
Inhibitory Effects of Trypanosoma cruzi
Sialoglycoproteins on CD4+ T Cells Are Associated with
Increased Susceptibility to Infection
Marise Pinheiro Nunes1*, Bárbara Fortes2, João Luiz Silva-Filho3, Eugênia Terra-Granado4,
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Abstract

Background: The Trypanosoma cruzi infection is associated with severe T cell unresponsiveness to antigens and mitogens
characterized by decreased IL-2 synthesis. Trypanosoma cruzi mucin (Tc Muc) has been implicated in this phenomenom.
These molecules contain a unique type of glycosylation consisting of several sialylated O-glycans linked to the protein
backbone via N-acetylglucosamine residues.

Methodology/Principal Findings: In this study, we evaluated the ability of Tc Muc to modulate the activation of CD4+ T
cells. Our data show that cross-linking of CD3 on naı̈ve CD4+ T cells in the presence of Tc Muc resulted in the inhibition of
both cytokine secretion and proliferation. We further show that the sialylated O-Linked Glycan residues from tc mucin
potentiate the suppression of T cell response by inducing G1-phase cell cycle arrest associated with upregulation of
mitogen inhibitor p27kip1. These inhibitory effects cannot be reversed by the addition of exogenous IL-2, rendering CD4+ T
cells anergic when activated by TCR triggering. Additionally, in vivo administration of Tc Muc during T. cruzi infection
enhanced parasitemia and aggravated heart damage. Analysis of recall responses during infection showed lower
frequencies of IFN-c producing CD4+ T cells in the spleen of Tc Muc treated mice, compared to untreated controls.

Conclusions/Significance: Our results indicate that Tc Muc mediates inhibitory efects on CD4+ T expansion and cytokine
production, by blocking cell cycle progression in the G1 phase. We propose that the sialyl motif of Tc Muc is able to interact
with sialic acid-binding Ig-like lectins (Siglecs) on CD4+ T cells, which may allow the parasite to modulate the immune
system.
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Introduction

Chagas disease is caused by the protozoan parasite Trypanosoma

cruzi and is an important endemic infection in Latin America.

Lately, it has also become a health concern in the United States,

Canada and Europe [1,2]. The parasite is transmitted via the

faeces of insect vectors of the family Reduviidae [3]. When the

parasite enters the host it evokes a strong immunological response

that is able to control the parasitic multiplication but not eliminate

it [4–6]. After a delay that can be as much as 20 years, about a

third of infected patients enter the chronic phase, characterized by

the symptoms of Chagas disease [7] It is not yet clear how the

observed pathology is triggered, but there is considerable evidence

that persistence of the parasite is associated with a chronic

inflammatory response, a major cause of Chagas disease [8–13].

T. cruzi employs a variety of strategies to evade the immune

system and maintain itself in the infected host. The main method

involves inhibiting specific T-cell responses so that it frequently

establishes chronic infections [12–19]. A number of both host-

dependent and parasite-induced mechanisms accomplish this

immune regulation [20]. The T cells of infected hosts are largely

unresponsive to antigens and mitogens, and this results in reduced

IL-2 synthesis and increased nitric oxide (NO) production.

Although spleen cell responses to ConA were more apparent

in infected IFN-cR2/2 or inducible nitric oxide synthase

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77568



(iNOS)-deficient mice than in their control littermates, IL-2

production remained as strongly affected [14].

It is thought that the large number of O-glycosylated Thr/Ser/

Pro-rich mucin molecules (Tc Muc) on the surface of T cruzi are

the main acceptors of sialic acid and are shown to be responsible

for most of the immune effects of infection [14–16], [21–26]. T.

cruzi cannot synthesize sialic acid but it produces a surface trans-

sialidase that transfers sialic acid from the sialoglycoconjugates of

the host to the parasite glycoconjugates, especially to terminal b-

galactosyl residues of Tc Muc [27–30]. Sialylated glycoconjugates

are believed to play a role in a number of host–parasite

interactions, such macrophage attachment, avoidance of comple-

ment lysis, and alteration of host immune responses [28], [31–36].

T. cruzi mucin has been shown to inhibit T cell proliferation as well

as IL-2 production and transcription in response to mitogens and

to anti-CD3. This effect involves action at the transcriptional level,

since Tc Muc inhibits transcription driven from the IL-2 promoter

[15,16]. Moreover, transcription of reporter genes under the

control of CD28RE, NFAT and AP-1, but not of NF-kB sites, is

also inhibited by Tc Muc to different extents, with the greatest

effect being on NFAT. In agreement with this, overexpressing

NFAT markedly reduced Tc Muc inhibition of IL-2 transcription.

Tc Muc also inhibits early events in T cell activation such as

tyrosine phosphorylation of the adapter protein SLP-76 and the

tyrosine kinase ZAP-70 [14].

Although sialylated glycoconjugates play important roles in the

initiation, persistence, and pathogenesis of Chagas’ disease, their

precise roles and their host receptors remain unknown. There is

evidence that sialylated Tc Muc can interact with Siglec-E (CD33),

a member of the Siglec family of sialic acid-binding Ig-like lectins

found mainly on cells of the immune system [33,37]. Siglecs have

immunoreceptor tyrosine-based inhibitory motifs (ITIMs) in their

cytosolic tails, which suggests that they are able to perform

inhibitory function when they bind sialylated carbohydrates [38–

40]. Siglec-E is a restricted leukocyte antigen mainly expressed on

mouse phagocytic cells and on antigen-presenting cells (APCs)

including macrophages and dendritic cells [41,42]. The binding of

pathogenic T. cruzi to Siglec-E-expressing cells is followed by rapid

mobilization of Siglec-E into the contact zone between parasite

and host cells. It appears that binding of Siglec-E affects the

activity of APCs, leading to lower production of IL-12, which is

important for Th1 responses [33,37].

The present study shows that cross-linking of CD3 on naı̈ve

CD4+ T cells in the presence of Tc Muc resulted in the inhibition

of both cytokine secretion and lymphoproliferative response as

compared to the controls obtained upon TCR triggering. The T.

cruzi mucin-induced suppression of CD4+ T cell response is

mediated by G1 cell cycle arrest and is associated with up-

regulation of the cyclin-dependent kinase inhibitors p27kip1.

Interestingly, in vivo administration of Tc Muc during murine

experimental infection with Trypanosoma cruzi parasites rendered

lower frequencies of splenic IFN-c producing CD4+ T cells in the

host compared to infected controls. These effects were accompa-

nied by a greater susceptibility to infection, as shown by higher

levels of parasitemia in infected mice treated with Tc Muc

compared to non-treated infected controls. In the present work, we

support evidence that sialylated O-Linked Glycan residues of Tc

Muc exert inhibitory effects on CD4+ T cells through the

interaction of the sialyl motif with the sialic acid-binding Ig-like

lectin host receptors (Siglecs). We propose that signaling of CD4+

T cells via Siglecs is at least in part responsible for the induction of

T cell anergy, and that this may allow the parasite to interfere with

the host immune system.

Materials and Methods

Ethics Statement
This work was approved by the Research Ethics Committee of

Fiocruz (protocol CEUA-LW8/10). Protocols for animal studies

were approved by the Institutional Ethical Committees in

accordance with international guidelines. All animal experimen-

tation was performed in accordance with the terms of the Brazilian

guidelines for the animal welfare regulations.

Preparation of Sialogycoproteins from T. cruzi DM28c
Strain

Sialoglycoproteins from T. cruzi DM28c were obtained as

described (Agrellos et al., 2003). Epimastigote forms were grown

in 1 l of brain heart infusion medium containing 10% fetal calf

serum, and supplemented with 10 mg/l hemin and 20 mg/l folic

acid. Cultures were incubated at 28uC with shaking (100 rpm) for

5–7 days. Cells were harvested by centrifugation, washed three

times with 0.9% NaCl and frozen at 220uC. Frozen cells were

thawed, extracted with cold water and the pellet recovered by

centrifugation for three times. The pellet was, than extracted with

45% (v/v) aqueous phenol at 75uC. The aqueous phase of the

phenol extract was dialyzed, lyophilised, redissolved in water, and

applied into a Bio-Gel P-60 column. Carbohydrate-containing

material in the excluded volume was lyophilized and suspend in

chloroform/methanol/water (10:10:3 v/v). The glycoproteins in

this solvent mixture were lyophilized and applied into an octyl-

sepharose column and eluted with 60% (v/v) propanol in water.

The mucin obtained were analyzed by sodium dodecyl sulfate

(SDS)-polyacrylamide gel electrophoresis and stained with peri-

odic acid/Schiff’s reagents for carbohydrate detection. In order to

obtain a lipopolysaccharide (LPS)-free preparation the sialoglyco-

proteins obtained were passed through an agarose-immobilized

polymyxin B column (Sigma Chemical Co., MO). For desialyla-

tion reaction, purified mucin was subjected to treatment with

0.2 U/ml of Vibrio cholerae neuraminidase, in PBS pH 6.0

containing 1 mM CaCl2. After incubation at 37uC for 1 h, the

enzyme was heat-inactivated and the solution was applied into an

octyl-sepharose column. The desialylated mucin was eluted with

60% (v/v) propanol in water. The eluted sample was dried by

rotatory evaporation, resuspended in water and lyophilized.

Animals, Infection and In vivo Tc Muc Treatment
Male BALB/c mice, aged 6–8 weeks, were obtained from the

Oswaldo Cruz Foundation animal facility. Epimastigotes of T.

cruzi Dm28c clone were cultured at 27uC in BactoTM Brain Heart

Infusion (BHI, Becton Dickinson Company, USA) supplemented

10 mg/mL hemin, 0,02 g/L folic acid (both from Sigma-Aldrich,

USA) and 10% of heat inactivated fetal bovine serum (FCS,

Gibco/Lifetechnologies). Acute infection was performed by

inoculating the animals intraperitoneally with 26105 chemically

induced metacyclic forms of Trypanosoma cruzi Dm28c clone

obtained as described [43]. T. cruzi mucin diluted in PBS was

administered via I.P. at 20 mg/mouse and on alternate days

starting at day of infection until day 22 after infection and

sacrificed on day 24. A control group was treated with PBS using

the same regimen. Parasitemia was monitored on days 7, 9, 11, 13,

15, 18, 20 and 22 post infection in blood obtained from tail vein

and lysed in Tris-buffered ammonium chloride by counting

trypomastigotes forms. Mice were killed during the acute phase, at

24 days post infection.

Cell Cycle Arrest of CD4 T Cells by T. cruzi Mucin

PLOS ONE | www.plosone.org 2 October 2013 | Volume 8 | Issue 10 | e77568



T Cell Purification and in vitro Proliferation
Primary T-cell-enriched populations from naı̈ve mice were

obtained by nylon wool filtration of unfractionated splenic cell

suspensions previously depleted of erythrocytes by treatment with

Tris-buffered ammonium chloride. Highly purified CD4+ T cells

were nonadherent cell treated with anti-CD8, anti-B220, anti-

MHC class II, anti-MAC-1, anti-abTCR (all at 10 mg/mL, BD

PharmingemTM) and purified with anti-IgG-coated magnetic

beads (Biomag perseptive Biosystems). CD4+ T cells were cultured

in DMEM supplemented with 2 mM glutamine, 561025 M 2-

ME, 10 mg/mL gentamicin, 1 mM sodium pyruvate, and 0.1 mM

MEM nonessential amino acids (all from GibcoTM, Invitrogen

Corporation) plus 1% Nutridoma-SP (Roche, Germany) instead of

FBS. For proliferation assays, CD4+ T cells (36105 cells/well)

were re-suspended in complete culture medium containing 1%

Nutridoma and were stimulated with plate bound anti-CD3 mAb

(5 mg/mL, clone 145-2C11, BD Pharmingen), with or without T.

cruzi mucin or control mucin in 96-well flat bottom plates. For the

dose response experiments, CD4+ T cells (36105 cells/well)

stimulated or not with plate bound anti-CD3 (5 mg/mL) were

cultured with different concentrations of TcMuc (10, 20 or 50 mg/

mL). In some experiments IL-2 (10 U/mL) (BD-Pharmingen)

were added at the beginning of the culture period to wells

containing CD4+ T cells stimulated with plate bound anti-CD3 in

Figure 1. Tc Muc inhibits CD4+ T cell proliferation. (A) Purified CD4+ T cells from naı̈ve spleens were stimulated with pre-coated anti-CD3 for
72 hr, in the presence or absence of increasing concentrations of Tc Muc (10, 20 and 50 mg/mL). Proliferation was measured 72 h after stimulation by
[3H]thymidine incorporation. (B) The inhibition of proliferation by Tc mucin was not observed when control mucin derived from bovine submaxillary
glands was used, nor was it reverted by addition of exogenous IL-2 when naı̈ve splenic purified CD4+ T cells were stimulated with pre-coated anti-
CD3 for 72 hr. Results are the means 6SE of triplicate cultures of three different experiments. *Differences between Tc mucin treatment versus anti-
CD3 stimulated positive control are significant (P#0.05).
doi:10.1371/journal.pone.0077568.g001

Cell Cycle Arrest of CD4 T Cells by T. cruzi Mucin

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e77568



the presence of Tc Muc (20 mg/mL). CD4+ T cells cultures were

also performed with desialylated Tc Muc (20 mg/mL). Anti-CD33

or isotype control (40 mg/mL, R&D Systems) were added to CD4+

T cells (36105 cells/well) cultivated in 96-well flat bottom plates

coated with anti-CD3. Cultures were incubated 3 days at 37uC
and 7% CO2 in a humid atmosphere and pulsed with 1 mCi of

tritiated thymidine ([3H]TdR, 5,0 Ci/mmol, Amershan) 16 hours

before harvested. Thymidine incorporation was determined in a

scintillation counter (Beckman CoulterTM - LS 6500 Multipurpose

Scintillation Counter). Results shown were mean and SE of

cultures done in triplicates. Cell viability was assessed using the

metabolic assay MTT, as previously described [44].

T Cell Activation and Cytokine Assays
For restimuation assay, CD4+ T cells (16106/0,5 mL) were

cultured in 48 well plate with medium only, stimulated with 5 mg/

mL plate-bound anti-CD3 in the presence or absence of T. cruzi

mucin (Tc Muc, 20 mg/mL) or control mucin (Ct Muc, Mucin

Type I from bovine sub maxillary glands, 20 mg/mL, Sigma-

Aldrich). Before adding CD4+ T cells to plates, wells were pre-

washed 3 times by adding cold HBSS (Gibco, Invitrogen) to

remove excess antibody. Plates were incubated at 37uC and 7%

CO2 in a humid atmosphere. After 3 days of stimulation in vitro,

cells were harvested, viable cells isolated with Ficoll (1.09 g/ml

density, Sigma), washed two times in cold HBSS, counted and

36105 cells/200 mL were restimulated in flat bottomed 96 well

plate (Corning, Costar) coated with anti-CD3 mAb at 5 mg/mL, in

the presence or not of Tc Muc (20 mg/mL) or CtMuc (20 mg/mL).

Supernatants from those cultures were collected after 48 hours and

cytokine levels (IFN-c, TNF-a, IL-2, IL-4, IL-10 and TGF-b) were

assayed by ELISA utilizing purified and biotinylated Abs (R&D

Systems), biotin-conjugated streptavidin-alkaline phosphatase (BD

PharmingenTM) and developed with ELISA Develpment Kit from

R&D System according to the manufacturer’s instructions. Plates

were read at 405 nm and values are presented as pg cytokine/mL

(mean 6 SE). Statistical differences between mean values were

evaluated by ANOVA, and pair-wise comparisons were done by

the Tukey test.

Detection of Intracellular Cytokine by Flow Cytometer
Fresh spleen cells were harvested from non-infected or from

infected mice at 8 or 15 days post infection (DPI). Cells were

washed in PBS (containing 2% fetal bovine serum) and incubated

for 30 min at 4uC with anti-CD16/CD32 for Fc blocking. For

phenotypic analysis of T cells by FCM, we performed three-color

labeling for 30 min at 4uC, using allophycocyanin (APC)-labeled

anti-CD4 and fluorescein isothiocyanate (FITC)-labeled anti-CD8

monoclonal antibodies, followed by phycoerythrin (PE)-labeled

antibody anti-CD69. All monoclonal antibodies (mAbs) used in

FCM were from BD PharmingenTM. Cells were washed and

resuspended in PBS supplemented with 2% fetal bovine serum,

and data were acquired on a FACSCalibur system (BD Bioscienc-

es). Analyses were done after recording 25,000–50,000 events for

each sample, using a CELLQuest software (BD Biosciences). To

determine the number of IFN-c-producing T cells in the infected

spleen, intracellular cytokine staining was performed. Single cell

suspension of infected spleen was prepared, and 106 cells/well were

cultured in 96-well U-bottom plates. Cells were left untreated or

policlonal stimulated with PMA (20 ng/ml) and ionomycin

(500 ng/ml) for 3 h at 37uC in 5% CO2. Brefeldin A (10 mg/ml)

was added to the culture for the intracellular cytokine accumula-

tion. Cell surface marker and intracellular cytokine staining for

IFN-c was performed using a Cytofix/Cytoperm kit (BD Pharmin-

gen). All samples were collected with a FACScalibur and were

analyzed with Summit 4.3 2 software (Dako).

Assessment of Cell-cycle Arrest and Western Blotting
Analysis

Purified CD4+ T cells (26106 cells/well, 1 mL) were cultured in

24 well plates, stimulated or not with plate bound anti-CD3 (5 mg/

mL), in the presence or absence of TcMuc or desialylated Tc Muc

(20 mg/mL) for 3 days at 37uC and 7% CO2 in a humid

atmosphere. At the end of incubation period, cells were fixed with

70% ethanol and stained with propidium iodide (PI, 20 mg/ml, BD

Immunocytometry Systems, USA) in PBS containing 0.1% Triton-

X-100 and RNAse (10 mg/ml) for 15 min. Data was acquired on a

BD FACS Calibur flow cytometer using CellQuest software (BD

Immunocytometry Systems, USA). For analysis of the cyclin D3

and p27 expression, cells were alternatively harvested after 3 days of

stimulation and lysed in RIPA lysis buffer. Lysates were centrifuged

at 16,0006g for 10 min at 4uC and the proteins present in the

supernatants were solubilized in a SDS sample buffer for

electrophoresis by boiling for 5 min and fractionated in SDS-

PAGE 9%. The proteins were transferred to PVDF membranes

(Trans-Blot system, Bio-Rad) and the membranes were incubated

overnight with anti-cyclin D3, anti-p27 and anti-actin (Cell

Signaling Technology, Inc.), followed by horseradish peroxidase

(HRP)-conjugated anti-mouse secondary antibodies IgG for ECL

quimioluminescence reaction (Amersham-Pharmacia).

Tissue Preparation and Histochemistry
Heart tissues were harvested 24 days after Trypanosoma cruzi

infection into BALB/c mice. Tissues were fixed in 10% neutral

buffered formalin, dehydrated, and paraffin embedded. Sections

(4 mm) were obtained and stained with hematoxylin-eosine for

topographical analyses of heart tissues. Sections were analyzed

under light microscopy. Positive identification of leukocyte

infiltration was determined by matching nuclear morphology

and cytoplasmic color. Inflammatory score present in the tissue

were determined in 40 sequential sections per mouse. Statistical

differences between mean values were evaluated by ANOVA, and

pairwise comparisons were done by the Tukey test.

Figure 2. Tc Muc inhibits anti-CD3 restimulation of activated
CD4+ T cells. Nave splenic CD4+ T cells were stimulated in 48-well
culture plates coated with anti-CD3 (5 mg/mL) in the presence or
absence of Tc Muc (20 mg/mL) or the same amount of the bovine mucin
as control. After 72 hr of stimulation, activated CD4+ T cells were
harvested and restimulated for an additional 3 days with plate-bound
anti-CD3 in the presence or absence of the TcMuc (20 mg/mL).
Proliferation was measured 72 h after stimulation by [3H]thymidine
incorporation. *Differences between Tc mucin treatment versus anti-
CD3 stimulated positive control are significant (P#0.05). The data
represented above are representative of one of three experiments with
similar results.
doi:10.1371/journal.pone.0077568.g002
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Statistical Analysis
Statistical analyses were performed with GraphPad Prism 4

software, using one-way ANOVA test. Results were expressed as

mean 6 standard error (S.E.), Differences between control and

treated group were considered statistically significant when

P#0.05.

Results

Tc Muc Supresses CD4+ T Cell Proliferation
To evaluate the effect of Tc mucin on in vitro CD4+ T cell

activation and proliferation, equal numbers of purified CD4+ T

cells isolated from naive mice were stimulated by plate bound anti-

CD3 mAb in the presence or absence of graded doses of Tc Muc.

Figure 3. Tc mucin inhibits cytokine production upon TCR stimulation. Purified CD4+ T cells from naı̈ve spleens were stimulated with plate
bound anti-CD3 (5 mg/mL), in the presence or absence of Tc Muc (20 mg/mL). Cytokines IL-2, IL-4, IL-10, IFN-c, TNF-a and TGF-b were detected by
ELISA in the supernatants obtained after 48 h stimulation. All cytokine values in the presence of Tc Muc were significantly lower than controls
(P#0.05). Results are the means 6SD of triplicate cultures of three different experiments.
doi:10.1371/journal.pone.0077568.g003

Cell Cycle Arrest of CD4 T Cells by T. cruzi Mucin
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Our results indicated a significant inhibition of CD4+ T cell

proliferative response in a dose-reponse manner by Tc Muc, with

a marked inhibition after 20 mg/mL (Figure 1a). However, in the

control culture, the CD4+ T cell population retained the ability to

respond to plate bound anti-CD3 mAb, indicating that these cells

were fully capable of transmitting activation signals, leading to cell

proliferation through the TCR/CD3 receptor (Figures 1a and b).

Similar results showing the inhibitory effect of Tc Muc on CD4+ T

cell activation were obtained upon stimulation by plastic-absorbed

anti-Thy1.1 mAb (Figure S1).

To determine whether the addition of IL-2 is able to overcome

the inhibitory effect of TcMuc, CD4+ T cells were stimulated with

plate bound anti-CD3 mAb and cultured for 72 hr in the presence

of TcMuc and recombinant IL-2 (rIL-2). In these conditions, rIL-2

could not prevent the responsiveness of CD4+ T cell to TCR-

mediated T cell activation induced by TcMuc (Figure 1b).

However, our results indicate that alterations in the patterns of

mucin O-glycosylation has a possible influence on the inhibitory

effect mediated by Tc Muc on CD4+ T cells, as this phenomenon

was not observed when murine naı̈ve CD4+ T cells were cultivated

under similar conditions with bovine submaxillary gland mucin

(Figure 1b). Furthermore, we showed that when restimulated with

anti-CD3, activated CD4+ T cells cultured in the presence of Tc

Muc was not able to respond to the polyclonal stimulus, indicating

that the effect of Tc mucin on T cell mitogen responses bypasses

the early receptor signaling of T cell activation (Figure 2).

Tc Muc Downmodulates Cytokine Expression
Our data showing that Tc Muc promotes unresponsiveness of

CD4+ T cells upon mitogen activation led us to investigate the

cytokine profile of these cells. To address this question, purified

CD4+ T cells isolated from naive mice were stimulated by plate-

bound anti-CD3 mAb in the presence or absence of Tc Muc for 2

days, then the supernatants were collected and tested for the

cytokines IFN-c, TNF-a, IL-2, IL-4, IL-10 and TGF-b. Our

results demonstrate that, at day 3, Tc mucin treatment of activated

cells resulted in a significant decrease in all the cytokines analysed

when compared to the anti-CD3 stimulated positive control

(Figure 3). The suppressive effect of Tc Muc on CD4+ T cell

activation and expansion in vitro is not correlated with any possible

effect of the mucin on the death induction of CD4+ T cells, since

viability was not significantly affected after 3 days in culture as

evaluated by MTT cell viability assay (Figure S2).

Inhibition of CD4+ T Cell Proliferation is Partially Reverted
upon Neuraminidase-treatment of T. cruzi mucin and is
Associated to Upregulation of p27Kip1

The sialic acid residues are incorporated into Tc Muc (Figure

S3 and S4) in a reaction catalyzed by the parasite trans-sialidase

[27–30]. This sialylation influences the effectiveness of the

inhibitory properties of Tc Muc on dendritic cell function through

the interaction with the sialic acid-binding Ig-like lectins that are

predominantly expressed on cells of the immune system [33,37].

We next investigated the role of terminal sialic acid in CD4+ T cell

activation. For this purpose, Tc Muc was subjected to treatment

with 0.2 U/mL of V. cholerae neuraminidase to remove the sialic

acid terminal residues. To this end, purified CD4+ T cells from

naı̈ve spleen were stimulated with plate-bound anti-CD3 for 72 hr,

in the presence or absence of increasing concentrations of native

or desialylated Tc Muc (10 and 20 mg/ml), and proliferation was

measured 72 h after stimulation as [3H]thymidine incorporation.

Our findings demonstrated that the inhibition of proliferation by

Tc Muc was partially reverted when T. cruzi mucin was

desialylated by previous treatment with neuraminidase, indicating

a possible role for the sialic acid-binding Ig-like lectins’ receptors in

the inhibitory effects on CD4+ T cells (Figure 4).

While several mechanisms are known to interfere with cell

proliferation, they act in different cell cycle phases. We decided to

analyze the effects of Tc Muc in specific cell cycle phases. Purified

CD4+ T cells from naı̈ve spleens were stimulated with plate bound

anti-CD3 in the presence or absence of native T. cruzi mucins

(20 mg/ml) for 72 hr and stained with the chromatin intercalating

dye propidium iodide (PI) after nuclease digestion for analysis of

the cell cycle by flow cytometry. Our data revealed 14% of CD4+

T cells in the M phase of the cell cycle when they were activated

with anti-CD3 in the presence of Tc Muc, as compared with 42%

of positive control cells activated with anti-CD3 only. This

remarkable decrease was partially reverted upon neuraminidase

treatment, as our findings indicate 33% of CD4+ T cells in M

phase of the cell cycle when the cells were treated with desialylated

Tc Muc during activation with anti-CD3 (Figure 5b). Further, an

inverse correlation was found with the population of cells in the

G1 phase, as we observed 45% of CD4+ T cells were in G1 phase

of the cell cycle when they were activated with anti-CD3 in the

presence of Tc Muc, as compared with 19% of positive control

cells activated with anti-CD3 only (P#0.05). Activation of CD4+ T

cells in the presence of desialylated Tc Muc yielded 33% of the

cells in G1 phase, showing a significant decrease (P#0.05) of the

cells in this phase as compared to the controls activated in the

presence of the native Tc Muc (Figure 5b). These results indicate

that Tc Muc inhibits cell proliferation by the induction of cell cycle

arrest in G1 phase.

We next investigated the effects of Tc Muc on G1 cell cycle

regulators, specifically cyclin D3 and the mitogen repressor

p27Kip1 [45–47]. To evaluate the Tc Muc inhibitory effect on T

lymphocyte activation, CD4+ T cells isolated from naive mice

were stimulated with plate bound anti-CD3 mAb in the presence

or absence of graded doses of native or desialylated Tc Muc. As

demonstrated in Figure 5, activated CD4+ T cells show a typical

profile of proliferating T cells, with upregulation of cyclin D3 and

down-regulation of p27Kip1 (Figure 5b). In contrast, decreased

Figure 4. Inhibition of CD4+ T cell proliferation is partially
recovered upon neuraminidase-treatment of T. cruzi mucin.
Purified CD4+ T cells from naı̈ve spleens were stimulated with plate
bound anti-CD3 for 72 hr, in the presence or absence of increasing
concentrations of native or desialylated Tc Muc (10 and 20 mg/mL).
Proliferation was measured 72 h after stimulation by [3H]thymidine
incorporation. *Differences between native or desialylated Tc Muc
treatment versus anti-CD3 stimulated positive controls are significant
(P#0.05). #The inhibition of proliferation by Tc Muc was partially
recovered when T. cruzi mucin was desialylated by previous treatment
with neuraminidase (P = 0.0023). Results are the means 6SE of triplicate
cultures. This experiment was repeated three times, with similar results
each time.
doi:10.1371/journal.pone.0077568.g004
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cyclin D3 protein levels were associated with impaired TCR/

CD3-triggered CD4+ T cell activation in the presence of Tc Muc

for 72 h. This result was correlated with elevated expression of cell

cycle repressor p27Kip1. Tc mucin did not affect the actin protein

levels, which persisted throughout the 72 h experiment period of

the T cells’ proliferation in response to anti-CD3 (Figure 5). Most

interestingly, when CD4+ T cells were treated with desialylated Tc

Muc during the CD3-activation protocol, we observed a reversion

of the inhibitory profile as demonstrated by the upregulation of

cyclin D3 and down-modulation of p27Kip1, a profile similar to

what is described for CD3-activated T cells (Figure 5b). Based on

our results, we postulated that Tc Muc might show potent

antiproliferative effects on CD4+ T cells, inducing G1 phase arrest,

by increasing the amount of p27Kip1 beyond a putative threshold.

Triggering of the Sialic Acid-binding Ig-like Lectin-E
Receptor (Siglec-E) Induce Supression of CD4+ T Cell

The interaction mediated by glycoconjugates expressed on

parasites and sialic acid-binding Ig-like lectin-E expressed on the

host cells may account for the effects in a complex and dynamic

situation at the interface between parasites and host cells. In the

present work, we investigated whether the Siglec-E could mediate

suppression of CD4+ T cells. To address this question, equal

numbers of purified CD4+ T cells isolated from naive mice were

stimulated by plastic-absorbed anti-CD3 mAbs in the presence or

absence of Tc Muc anti-Siglec-E (CD33) or isotype control

antibody. As we expected, CD4+ T cell population show the ability

to respond to plastic-coated anti-CD3 mAbs and this expansion

was abrogated when the cells were cultured in the presence of Tc

Muc. Most interestingly, when CD4+ T cells were co-cultured with

plastic-coated anti-CD3 mAb together with anti-CD33 but not

isotype control antibody, we observed a statistically significant

abrogation of the proliferative CD4+ T cell response (Figure 6).

Inhibition of in vivo Development of CD4+ T Cell
Responses in Trypanosoma cruzi Infection

To determine the in vivo effects of administration of Tc mucin,

we injected intraperitoneally BALB/c mice with chemically

induced metacyclic trypomastigotes from T. cruzi Dm28c strain

(26105). The data shown in Figure 7a indicate that control mice

infected with TCT developed a low blood parasitemia. In contrast,

infected mice treated with Tc mucin showed a precocious blood

parasitemia at day 13 post-infection, which further increased

(aproximately 3-fold) as the infection continued. The susceptibility

of the Tc treatment was correlated with augmented infiltration of

leucocytes in the heart at day 21 post-infection (Figure 7b–c).

Since the protective responses againt T. cruzi infection are

associated with the development of IFN-c dependent responses,

we set out to determine any difference in the levels of type-1

effector T cells. Recall assays upon polyclonal stimulation showed

that IFN-c production by splenic cells from Tc mucin-treated mice

was significantly diminished (over 50%) as compared to responses

elicited by experienced splenocytes isolated from infected control

mice at 21 d.p.i. (Figure 8a). These findings were also correlated

with reduced levels of TNF-a production by splenic cells from Tc

mucin-treated mice under polyclonal stimulation, indicating that

type 1 protective responses could be affected in those mice

(Figure 8b). Since our findings demonstrated that the Trypanosoma

cruzi sialoglycoproteins can modulate the splenic cytokine

response, a matter that could be related to the enhanced parasite

virulence seen in the in vivo administration of mice with Tc mucin,

we next tested the hypothesis that the infection in Tc Muc-treated

mice may have altered the T cell responses, thus inducing a loss of

protection of parasitic load and increased signs of disease. Since

the protective responses againt T. cruzi infection are associated

with the development of IFN-c dependent responses, we set out to

determine whether the Trypanosoma cruzi sialoglycoproteins can

modulate the T cell activation profile, a matter that could be

related to the enhanced parasite virulence seen in the in vivo

administration of mice with Tc mucin. Using multiparameter

FACS analysis we assessed the expression of the major cell surface

markers that are known to undergo changes after in vivo activation

of T cells. We found that both CD4+ and CD8+ T cells from T.

cruzi infected animals treated with Tc mucin express the CD69

marker at levels comparable to the infected controls (Figures 8c–d).

However, recall assays upon polyclonal stimulation showed a

negligible reduction of frequency of both IFN-c secreting CD4+ T

cells and CD8+ T cells from Tc mucin-treated mice in comparison

with the control infected group, indicating that type 1 protective

Figure 5. Tc Muc induced G1 cell cycle arrest of CD4+ T cells correlates with upregulation of Cyclin D3 and downregulation of
p27kip1. Purified CD4+ T cells from naı̈ve spleens were stimulated with plate bound anti-CD3 in the presence or absence of native or desialylated T.
cruzi mucins (20 mg/ml). After 3 days, cell cycle analysis (A) was evaluated by flow cytometry based on propidium iodide (PI) intercalation into the
cellular chromatin (for details see Materials and methods). The histograms represent the fluorescence intensity of PI for the indicated groups. (B) Flow
cytometry cell cycle analysis revealed that the population of cells in the S and G2/M phase was remarkably decreased by Tc muc (P#0.05). For
determination of the cell cycle checkpoint regulators, cells were harvested after 3 days and whole-cell lysates were prepared for immunoblotting with
specific atibodies against cyclin D3, p27kip1, and actin antibodies used to assure uniform loading (bottom row). Optical densitometry of the western
blots used NIH Image software, where cyclin D3 and p27kip1 expression was normalized with the actin expression. (C) Expression of cyclin D3 was
increased in anti-CD3 activated CD4+ T cells as compared to controls (P#0.05); this increase was not observed when stimulation was done in the
presence of Tc Muc (P = 0.0383); *the sialylation abolished the property of Tc Muc to induce downmodulation of cyclin D3 expression (P = 0.0067).
Expression of p27kip1 was decreased in anti-CD3 activated CD4+ T cells as compared to controls (P#0.05); this decrease was not observed when
stimulation was done in the presence of Tc Muc (P#0.05); # the sialylation abolished the property of Tc Muc to induce upregulation of p27kip1

expression (P#0.05). These data are representative of two independent experiments.
doi:10.1371/journal.pone.0077568.g005

Figure 6. Triggering of the Tc Muc ligand Siglect E (CD33)
induces suppression of CD4+ T cell proliferation in vitro. Purified
CD4+ T cells from naı̈ve spleens were stimulated with plate bound anti-
CD3 for 72 hr, in the presence or absence of anti-CD33 or isotype
control antibody (40 mg/mL). Proliferation was measured 72 h after
stimulation by [3H]thymidine incorporation. *Differences between Tc
mucin or anti-CD33 treatment versus anti-CD3 stimulated positive
control are significant (P#0.05).
doi:10.1371/journal.pone.0077568.g006
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responses could be affected in those mice (Figures 8e–f).

Collectively, these results suggest that the inhibitory role of Tc

mucin has an impact on the control mechanisms affecting the

host’s protective cellular responses during T. cruzi infection.

Discussion

The relative strengths of the host immune system and pathogen

virulence influence the lifespan of the infection, and pathogens

have evolved many strategies to evade the immune system of the

host and establish chronic infections. T. cruzi provides a good

example of such a strategy: its surface is covered by sialic acid

residues and it produces a unique enzyme, the trans-sialidase that

transfers sialic acid from host glycoconjugates to mucin-like

molecules on its surface [27–30]. In vitro studies have shown that

these mucins are the most abundant glycoproteins on the surface

of the parasite and that they play a key role in how the parasite

invades the host and avoids its immune system [14–16], [21–23].

The sialylated mucins mask parasite antigenic determinants, so

protecting the parasite from host attack by, for example,

antigalactosyl antibodies and complement factor B [23], [48–50].

Interestingly, recent studies have demonstrated that in addition

to masking parasite antigens, the T. cruzi surface sialic acid is also

responsible for direct interaction with the inhibitory host cell

receptor, Siglec-E [33,37]. Moreover, ligation of Siglec-E on the

DC surface with cross-linking antibodies reduces the capacity of T

cells to be activated and proliferate [33]. Furthermore, it has been

shown that binding of Tc Muc to Siglec-9 results in a dampening

of cell function and is related to the production of IL-10 [33].

Mucins derived from other organisms and species, such as

mammals, can also inhibit T cell proliferative responses. In recent

years, it has also been shown that the inefficient host immune

response to cancer antigens is at least in part due to the presence of

carcinoma-associated mucins [51–55].

In the present study, we have presented evidence that Tc mucin

is able to inhibit CD4+ T cell proliferation. The supression of T

cell responses has been shown to be a result of the diminished

production of IL-2 and its receptor CD25 [14–16]. In fact, we

found that exposure to Tc Muc significantly diminished the level

of IL-2 secretion in response to TCR activation. Moreover, our

data show that the T cell anergy induced by Tc mucin was not

reversed by exogenous IL-2, indicating that the IL-2 pathway is

impared when CD4+ T cells are activated in the presence of Tc

Muc. To further analyze the effects of Tc Muc treatment, we

tested whether cytokine secretion was affected. According to our

findings, Tc Muc was able to inhibit the production of IFN-c,

TNF-a, IL-2, IL-4, IL-10 and TGF-b cytokines by TCR-

stimulated CD4+ T cells. This inhibitory property of Tc Muc

may affect the course of the parasite-host interaction during the

acquisition of cell-mediated adaptive immune responses, therefore

damping protective host responses and so establishing persistent

infections.

Our findings indicating that Tc Muc has such a strong

inhibitory effect on T lymphocytes is in agreement with

experiments showing that the T. cruzi–associated mucins have an

immunosuppressive effect [14–16]. It is also consistent with clinical

observations that host animals acutely infected with T. cruzi

develop symptoms of immunosuppression, including functional

alterations of lymphocytes and other cells involved in immune

responses [56–64]. The sialylated ligands are strong candidates to

interfere with host immunological responses, both innate and

adaptive [38]. In this connection, it has been suggested that

interactions involving these ligands alter leucocyte function and

thereby facilitate the establishment of infection. It was shown

Figure 7. T. cruzi infected mice develop a higher parasitemia
and reduced heart inflammatory infiltration when treated with
Tc Muc. BALB/c mice were infected via i.p. with 26105 chemically
induced metacyclic forms of Trypanosoma cruzi Dm28c clone. The mice
received i.p. injections of Tc Muc (20 mg/mouse) or PBS on alternate
days starting at day of infection. (A) The parasitemia for each mouse
group was represented as the mean 6 the standard deviation (SD)
(n = 5). The parasitemia of mice from the Tc Muc treated group was
significantly higther than untreated control mice (P#0.01). (B and C)
Inflammatory infiltration is diminished in the heart by treatment with Tc
Muc. Twenty four days after infection cardiac fragments were extracted
from Trypanozoma cruzi infected mice (B, 1–2) untreated or (B, 3–4)
treated with Tc Muc. Slides were stained with haematoxylin-eosin and
cellular nuclei from inflammatory and resident cells counted using Leica
QWin program in sections with different magnifications, 406 (B, left
panels) and 1006 (B, right panels). (C) Inflammatory indexes were
determined by counting inflammatory foci (average counts per field).
Data were obtained from survivors (2 independent experiments) and
shown as mean/standard error of the mean. Asterisk (P#0.05) means
statistical difference between infected mice treated with Tc mucin
versus infection control group.
doi:10.1371/journal.pone.0077568.g007

Cell Cycle Arrest of CD4 T Cells by T. cruzi Mucin

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e77568



Figure 8. Splenocytes from T. cruzi infected mice treated with Tc mucin produce low levels of IFN-c. BALB/c mice were infected i.p. with
26105 chemically induced metacyclic forms of Trypanosoma cruzi Dm28c clone. The mice received i.p. injections of Tc Muc (20 mg/mouse) or PBS on
alternate days starting at day of infection. Non-infected mice were used as control group. Twenty four days after infection, purified splenocytes were
stimulated with PMA and ionomycin, as described in the Methods section, and supernatants were harvested at 24 h for determination of (A) IFN-c
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recently that the interaction of Siglec-9 with sialylated ligands

produced by Streptococcus reduced neutrophil responses and

increased survival of the bacteria [65]. We have used anti-Siglec

E antibodies to examine whether the cross-linking of surface

Siglec-E inhibits T cell proliferation. We found that mab

concentrations of up to 5 mg/ml did significantly inhibit the

proliferation of stimulated T cells.

In the light of this finding, we propose that the T cell surface

mucin receptor Siglec-E is implicated in the inhibition of T cell

proliferation. Importantly, our results showing induction of G1 cell

cycle arrest associated with up-regulation of the cyclin D inhibitor

p27 on activated CD4+ T cells further support a modulatory role

of sialylated Tc Muc in signal transduction during T cell

activation. The p27 is a phosphatase regulator that appears to

participate in the G1 cell cycle arrest checkpoint [45–47]. The

observation that desialylated Tc Muc loses its anti-mitogenic effect

strengthens this notion. As the desialylated Tc Muc still contain a

high content of O-linked oligosaccharides it is possible that its

remaining T cell inhibitory effects after neuraminidase treatment

could be due to the binding of O-glycan moieties to other host

lectin receptors. Importantly, we found that exposure of mice to

Tc Muc when they were being infected with Trypanosoma cruzi

increased their susceptibility to infection as shown by increased

parasitemia and heart damage at 21 dpi. At the same time we

noted a lower frequency of IFN-c producing CD4+ and CD8+ T

cell responses correlated with decreased levels of both splenic IFN-

c and TNF-a cytokines in mice treated with Tc mucin.

In conclusion, we have accumulated evidence that T. cruzi

mucins are involved in T cell responses by affecting the

proliferation of T cells. It is likely that Siglec-E is involved in

this effect, as we showed that activation of this receptor also

inhibits the T cell proliferative responses. Further studies are

required to elucidate the intricate intracellular mechanisms which

link T. cruzi mucins with other T cell surface and intracellular

regulators. Although cross-linking of Siglecs by antibodies is a

useful tool for dissecting the function of these molecules, use of

Siglec-E deficient mice in future could permit more detailed

insight into the consequences of T. cruzi infection. This could help

us to understand how the T. cruzi derived-mucin glycoconjugates

influence immune responses.

Supporting Information

Figure S1 Tc mucin inhibits Thy-1 triggered CD4+ T cell
proliferation. Purified CD4+ T cells from naı̈ve spleens were

stimulated with plate bound anti-CD3 for 72 hr, in the presence or

absence of 50 mg/ml Tc Muc. Proliferation was measured 72 h

after stimulation by [3H]thymidine incorporation. *Differences

between Tc Muc versus anti-Thy1.1 treatment are significant

(P#0.0001). The inhibition of proliferation by Tc Muc was not

observed when control mucin derived from bovine submaxillary

glands was used (50 mg/ml). Results are the means 6SD of

triplicate cultures of three different experiments.

(TIF)

Figure S2 Measurement of T cell viability in the
presence of Tc muc in a dose-dependent manner. Total

splenic T cells seeded at 100 mL/well in a flat-bottom 96-well plate

(36105 cells/well) were cultured in DMEM supplemented with

10% FBS in the presence of various doses of Tc Muc. Cell viability

was measured by adding 3-[4,5-dimethylthia-zol-2-yl]-2,5-diphe-

nyltetrazolium bromide (MTT) assay at a 1/10 volume of the total

cell culture volume at 18 hr of culture. After incubating for 4

hours, 0.01 N HCI with 10% sodium dodecyl sulfate was added

(100 mL/well) to dissolve the formazan crystals formed by live

cells, and the absorption of each well was measured by an enzyme-

linked immunosorbent assay plate reader (Molecular Devices Co.,

Sunnyvale, CA, USA) at 540 nm. Values represent the mean 6

SD absorbance of triplicate cultures.

(TIF)

Figure S3 Carbohydrate analysis and correlation spec-
troscopy of the T. cruzi Dm28c strain sialoglycopro-
teins. Intact siloglycoproteins were methanolized with 0.5 M HCl

in methanol for 18 h at 80uC, neutralized with silver carbonate

and re-N-acetylated with acetic anhydride. The dried residue was

trimethylsilylated by addition of bis(trimethylsilyl)-trifluoro-acet-

amide/pyridine (1:1 v/v). The products were analyzed by gas-

liquid chromatography (GC) on a DB-1 fused silica column

(30 m60.25 mm i.d.) using hydrogen as the carrier gas. The

column temperature was programmed from 120 to 240uC at 2uC
min21. (A) Monosacccharide analysis by GC of the trimethylsi-

lylated methylglycosides demonstrating the presence of (1) Man;

(2) Gal; (3) GlcNAc and (4) Neu5Ac in a molar ratio of 3:1.5:1:0.5.

Electron impact-mass spectrum of per-O-trimethylsilylated

Neu5Ac (4). Insert: 15% SDS–PAGE of siloglycoproteins from

T. cruzi Dm28c strain and stained with periodic acid/Schiff’s

reagents for carbohydrate detection. (B) Partial 600 MHz

TOCSY spectra of sialoglycoproteins purified from T. cruzi

Dm28c strain. The spectra were obtained at 25uC, using an 80-ms

mixing time. The spectral regions are numbered as follows: 1,

GlcNAcb1RNAsn H-1 trace; 2, cross-peaks arising from b-Galp

residues attached to the GlcNAca1ROThr; 3, cross-peaks arising

from correlations between the Neu5Ac H-3eq and ring protons.

(TIF)

Figure S4 Effect of neuraminidase-treatment on T.
cruzi mucin. Western blot following non-reducing SDS gel

electrophoresis showing the effect of incubation of Tc Muc with

0.2 U/mL of V. cholerae neuraminidase on Maackia amurensis

(MAA) binding. MAA binding to Tc Muc corroborates the

presence of sialic acid–2R3Gal (Line A). Neuraminidase treat-

ment of Tc Muc abrogated staining by MAA (Line B). Protein load

to the gel was detected by silver staining (Bottom line). Purified Tc

Muc (1 mg) was electrophoresed on 10% SDS-PAGE gels and

blotted onto nitrocellulose membranes. The membrane was

blocked in a blocking solution (150 mM NaCl, 10 mM Tris,

pH 7.5, 10% Tween 20) for 2 h at room temperature. The

membranes were incubated for 1 h with 10 mg/ml biotin-labeled

Maackia amurensis lectin (EY Laboratory). Membrane was

washed five times and incubated with a 1:2000 dilution of

anti-biotin horseradish peroxidase conjugate (Cell Signaling

and (B) TNFa by ELISA. The y-axis represents the levels of cytokines, detected by a specific ELISA assay, expressed in ng/ml. Asterisks represent
statistical significance (p,0.05) as determined by the Student t test. To access the T cell activation profile CD69 expression on both CD4+ (D) and
CD8+ (E) T cells were analysed by FACS analysis; the frequency of IFN-c producing T cells from splenocytes polyclonally stimulated with PMA/
ionomycin, and the percentages of both IFN-c producing CD4+ T cells (F) and CD8+ T cells (G), were determined by intracellular cytokine FACS-
staining. #Infected group are statistically different from non-infected control mice (P#0.05). Asterisks represent statistical differences between Tc
mucin treated versus non-treated mice from infected groups as determined by the Student t test (P#0.05). All experiments were repeated at least 3
times.
doi:10.1371/journal.pone.0077568.g008
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Technology) for 60 min, and the reaction was developed with

SuperSignal West Pico chemiluminescence reagents (Pierce).

(TIF)
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Trypanosoma cruzi infection modulates in vivo expression of major histocom-

patibility complex class II molecules on antigen-presenting cells and T-cell

stimulatory activity of dendritic cells in a strain-dependent manner. Infect

Immun 71: 1194–9.
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