ 10) > --&- overhead - 200%0 4 3
Cx [60% 29 F60%
2 - 160%
E 8. | 50% 04 Lsow &
16 2
H - 40% - 120% Lao% 8
s 6 04 2
3 F30% 12 | 80% fao% &
g " g
W4 20% g | . % 3
F10% E10%
A
2 4l - [0% 10
Fo% 0% Lo%
A
o T T T T 0% 0 T T T T -40% 0 T T T T -10%
1 2 4 8 1 2 4 8 1 2 4 8
G Thread Number H Thread Number | Thread Number
2 Sort(medium) 00% Sparselu-single(medium) 100% Strassen(inputs=4096,cutoff=10) 100%
] " . [o0% 120 [o0% 28| [s0%
18 * —&— time_original —B— time_original —b— time_original
16 - time_monitor |- 80% 105 | - time_monitor |- 80% 4 | -#- time_monitor [-80% o
" --A- overhead b -- overhead L 70% --&- overhead [70% E
—_ 7 b =
L - 60% Leow 8
o 12 75| 8
E [50% [so% =
E 10 3
H L40% 60— La% &
S 8 3
3 F30% 45| F30%
g 6 Q
] F 20% L20% ©
- 304 X
4 A TR [10% F1ow =
2+ Low "7 a A A A s [ow
o T - T - T - T 0% 0 T - - - T ™ T ™ ™ T -10%
1 2 4 8 1 2 4 8 1 2 4 8
Thread Number Thread Number Thread Number

Figure 7. The experimental comparison with monitored and unmonitored version of BOTS benchmarks. The abscissa represents thread
number, while the execution time is on the left ordinates, and monitoring overhead in the form of percentage is represented on the right ones. The
title means the execution program with its input size and/or cutoff value.

doi:10.1371/journal.pone.0077742.g007

1.8x10" -

TRRRY
XXX
XXX

X0
O
O
X
o

POOOOO
R task

[]taskwait

>

XX
00re
X

1.5x10" -

X3
X
X

I
RRKRRKR
GRRXRRHN
QXXX

1.2x10" -

52505
3588
XX

N
TRRK
KXXX
XXX

35052
orees,
XX

9.0x10°

SRR
RRHRHS
XX

Q2

Task Count
3

o,
o,
KX

6.0x10° -

N
52250505
Q300K
XXX

o,
o,
O

o,
Q
5255525¢5¢5252525R525¢55555550IIIAIARRRK
5RIIIIIIIIEIEIIIIIIIIKKK

X
X2
x>

o,
o,
O

3.0x10° -

232545
23258
XXX

o,
o,
O

2
o]
X
R
OO
202,

5
5
X

o,
o,
07070707070 0707070707070 07070707070 070707070 0 070 0 070 070 0 0 0 0 0 0 0 0 0

TR
etelede
(S0
R
X
K2R3

o,
O

0.0

T — T =
Alignment FFT Fib FloorplanHealth Nqueens Sort SparseliStrassen

Name

Figure 8. The comparison chart with the counts of task instances and taskwait. The abscissa represents the execution program, while the
numbers of task instances and taskwait operation are represented on the ordinate.
doi:10.1371/journal.pone.0077742.g008

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e77742

Performance Tunning of Task-Based OpenMP

[-1]0:0 §
[0]1:0
[0]1:1
[0j1:2

[o]1:3

OMP_Thread

[o)1:4

[0]1:5

[0]1:6

[oj1:7

oM ™ 2M 3m am 5M M 7™ M oM 10M 1M 12M 13M 14M 15M
Time (ns)

[B IMPLICIT_TASK NO_TASK [l TASK_WAITING . TASK_CREATE TEAM_CREATE [JJ] EXPLICIT_TASK —- Rel]

Figure 9. The chart of 77G. The abscissa represents the execution time while the ordinate represents the execution threads. The representation
[a]b:c on the ordinate indicates parent thread number, level number and current thread number respectively, which could clearly represent the cases
of multiple parallel regions and parallel region nesting. The legend explains the used colors related to various task behaviors shown in this chart.
TaskID ([E] indicates explicit task instances while [I] represents implicit ones) will be displayed on the rectangular bar in the graph until its length
reaches a threshold. In addition, this chart can be scaled for easy viewing.

doi:10.1371/journal.pone.0077742.9009

Conclusions mechanism presented in this work has a greater generality and

accessibility, independent of program, library source, or any

This paper introduces a monitoring mechanism and two special compiling or linking. Second, the monitoring library could

demonstration graphs for task-based OpenMP paradigm and acquire rich information with smaller overhead. Third, the

implements respective prototype modules to assist fast building demonstration graphs could reveal the task behavior from different
performance tools. The key characteristics of our method are perspectives, thus helping us identify performance problems.

summarized as follows. First, simple as it is, the monitoring

Statistics
Threadld|Color | CallTasks|
20892
20901
20904
20902
20900
20898
20899
20903

Figure 10. The chart of DTRG. The statistics table illustrates the execution threads in the graph with different colors and the number of task
instances executed on them. The information attached on the task box is taskID ([E] indicates explicit task instances while [I] represents implicit ones)
and execution time.

doi:10.1371/journal.pone.0077742.g010

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77742

In the future, more work can be done to perfect the mechanism

with greater reliability and to extend the analysis graphs.
Furthermore, the research of performance monitoring and analysis
with task-based OpenMP paradigm based on other compiler
implementations can be designed as well.

Acknowledgments

We thank the reviewers and editors for taking the time in their busy
schedules to review our manuscript and give some useful comments and
suggestions.

References

1.

2.

OpenMP Architecture Review Board. OpenMP application program interface
version 2.5. Technical report, OpenMP Architecture Review Board, May 2005.
OpenMP Architecture Review Board. OpenMP application program interface
version 3.0. Technical report, OpenMP Architecture Review Board, May 2008.

. Ttzkowitz M, Mazurov O, Copty N, Lin Y. An OpenMP runtime API for

profiling. Technical report, Sun Microsystems, 2007.

. Lorenz D, Mohr B, Réssel C, Schmidl D, Wolf F (2010) How to reconcile event-

based performance analysis with tasking in OpenMP. Proceedings of the 6th
International Conference on Beyond Loop Level Parallelism in OpenMP:
Accelerators, Tasking and More, Lecture Notes in Computer Science 6132:
109-121.

. Lin Y, Mazurov O (2009) Providing observability for OpenMP 3.0 applications.

Proceedings of the 5th International Workshop on OpenMP: Evolving OpenMP
in an Age of Extreme Parallelism, Lecture Notes in Computer Science 5568:
104-117.

. Mohr B, Malony AD, Shende S, Wolf I (2002) Design and prototype of a

performance tool interface for OpenMP. The Journal of Supercomputing 23(1):
105-128.
Shende SS, Malony AD (2006) The TAU parallel performance system.
International Journal of High Performance Computing Applications 20(2):
287-311.

. Geimer M, Wolf F, Wylie BJN, Abraham E, Becker D, et al. (2010) The Scalasca

performance toolset architecture. Concurrency and Computation: Practice and

Experience 22(6): 702-719.

. Firlinger K, Skinner D (2009) Performance profiling for OpenMP tasks.

Proceedings of the 5th International Workshop on OpenMP: Evolving OpenMP
in an Age of Extreme Parallelism, Lecture Notes in Computer Science 5568:

132-139.

PLOS ONE | www.plosone.org

12

Performance Tunning of Task-Based OpenMP

Author Contributions

Conceived and designed the experiments: YD KH KW ZZ. Performed the
experiments: YD KW. Analyzed the data: YD KH ZZ. Contributed
reagents/materials/analysis tools: YD KW ZZ. Wrote the paper: YD KH.

. Lorenz D, Philippen P, Schmidl D, Wolf F (2012) Profiling of OpenMP tasks

with Score-P. Proceedings of the 41st International Conference on Parallel
Processing Workshops: 444-453.

Extrac Homepage. Available: http://www.bsc.es/computer-sciences/
performance-tools/document- ation. Accessed 08 November 2012.

Schmidl D, Philippen P, Lorenz D, Roéssel C, Geimer M, et al. (2012)
Performance analysis techniques for task-based OpenMP applications. Proceed-
ings of the 8th International Conference on OpenMP in a Heterogeneous
World, Lecture Notes in Computer Science 7312: 196-209.

. Rauber T, Riinger G (2013) Parallel programming for multicore and cluster

systems (2th Edition). Berlin Heidelberg: Springer-Verlag. 105-167.

. Ayguadé E, Copty N, Duran A, Hoeflinger J, Lin Y, et al. (2009) The design of

OpenMP tasks. IEEE Transactions on Parallel and Distributed Systems 20(3):
404-418.

. Curry TW (1994) Profiling and tracing dynamic library usage via interposition.

Proceedings of the USENIX Summer 1994 Technical Conference on USENIX
Summer 1994 Technical Conference 1: 18.

. Ding Y, Hu K, Gao T, Zhang XY, Jiang S (2011) PAPMAS: A novel prototype

system for parallel application performance monitor and analysis. International
Journal of Advancements in Computing Technology 3(8): 64-72.

. Hu K, Ding Y, Zhang XY, Jiang S (2012) A scalable infrastructure for online

performance analysis on CFD application. Chinese Journal of Aeronautics 25(4):
546-558.

. Duran A, Teruel X, Ferrer R, Martorell X, Ayguadé E (2009) Barcelona

OpenMP tasks suite: A set of benchmarks targeting the exploitation of task
parallelism in OpenMP. Proceedings of the 2009 International Conference on
Parallel Processing: 124-131.

October 2013 | Volume 8 | Issue 10 | e77742

