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Abstract

While it is known that some individuals can effectively perform two tasks simultaneously, other individuals cannot.
How the brain deals with performing simultaneous tasks remains unclear. In the present study, we aimed to assess
which brain areas corresponded to various phenomena in task performance. Nineteen subjects were requested to
sequentially perform three blocks of tasks, including two unimodal tasks and one bimodal task. The unimodal tasks
measured either visual feature binding or auditory pitch comparison, while the bimodal task required performance of
the two tasks simultaneously. The functional magnetic resonance imaging (fMRI) results are compatible with previous
studies showing that distinct brain areas, such as the visual cortices, frontal eye field (FEF), lateral parietal lobe
(BA7), and medial and inferior frontal lobe, are involved in processing of visual unimodal tasks. In addition, the
temporal lobes and Brodmann area 43 (BA43) were involved in processing of auditory unimodal tasks. These results
lend support to concepts of modality-specific attention. Compared to the unimodal tasks, bimodal tasks required
activation of additional brain areas. Furthermore, while deactivated brain areas were related to good performance in
the bimodal task, these areas were not deactivated where the subject performed well in only one of the two
simultaneous tasks. These results indicate that efficient information processing does not require some brain areas to
be overly active; rather, the specific brain areas need to be relatively deactivated to remain alert and perform well on
two tasks simultaneously. Meanwhile, it can also offer a neural basis for biofeedback in training courses, such as
courses in how to perform multiple tasks simultaneously.
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Introduction

While some people excel at performing two tasks
simultaneously, others can only effectively perform tasks
sequentially. Past research has demonstrated that the
performance of multiple tasks is not hindered when both tasks
are executed by different modalities, such as tasks involving
vision and audition [1-3]. These studies suggested the
presence of multiple processors for each modality [4]. This
leads to the question of whether the source of processors for
the different modalities is the same or whether the processing
resource is modality specific. Some studies have suggested
that each modality contains its own processing resources (i.e.,
that the resources are modality specific) which, to some extent,
are independent from those of other modalities [5-13]. On the
other hand, the observation that people cannot perform well on
bimodal tasks is also supported by the evidence that
processing resources are shared among modalities (i.e.,

modality independent), and therefore, performance of bimodal/
dual tasks depends on interactions between the processing for
each of the tasks [13-18].

The processing dependency in the two mechanisms involved
in bimodal divided attentional tasks can be elucidated through
the different predictions in our imaging study. When two tasks
with separated streams of modality processing are adopted,
such as a visual “what” task and a auditory “where” task
[19-21], which have been suggested to have little cross-modal
interaction [22], the predictions for the two mechanisms will be
different. If modality specific processing exists, distinct brain
areas, including stimuli-related processors, should be found for
each unimodal task. On the other hand, if modality independent
processing exists, then shared and common brain areas should
be found for each unimodal task. Although the current research
paradigm in the literature is to manipulate the task demands of
one modality to examine the effect on the other [16,23-25], the
manipulation of task demands may risk exceeding the limit of
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one modality’s processing resources, causing its interaction
with the other modality. It may become a confounding variable
to differentiate the two concepts, because total processing
resources are limited regardless of whether they are modality
specific or modality independent. As a result, the present study
did not aim to manipulate the task demands of modalities.

Although past research showed activation, for the divided
attention tasks, in the prefrontal areas [26-28], anterior
cingulate cortex [27], and the inferior parietal lobes [28], little
agreement has been reached on which brain areas are
required to outperform in bimodal tasks, especially compared
to those who performed well on only one of the bimodal tasks.
Therefore, the present study aims to answer the question by
using functional magnetic resonance imaging (fMRI). The study
is important not only to determine the possibility of deciphering
the neural basis of one intriguing cognitive process of human
minds, but also because it shows applicability to educational
training, such as instruction in how to excel at two tasks
simultaneously.

Methods

Subjects
Twenty-four healthy subjects (11 males and 13 females)

between 19 and 28 years of age (mean 21.8, SD 2.4)
participated in this study. All subjects had normal or corrected
to normal vision and were right-handed. Written informed
consent was obtained from all subjects in accordance with the
Declaration of Helsinki and ethical consent for performing the
fMRI study was granted by the Ethics Committee of the
Department of Psychology, National Chung Cheng University,
Taiwan (ethical code: 098031604).

Experimental setup and stimuli
The experiment contained three tasks, including visual,

auditory and bimodal tasks (Figure 1). The visual task was
adopted from Chiang et al. [29], consisting of either 50 green
and 50 red dots or 50 yellow and 50 blue dots on a black
background. Half of the dots of each color moved in opposite
directions along either a horizontal or vertical axis at a speed of
4.30°/s. These dots moved at variable angles within a range of
0.14° of visual angle perpendicular to the original direction of
movement. The other half of the dots of each color flashed at
random locations in order to increase the task difficulty. Before
testing, equiluminance was separately established for each
subject by flicker photometry [30]. The task required subjects to
identify which color was moving and in what direction by using
a right-hand keypad to answer one of two questions that
randomly appeared after the stimulus presentation. One
question asked, “Which color of dots was moving direction?”
(The word direction was replaced by up, down, left or right, as
appropriate.) The other question asked, “In which direction
were the color dots moving?” (The word color was here
replaced by green, red, yellow or blue, as appropriate.)
Furthermore, the questions were relevant to the stimuli. For
instance, if the subjects were shown red and green dots, they
were not asked about the direction of blue or yellow dots, only
that of red or green dots. If they were shown dots moving

horizontally, they were not asked about the color of dots
moving vertically. The combination of stimuli and related
questions were balanced in a random sequence such that each
type of stimulus was followed by each of the possible questions
in turn. Each subject’s response to the visual stimuli was
categorized as either correct or incorrect based on its
objectively assessed accuracy.

The auditory task consisted of two pure tones, each
randomly presented to one ear for 500 ms. One tone was fixed
at the piano key f4 (349.2 Hz), while the other was randomly
selected from between the piano keys g4 (392.0 Hz) and b6
(1046.5 Hz). The intensity of the two tones was adjusted to be
subjectively equal in loudness for individual subjects (see
procedure section below for details). The subject was then
instructed to indicate which ear received a lower pitch by
pressing a left-hand keypad. The response was categorized as
either correct or incorrect based on its objectively assessed
accuracy.

In the bimodal divided attentional task, the visual and
auditory stimuli were presented at the same time to subjects.
The subject was instructed to complete both tasks as
accurately as possible, regardless of the order of response.
The visual stimuli were constructed using the Cogent Graphics
toolbox (available at www.vislab.ucl.ac.uk) and the auditory
stimuli were constructed using MATLAB (MathWorks Inc.).
Both sets of stimuli were executed in MATLAB on a PC
computer and presented to functional magnetic resonance
imaging (fMRI) compatible goggles (14.25° x 10.71° of visual
angles in width and height, VisuaStimXGA, Resonance
Technology Inc., Northridge, California, USA).

fMRI scanning methods
All functional scanning was performed in a 3T Bruker 30/90

Medspec fMRI scanner fitted with a standard birdcage head
coil (BrukerBioSpin MRI GmbH, Ettlingen, Germany). An echo
planar imaging (EPI) sequence was applied for functional
scans, measuring blood oxygen level dependent (BOLD)
signals (echo time, TE = 30 ms, repeat time, TR = 3s). Each
brain image was acquired in an interleaved sequence from the
bottom of the brain to the top comprising 35 axial slices, each
of which was 3.75 mm thick with no gap between the slices.
Images were acquired at a resolution of 3.75 × 3.75 × 3.75 mm
and covered nearly the entire brain. The first seven volumes of
each scanning session were discarded to allow for T1
equilibrium effects. T1 weighted, axial anatomical scanning
was performed after functional scanning to obtain high-
resolution structural images with the same scanning sequence
as that of EPI. Each volume comprised 35 axial slices, at a
resolution of 0.9375 × 0.9375 × 3.75 mm (TE = 39.4 ms, TR =
614.2 ms, flip angle 90, field of view [FOV] = 240 mm).

Procedure
Pretests were first conducted with the subjects outside the

scanner in order to gather appropriate parameters for the
auditory and visual tasks, such as loudness adjustment and the
duration of visual stimuli. The loudness of auditory stimuli was
adjusted using a method in which the subject was first
presented with two pure tones, each in on one ear randomly.

Outperformance in Bimodal tasks
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Figure 1.  Schematic diagram depicting the study task.  a) The unimodal visual stimuli consisting of red and green dots moving
either vertically or horizontally were presented for a specific duration. A question then appeared to which the subject responded
using the keypad on the right hand and the response immediately showed on the relevant grey bar. The examples shown here are
questions related to the moving direction of the red dots. b) The unimodal auditory stimuli involved the presentation of two different
pitches on the left and right ear for 500 ms and icons were shown on the screen. After the presentation, a black screen appeared to
which the subject responded using the keypad on the left hand in order to indicate which ear was presented with the lower
frequency. The response immediately showed on the icon at the relevant location. c) The bimodal task presented the visual and
auditory stimuli at the same time. After presentation of the stimuli, the subject needed to respond to the subsequent visual question
with the keypad on the right hand and indicate the lower frequency with the keypad on the left hand. The sequences of visual and
auditory responses were irrelevant. In the examples illustrated here, the subjects indicated that the right ear heard the lower
frequency of tones and the red or green dots were moving to the left.
doi: 10.1371/journal.pone.0077408.g001
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One of the two pure tones was always fixed as the piano key f4
(349.2 Hz). The other tone was randomly selected among the
piano keys from g4 (392.0 Hz) to b6 (1046.5 Hz). The subject
adjusted the loudness of the tone to match that of f4 by
decreasing or increasing the volume of the tone. Once the
subject felt that the loudness of the two tones sounded equal,
the same method was then applied to the next randomly
selected tone between g4 and b6. After completing the
adjustment of all of the tones, the subjects were tested
behaviorally in 32 trials in which each trial involved random
presentation of a tone from g4 to b6 and a fixed tone, f4, to
both ears. The arrangement of tones and ears (i.e., which tone
was presented to which ear) was randomly assigned by each
trial but the total number of tones f4 presented to the right ear
was 16 by the end of the trials. If the subject failed to
discriminate with 68% accuracy which ear received the tone
with the lower pitch, then the loudness adjustment procedure
would start again. If the subject still failed the accuracy
criterion, then he or she would not be qualified to continue
participating in the experiment. The 68% accuracy requirement
was based on the statistical reasoning that the minimum
probability of obtaining a value significantly higher than 50% is
0.6732 when the α value is set to 0.05.

Next, the duration of visual stimulus presentation for each
subject was determined using the method of limits. The subject
was first provided with the longest duration of stimulus
presentation with which to perform feature binding, namely two
seconds. This was to ensure that the subject could respond
correctly in five consecutive trials within this duration. The
subject was then provided with successively decreasing
durations of stimulus presentation with each duration reduced
by half until the subject reported that he or she could no longer
respond correctly in three out of the last five consecutive trials.
Next, the subject was provided with the shortest duration of
stimulus presentation with which to perform feature binding,
namely 32 ms, to ensure that the subject could not respond
correctly in five consecutive trials within this duration. The
subject was then provided with increasing durations of stimulus
presentation, each successively increasing by twofold until the
subject reported that he or she could respond correctly in four
out of five consecutive trials. The descending and ascending
order of duration was repeated three times per subject, while
varying the longest and shortest durations. After completion of
this process, a constant duration was chosen and tested for
one block of 32 trials to ensure that the subject could identify
the visual stimulus correctly in at least 68% of the
presentations. If a subject failed to meet the performance
criteria, the stimulus duration was changed and testing was
repeated. If the subject still failed the accuracy criterion, then
he or she would not be qualified to continue participating in the
experiment. The optimal visual stimulus duration among the
subjects ranged from 66.7 ms to 800.16 ms (mean = 199.16
ms, SD = 179.8 ms).

After the stimulus parameters were appropriately chosen, the
subject was sent into the fMRI scanner to start formal
experiments. The fMRI scanning consisted of four sessions of
40 trials including eight randomly included control stimuli. The
first session consisted of a visual unimodal task and the

second session was an auditory unimodal task. The third and
fourth sessions were bimodal tasks. In each trial of a visual
unimodal task, the visual stimulus was presented alone for a
chosen duration and the headphones were silent. The visual
stimulus subsequently disappeared and a question appeared at
the bottom of the screen for a six-second period (equals two
times of TR = 3 sec), during which the subject indicated his or
her response with a right-hand keypad. The next trial
automatically began after the six seconds had passed. The
control stimulus for the visual task was a white cross presented
at the center of the screen for the same duration as the visual
stimuli, followed by grey bars without questions. Subjects did
not need to respond to the control stimulus. The second
session was the auditory unimodal task, beginning with the
presentation of a black screen (i.e., no visual stimuli) and two
tones simultaneously, one in each ear, for 500 ms, as well as
two white speaker icons on the left and right side of the screen.
A black screen was then presented for six seconds and the
subject indicated with a left-hand keypad which ear received
the tone with the lower pitch. A corresponding speaker icon
was shown on the screen when subjects chose their
responses. The next trial automatically began after six
seconds. The control stimulus for the auditory task was white
noise presented to both ears with the same loudness as the f4
tone.

The third and fourth sessions of fMRI scanning each
consisted of a bimodal task. These tasks presented visual and
auditory stimuli together. After that, the visual question
appeared on the screen for a six-second period during which
the subjects indicated their responses to both visual and
auditory questions by pressing the right- and left-hand keypad,
respectively. The next trial automatically began after six
seconds had passed. The control stimulus for the bimodal task
was a combination of visual and auditory control tasks, i.e., a
white cross at the center and white noise to both ears.

fMRI data analysis
The fMRI data were analyzed only when the behavioral data

met the criteria of accurate performance on more than 68% of
the unimodal tasks. Those subjects whose behavioral data did
not meet the criteria for either visual or auditory tasks were
excluded from the study (5 out of the 24 subjects). Good
performance in this study meant subjects’ performance was
over 68% in accuracy. In the unimodal tasks, good
performance formed a kind of baseline which allowed us to
examine the change in performance during the bimodal task.

The fMRI data were initially preprocessed using SPM8
software (Wellcome Department of Imaging Neuroscience,
London, UK, http://www.fil.ion.ucl.ac.uk/spm) in which each
image was first realigned to the average of all volumes
obtained during the fMRI scanning and coregistered to each
subject’s structural image. The images were then spatially
normalized to the canonical template provided by SPM8
software. In addition, the images were spatially smoothed with
a Gaussian kernel of 8 mm full width at half maximum (FWHM).
The preprocessed data were then subjected to first level
analysis using a voxelwise general linear model (GLM). The
design matrix of the first level analysis consisted of four
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sessions of regressors. The first session consisted of the onset
time of correct, incorrect and control trials of the visual
unimodal task. The second session consisted of the onset time
of correct, incorrect and control trials of the auditory unimodal
task. The third and fourth sessions consisted of five regressors
for the onset time of the combined performance on the dual
tasks, including the trials with correct responses to visual and
auditory tasks, the trials with correct visual and incorrect
auditory responses, the trials with correct auditory and incorrect
visual responses, the trials with incorrect responses on both
tasks, and the control trials. Each session also contained
motion correction parameters which were treated as effects of
noninterest. Appropriate regressors were convolved with the
default SPM hemodynamic response function (HRF) with two
additional derivatives of time and spatial dispersion.

Restricted maximum likelihood (ReML) inference was used
to estimate the parameters of the model. The estimated
parameters were applied to various contrasts of interest that
were then applied to second level analysis (i.e., between
subjects). We used a one factor analysis of variance (ANOVA)
at three levels (i.e., canonical, time derivative and spatial
dispersion) with classical inference (ReML) estimation. The
final outcome of these analyses was a group analysis resulting
from the pooling of data across subjects. The statistical results
were based on the uncorrected p value (p = 0.001) and used to
choose clusters (voxel number ≥ 4 in cluster) that passed the
criterion of multiple comparisons with a familywise error (FWE)
corrected p value of 0.05 at the cluster level. The coordinates
of all activation sites were based on the reference brain atlas
provided by the Montreal Neurological Institute. The MarsBaR
toolbox (http://sourceforge.net/projects/marsbar/files/) was
used to create masks of the visual and auditory tasks as well
as the region of interest (ROI) analysis of contrasts in the
bimodal tasks. The selection of ROIs were based on the
functional contrasts of unimodal and bimodal tasks. The
imaging results were illustrated with the xjView toolbox (http://
www.alivelearn.net/xjview).

Results

Table 1 shows a summary of behavioral results for
performance on the unimodal and bimodal tasks. The mean
accuracy for unimodal tasks was significantly higher than
chance level (t18 = 13.54 and 13.87 for visual and auditory
tasks respectively, p <0.001). Variations in duration did not
affect performance because the accuracy was kept at the same
level among subjects. The results were used as a baseline for
the subjects who could perform single tasks well. During the
bimodal tasks, each subject had two sessions of the bimodal
task, which resulted in 36 sessions (degrees of freedom) for
analysis. The result of each session was viewed as an
independent subject because subjects’ performance in the two
sessions were not identical (see Table 2). For instance, some
subjects performed well in one modality in one session but
performed well or badly in both modalities in the other session.
Another example is that some subjects performed well in one
modality in the first session and in the other modality in the
next session. The results presented here were based on the

performance in each session. Some subjects performed well in
one modality in at least one session - eight subjects for ‘visual
good’ and nine for ‘auditory good’; e.g., mean 10.1 trials for
visual-good responses, SD = 2.6, accuracy = 0.73, SD = 0.07,
t7 = 13.54, p < 0.001, compared to 0.5 in accuracy) - but poorly
in another; e.g., mean 4.7 trials for auditory-bad responses, SD
= 2.4, accuracy = 0.52, SD = 0.07, t7 = 0.92, p = 0.3896. In
contrast, 13 participants in the bimodal task, in at least one
session, performed well in both visual and auditory modalities
(mean trial number = 17.4, SD = 1.6, accuracy = 0.71, SD =
0.08, t14 = 13.54, p < 0.001, compared to 0.5 in accuracy).

Subjects perform two sessions in the experiment and as a
result, each row has at most two “x”. Each “x” indicates what
good performance was done by subjects in one session, either
in one modality (visual or auditory) or in both modalities. “xx”
indicates the good performance in both sessions. Some
subjects have only one “x” because their performance in one
session reaches the criteria of good performance (see details
in the Methods) but fails in the other session.

Imaging results are shown in Table 3 for detailed statistics
and Figure 2 for illustration. Compared with the control
condition, the visual unimodal tasks (including both the correct
and incorrect trials) resulted in activation of the visual cortices,
the lateral parietal lobe, the medial frontal lobe, frontal eye field
(FEF), and inferior frontal lobe (all p < 0.05 with FWE
correction). Imaging results of the auditory unimodal task
(including both the correct and incorrect trials), compared to the
control conditions, showed a significantly activated auditory
cortex including BA43 compared to the rest condition (p < 0.05
with FWE correction).

In order to examine whether additional brain areas were
recruited during performance of the bimodal task compared to
the average of the unimodal tasks, a group of 10 brain areas
(12 clusters) were formed as a mask (i.e., the visual and

Table 1. The mean accuracy and the average trial numbers
of task performance.

Tasks Mean ACC (SD)
Mean Trial Numbers
(SD)

 Visual Auditory Visual Auditory

Visual task
0.7432*
(0.0762) -- 32 (--) --

Auditory task --
0.7284*
(0.0699) -- 32 (--)

Bimodal
tasks Both good

0.7101*
(0.0503)

0.7467*
(0.0740) 17.4 (1.6) 17.4 (1.6)

 Visual good
0.7275*
(0.0748)

0.5225
(0.0694)

10.1 (2.6) 4.7 (2.4)

 
Auditory
good

0.5533
(0.0444)

0.7667*
(0.0620)

11.3 (1.8) 4.6 (1.7)

The subject number of ‘Both good’, ‘Visual good‘ and ‘Auditory good‘ in the
bimodal task was 15, 8 and 9, respectively. ‘*’ indicates statistical significance, p <
0.001, compared to 0.5. ACC = accuracy. SD = standard deviation of mean
accuracy or trial numbers. ‘--’ indicates not applicable to the joint conditions.
doi: 10.1371/journal.pone.0077408.t001
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auditory tasks in Table 3). The 10 brain areas were selected
from the FWE corrected p value < 0.08 in which the six
mentioned brain areas mentioned above were also included.
The reason we chose voxels of p < 0.08 to form the mask was
to increase the statistical power (i.e., 1 - ®) and to avoid
missing some voxels that truly belonged to the processing sites
of visual and auditory information. Imaging results contrasting
the bimodal task (including both the correct and incorrect trials)
with the average of the single tasks revealed three additional
brain areas outside the mask, including BA6, the medial
parietal lobe and the dorsolateral prefrontal cortex (BA9), that
were necessary to perform the bimodal task (all p < 0.05 with
FWE correction, see Table 3 and green letters and circles in
Figure 2). Inside the mask, there were no significant results of
the contrast.

Furthermore, the 10 brain areas found in the unimodal tasks,
along with the three additional areas defined by the contrast of
bimodal versus unimodal tasks were used to run ROI analysis
of the contrast between good performance in both tasks and
good performance in only one task in the bimodal task. The
sizes of ROIs were listed in the voxel numbers in Table 3. This
helped us assess whether the behavioral differences can be
accounted for by the differential activity of these ROIs.
Behaviorally good performance in both modalities in the
bimodal task resulted in relative deactivation of some brain
areas such as BA6 (t17 = -2.53, p < 0.05), FEF (t17 = -1.74, p <
0.05), medial frontal area (t17 = -2.02, p < 0.05), medial parietal
lobe (t17 = -1.76, p < 0.05), and BA7 (t17 = -1.74, p < 0.05; see
Table 3 and white circles of Figure 2).

Table 2. Subjects’ performance in bimodal tasks.

Subject #Good Performance in One Modality
Good Performance in Both
Modalities

 Visual Auditory  
1  x x
2 x  x
3 x   
4  x x
5 x  x
6  x x
7 x  x
8   x
9  x x
10  x  
11   xx
12 x x  
13 x x  
14  x x
15  x x
16 x   
17 x   
18   xx
19   xx

doi: 10.1371/journal.pone.0077408.t002

Table 3. Brain areas identified by the results of imaging
contrasts.

Contrasts Brain Areas

Voxel # in
Cluster of
Effect Size
(d)

Peak MMI
Coordinate t Valuep Value

   x y z   
Visual task
vs Control

Visual
cortices

157 12 -82 -5 6.13 0.00002

 
Lateral
parietal
lobe/BA7

181 -29 -52 48 6.74 0.000008

  32 20 -63 48 5.36 0.07

 
Medial frontal
lobe

91 4 23 44 6.80 0.001

 FEF 70 -29 -3 55 5.77 0.004

 
Inferior
frontal lobe

37 34 19 2 4.81 0.04

  30 -48 4 18 5.42 0.08

 
Lateral frontal
cortex

31 -33 27 21 6.32 0.08

 BA10 30 34 49 6 4.95 0.08
Auditory task
vs Control

BA43 44 -40 0 -1 5.05 0.029

 
Lateral
parietal
lobe/BA7

34 -44 -37 44 5.35 0.06

 BA6 35 -7 12 51 5.84 0.06
Bimodal vs
Unimodal
tasks

BA6 8 -14 0 66 4.48 0.003

 
Medial
parietal lobe

20 -3 -44 51 4.34 0.02

 BA9 4 34 46 25 4.06 0.02
Both good vs
One good in
bimodal task
(ROI
analysis)

Medial
parietal lobe

d = -4.73 -3 -44 51 -1.76 0.04

 BA7 d = -4.72 -44 -37 44 -1.74 0.04
 BA6 d = -7.95 -7 12 51 -2.53 0.008
 FEF d = -3.72 -29 -3 55 -1.74 0.04

 
Medial
prefrontal
lobe

d = -8.24 4 23 44 -2.02 0.02

Four contrasts were conducted including visual stimuli vs. control, auditory stimuli

only vs. control, the bimodal tasks vs. the average of unimodal tasks, and good

performance in both bimodal tasks vs. good performance of either one of the

bimodal tasks. The first three contrasts were used at the second level of SPM with

a FWE of p < 0.05 at the cluster levels. The fourth contrasts were assessed using

an ROI analysis with the t test. Positive t values indicate activation of contrasts and

negative t values indicate deactivation of the contrast. BA6 = Brodmann area 6,

BA7 = Brodmann area 7, BA9 = Brodmann area 9, BA10 = Brodmann area 10,

BA43 = Brodmann area 43, BA47 = Brodmann area 47, FEF = Frontal eye field,

MNI = Montreal Neurological Institute.
doi: 10.1371/journal.pone.0077408.t003
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Discussion

The results of our study showed that subjects who performed
well on the bimodal tasks showed decreased brain activity in
some visual, auditory and parietal lobes, compared to those
who could only perform well on one of the two simultaneous
tasks. Meanwhile, when subjects performed a bimodal task,
extra brain areas such as BA6, the medial parietal lobe and the
dorsolateral prefrontal cortex were required, compared with the
unimodal single tasks. Our results showing the activation of
distinct brain areas for unrelated visual and auditory tasks
support the concept of modal specific information processing.

The visual and auditory tasks in our experiment aimed to
study the distribution of processing among different modalities.
Unlike the cross-model integration paradigm discussed by
Spence and Driver [31], in which cues were manipulated to
influence judgment in tasks, our present study does not
manipulate cues before presentation of stimuli. Hence, the
characteristics of the visual and auditory tasks can be viewed
as independent. Alais et al. [14] found that the individual
thresholds of the bimodal stimuli (pitch discrimination and
visual contrast tasks) were not affected by each other,
suggesting that people have the ability to perform two
concurrent tasks well. This differs in part from our results, in

Figure 2.  Schematic results of the statistical parametric mapping (SPM) analysis of the contrasts.  An uncorrected threshold
of p = 0.001 was used for the voxel illustration. The SPM results were superimposed onto the SPM toolbox, xjView, with a template
of brain structure indexed for the coordinate of the z axis according to the MNI space. Unimodal stimuli versus rests were indicated
in yellow and red words for visual and auditory activation, respectively (FWE p< 0.05).Brain regions activated by visual and auditory
stimuli, selected with FWE p value between 0.05 and 0.08, were in cyan and purple words, respectively, and were also depicted in
yellow and red colors in the corresponding brain areas. A mask was formed to examine the bimodal task versus the average of
unimodal tasks. The results shown in the green words and circles indicate three activated areas including the medial parietal lobe,
BA9 and BA6, all outside the mask (FWE p value < 0.05). Finally, fifteen areas formed a ROI to examine the performance of
subjects that outperformed bimodal tasks versus those who performed well in only one of the bimodal tasks. The ROI analysis
shown in white circles revealed that the medial frontal lobe, FEF, BA6, BA7, and medial parietal lobe were negatively correlated with
the contrast (t test, p < 0.05).
doi: 10.1371/journal.pone.0077408.g002
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which some subjects could outperform in the bimodal task but
others could not. The discrepancy in our results and those of
Alais et al. [14] may be attributed to the different criteria of task
measurement. Our task adopted a criterion of approximately
70% accuracy as the index of good performance, whereas
Alais et al. [14] measured the threshold (i.e., 50% accuracy) of
visual and auditory modalities. Unlike a 70% accuracy
requirement, an unchanged threshold in the combination of
visual and auditory tasks does not mean the performance of
the two tasks will always be good.

Our results showed that distinct brain areas are recruited to
perform visual and auditory unimodal tasks, indicating that
each modality may have its own modal specific information
processing. These results are compatible with previous studies
[1-3,5,6,8,10,13]. Furthermore, our results showed that
additional brain areas are required for performance of bimodal
tasks compared to the summation of brain areas activated in
unimodal tasks. This is supported by behavioral data
demonstrating that performance of bimodal tasks requires
more than the simple addition of two unimodal stimuli [32-34],
as well as by the physiological evidence of dorsolateral
prefrontal cortices involved in bimodal tasks [26-28]. Although
the current study did not directly manipulate attention, our
results still reveal reliable results that match with past research
about the allocation of attentional resources. For example, the
medial parts of the parietal lobe have been found to be domain
independent and associated with shifts in attention [26-28,35].
Furthermore, BA9 and BA6 have traditionally been considered
to be related to decision-making that involves the selection of a
course of action based on immediate or past information from
trials [36-38]. In a recent model of “hierarchical control over
decision making”[39], BA9 and BA6 were responsible for
perceiving “episodic” and “sensorimotor” information,
respectively, and working together to select the appropriate
actions. Collectively, the evidence suggests that the additional
brain areas recruited for performance of bimodal tasks may
play a role in the processing of information, a role that is
compatible with the concept that processing of bimodal stimuli
is more efficient than that of unimodal stimuli [34,40,41].

The result that subjects who performed well in the bimodal
task displayed relative deactivation in areas such as medial
frontal areas, FEF, BA7, and the medial parietal lobe,
compared to subjects who performed well in only one of the
two simultaneous tasks, suggests that the brain needs to be
deactivated to remain alert, in order to outperform two tasks
simultaneously. These brain areas found in the study match the
brain areas of the default network or default mode of the brain
[42,43]. Although the brain only weighs 2% of total body
weight, it consumes 20% of the body’s energy. As a result, the
brain’s activities can be recorded even in a rest state. The
primary brain areas of the default network include the
dorsolateral and ventral medial frontal cortex, the posterior
cingulate cortex (especially the retrosplenial cortex), the inferior

parietal lobe, the lateral temporal cortex, and the hippocampal
formation [44]. One of the main features of the default network
is that while subjects are performing relevant goal directed
tasks, the deactivated brain areas can be measured, resulting
in a negative correlation between the corresponding brain
areas and the tasks [45]. The default network has been
considered to be related to internal cognitive activities such as
episodic memory and attention shifts towards the internal state
[46]. When task difficulty increases, the deactivation of the
default network is linearly increased [47]. This implies that
when subjects efficiently and simultaneously handle multiple
tasks, they may pay attention to the information entering the
brain and/or resources allocated to different modalities, rather
than paying attention to external information. These findings
were also supported by Tomasi et al. [48] and Esposito et al.
[49] in their study suggesting that reallocation of attentional
resources ensures active involvement in the ongoing tasks.

In summary, the results of the present study suggest that the
perceptual processing of vision and hearing are modal specific,
rather than shared or overlapping. However, the total amount
of resources is limited. When bimodal tasks are executed,
compared to unimodal tasks, activation of extra brain areas
outside of the processing of vision and hearing are required,
suggesting that interaction between the modalities is necessary
to cope with the demand of bimodal tasks. The most important
finding is that relatively decreased activity of some visual,
auditory and prefrontal brain areas was found for those
subjects that performed well in bimodal tasks compared to
those who performed well in only one of the bimodal tasks.
This suggests that the shift to internal states would also be
necessary to handle the demand of performing concurrent
bimodal tasks. Bimodal tasks cannot be like unimodal tasks in
requiring as many resources as they want, because that results
in a burden on the cognitive controls. Therefore, reduced
resources due to reduced activity of relevant areas may be the
reason for the fMRI BOLD responses; nevertheless, the
performance is better in the bimodal tasks. Efficient information
processing on multiple perceptual tasks and its relationship to
attentional modulation needs to be assessed in greater details
in further studies.
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