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Abstract

Recently reported experimental findings suggest that the hippocampal CA1 network stores spatio-temporal spike patterns
and retrieves temporally reversed and spread-out patterns. In this paper, we explore the idea that the properties of the
neural interactions and the synaptic plasticity rule in the CA1 network enable it to function as a hetero-associative memory
recalling such reversed and spread-out spike patterns. In line with Lengyel’s speculation (Lengyel et al., 2005), we firstly
derive optimally designed spike-timing-dependent plasticity (STDP) rules that are matched to neural interactions formalized
in terms of phase response curves (PRCs) for performing the hetero-associative memory function. By maximizing object
functions formulated in terms of mutual information for evaluating memory retrieval performance, we search for STDP
window functions that are optimal for retrieval of normal and doubly spread-out patterns under the constraint that the
PRCs are those of CA1 pyramidal neurons. The system, which can retrieve normal and doubly spread-out patterns, can also
retrieve reversed patterns with the same quality. Finally, we demonstrate that purposely designed STDP window functions
qualitatively conform to typical ones found in CA1 pyramidal neurons.
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Introduction

It has been reported that characteristic ensemble spiking

patterns are consistently repeated in the hippocampal CA1 region

during waking and sleep periods [1–9]. Louie and Wilson (2001)

reported that in rats, spike patterns produced during rapid eye

movement (REM) episodes are very similar to those observed

while the animals are running [8]. There are cases in which the

timescale of these reactivation patterns during REM episodes is on

average twice as long as that of the running periods. Foster and

Wilson (2006) reported that the spike patterns observed during

running periods are reproduced in a temporally reversed order

during rest periods [9]. These experiments suggest that the CA1

network stores spatio-temporal spike patterns and retrieves

reversed and spread-out patterns.

These experimental results raise a big question as to whether the

hippocampal network including the CA1 and CA3 regions has an

optimal structure for storing and retrieving such spike patterns.

Lengyel et al. (2005) [10] developed a normative theory for auto-

associative memory networks that specifies optimal pairs of the

synaptic plasticity rule for embedding memories and the form of

neural interactions for auto-associative memory retrieval. Under

the speculation that a phase response curve (PRC) is appropriate

to formulate the neural interactions if memories are embedded by

spike-timing-dependent plasticity (STDP), they derived pairs of

STDP window functions and PRCs optimally functioning as an

auto-associative memory. They showed that the features of the

PRCs of hippocampal CA3 pyramidal neurons qualitatively

conform to ones theoretically derived from typical STDP window

functions. However, they asked the question only as it relates to

restoring phase patterns to the original stored state through mutual

recurrent interactions, not retrieval of reversed and spread-out

patterns. Moreover, although the possible existence of STDP at

recurrent synapses between CA3 pyramidal neurons has been

suggested [11,12], as far as we know, there are no reports on

capturing the entire shape of the STDP window function.

Here, we focus on the CA1 network in which STDP has been

reported [13–17]. We explore the idea that the properties of the

neural interactions and the synaptic plasticity rule support the

function of hetero-associative memory in which spike patterns are

embedded in synapses and reversed and spread-out patterns are

retrieved. In line with Lengyel’s speculation, we search for optimal

pairs of STDP window functions and PRCs. Whereas Lengyel

et al. used a top-down approach, treating the auto-associative

memory retrieval as optimal probabilistic inference and inferring

the retrieval dynamics that are normatively matched to the typical

STDP window functions, we take a synthetic approach of optimal

design for hetero-associative memory under the physical limita-

tions of the neural implementation. Figure 1 illustrates our

approach, consisting of bottom-up and top-down steps. In the

bottom-up steps, under the assumption of regular firing and weak
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coupling, we firstly formulate a hetero-associative memory

network recalling not only the normal spike patterns, but also

the reversed and doubly spread-out patterns as a phase oscillator

model consisting of an STDP window function and a PRC. This

network model associates pre- and postsynaptic phase patterns.

For example, when presented with a stored presynaptic phase

pattern that is temporally reversed or spread out, the postsynaptic

neurons can recall the associated phase pattern that is temporally

reversed or spread out (for more detail, see Table 1). Secondly, we

analytically derive the mutual information between a stored phase

pattern and a network output, and use it to evaluate memory

retrieval performance. In the top-down steps, by maximizing the

objective function given by the mutual information, we search for

a set of optimal STDP window functions under the constraint of

PRCs recorded in vitro from hippocampal CA1 pyramidal neurons

[18,19].

The theoretically derived STDP window functions are com-

pared with those reported for CA1 pyramidal neurons. The typical

STDP window functions observed in the CA1 region are classified

into two types [13,14]: symmetric [15,16] and asymmetric [17]

plasticity rules. We show that both of these rules are included in a

theoretically derived set of optimal STDP window functions and

they allow network models with them to work as an associative

memory.

Methods

Working Hypothesis
Hippocampal CA1 network works as hetero-associative

memory. On the basis of the anatomical structure and

physiological properties of the hippocampus, many researchers

have long hypothesized that auto-associative memory resides in

the CA3 region because of its recurrent connections, and hetero-

associative memory resides in the CA1 region because of its

feedforward connections [20–28].

CA1 pyramidal neurons receive inputs from the entorhinal

cortex and the CA3 region, and the temporal correspondence

between the activity patterns of CA1 pyramidal neurons and these

presynaptic activity patterns may result in hetero-association

between them by modification of the synapses onto the CA1

pyramidal neurons [27]. In line with these considerations, we

assume that the hippocampal CA1 network works as hetero-

associative memory and introduce a feedforward network model.

The fundamental requirements for hetero-associative memory are

to recall an associated activity pattern of postsynaptic neurons

upon presentation of a presynaptic activity pattern.

Lengyel’s speculation. The STDP is an associative plasticity

that adjusts synaptic efficacy depending on the relative timing of

pre- and postsynaptic spikes. In the case of asymmetric STDP

window functions, a synapse increases its efficacy if presynaptic

spikes repetitively arrive within 5–40 msec before the postsynaptic

spikes, whereas the same synapse decreases its efficacy if

presynaptic spikes repetitively arrive with a similar time window

after the postsynaptic spikes. On the other hand, the PRC reflects

the sensitivity of oscillatory postsynaptic spike timing in response to

presynaptic spike activation or a current perturbation mimicking

presynaptic spike activation. The experimental protocols for

measuring PRCs generate presynaptic spikes or inject perturbation

currents at various timings relative to the last spike of repetitively

firing postsynaptic neuron, and measure the inter-spike interval of

the cycle containing the perturbation. The STDP window function

and the PRC respectively indicate the effect of the timing of the

presynaptic spikes relative to the postsynaptic ones on the synaptic

efficacy and the timing of postsynaptic spikes, and they are based

on the premise that neurons act as oscillators. In light of this,

Lengyel et al. speculated that PRCs are an appropriate way to

formulate neural interactions if memories are embedded by STDP

[10]. In line with this speculation, we decided to search for optimal

pairs of STDP window functions and PRCs.

Figure 1. Outline of our approach. We derive pairs of PRCs and STDP window functions optimally recalling normal, reversed, and spread-out
memory spike patterns.
doi:10.1371/journal.pone.0077395.g001

Table 1. Outline of hetero-associative memory functions we
studied.

Presynaptic phase Postsynaptic phase

Storage process Memory key pattern Memory output pattern

gm
j [½0,2p) hm

i [½0,2p)

Retrieval process Retrieval key pattern Retrieval output pattern

yj (&agm
j ) wi (&ahm

i )

Phase patterns of presynaptic neurons are associated with those of
postsynaptic neurons in the hetero-associative memory. In the storage process,
p pairs of pre- and postsynaptic phase patterns, gm and hm (m~1,2, � � � ,p), are
embedded by modifying synaptic weights in accordance with an STDP learning
rule. In the retrieval process, when presented with a phase pattern of
presynaptic neurons which resembles the m-th memory key pattern that is
temporally reversed and/or stretched to jaj times its original timescale, y
(&agm) (a~+1,+2), the postsynaptic neurons recall a phase pattern which
resembles the associated memory output pattern that is temporally reversed
and/or stretched to jaj times its original timescale, w (&ahm).
doi:10.1371/journal.pone.0077395.t001
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Phase reduction of weakly coupled limit-cycle oscilla-

tors. The hippocampal CA1 region, as well as other regions

involved in memory processing, exhibits stable oscillations of the

local field potential (LFP) in several situations including awake and

sleep states [29]. In such cases, the temporal order of neuronal

spiking relative to the LFP oscillation are preserved [30] and

correlated with the animal’s location in space [31]. This evidence

suggests that memories seem to be encoded in spike times relative

to ongoing LFP oscillations. Here, we formulate the storage and

retrieval processes as coupled limit-cycle oscillators. As described

below, under the assumption of regular firing and weak coupling,

we can reduce this oscillator system to a phase equation on the

basis of PRC [32,33]. Thus, the use of PRCs is consistent with

Lengyel’s speculation described above. However, the temporal

spike patterns of hippocampal CA1 pyramidal neurons in vivo

show irregular and bursting activities that differ from the regular

spike activity that we assume here [29]. The phase equation

derived here is valid in the limit that each neuron generates a

single spike once during each period of the collective oscillations.

Our assumption does not correspond to actual behaviors very well,

but it is expected to capture the dominant factor of cooperative

behavior in coupled oscillating systems [34]. Another big

advantage of this analysis method is that it can be directly applied

to real neurons by electrophysiologically measuring the PRCs [33].

Here, we use the PRCs of hippocampal CA1 pyramidal neurons

recorded in vitro [18,19], and predict the behavior of a virtual

hetero-associative memory network composed of pyramidal

neurons.

Retrieval of doubly spread-out patterns under the same

collective theta oscillations in the running periods. It has

been reported that in rats, awake neural ensemble activities are

reproduced during REM episodes associated with increases in LFP

theta power, and that the timescale of reactivation patterns during

the REM episodes is on average twice as long as that of running

periods (see Fig. 5B in [8]). This result suggests that during REM

episodes, doubly spread-out patterns are reactivated under the

same collective theta oscillations as those during running periods.

Here, under the assumption that oscillatory dynamical properties

of each neuron does not change in the CA1 network even though

doubly spread-out patterns are reactivated, we use the same PRC

when formulating the retrieval processes for normal and doubly

spread-out patterns. This assumption simplifies the problem to

find pairs of PRCs and STDP window functions optimally

recalling normal and spread-out patterns.

Minimum Model Functioning as a Temporal Hetero-
associative Memory

In this study, we use the hetero-associative memory model

shown in Fig. 2A. The model consists of N presynaptic and M
postsynaptic oscillator neurons. For simplicity, these pre- and

postsynaptic neurons have the same firing period. A presynaptic

neuron j is connected to a postsynaptic neuron i through a synapse

with an efficacy (weight) Jij . The theoretical derivations presented

below assume all-to-all connectivity.

For the purpose of mathematical tractability and simplicity, we

assume that the timescale of synaptic dynamics in the memory

storage process is far different from that of network dynamics in

the memory retrieval process. Under such an assumption of

timescale separation, the storage process and retrieval process can

be separated from one another.

Set out below is the outline of the hetero-associative memory

functions that we wanted to study (Table 1). In the storage process,

p pairs of pre- and postsynaptic phase patterns, gm and hm

(m~1,2, � � � ,p), are embedded by modifying synaptic weights in

accordance with an STDP learning rule. gm and hm are called the

m-th memory key pattern and memory output pattern, respectively. In

the retrieval process, after assigning a phase pattern of the

presynaptic neurons that resembles the memory key pattern, y
(&gm), the postsynaptic neurons recall a phase pattern that

resembles the memory output pattern, w (&hm). Furthermore, we

treat more general cases involving the normal phase pattern

retrieval described above. When presented with a phase pattern of

presynaptic neurons resembling the memory key pattern that is

temporally reversed and/or stretched to jaj times its original

timescale, y (&ahm) (a~+1,+2), the postsynaptic neurons recall

a phase pattern that resembles a memory output pattern that is

temporally reversed and/or stretched to jaj times its original

timescale, w (&ahm). Here, y and w are called retrieval key pattern

and retrieval output pattern, respectively. Note that the synaptic

weights are then fixed during the retrieval process. The case a~1
corresponds to normal phase pattern retrieval, the case a~2
corresponds to doubly spread-out pattern retrieval, and the cases

a~{1 and {2 correspond to retrievals of reversed patterns. The

following subsections describe the storage and retrieval processes

in the network.

Synapse dynamics in the storage process. In the storage

process, we treat gj as the phase of presynaptic neuron j

(~1,2, � � � ,N), and hi as that of postsynaptic neuron i

(~1,2, � � � ,M). Jij denotes the synaptic weights between presyn-

aptic neuron j and postsynaptic neuron i. Memory storage occurs

as a result of synaptic modification depending on the relative phase

of the pre- and postsynaptic neurons. The amount of synaptic

modification, DJij , is determined according to the following

synaptic plasticity rule:

DJij~
1

N
V(hi{gj), ð1Þ

where V(h) is the STDP window function. This rule is local in that

the change to Jij depends only on the phases of these two neurons

and not on those of other neurons. When storing more than one

pair (m~1,2, � � � ,p), we also make a simplifying assumption that

synaptic plasticity is additive across the memories:

Jij~
1

N
J0z

1

N

Xp

m~1

V(hm
i {gm

j ), ð2Þ

where 1
N

J0 (w0) is the initial synaptic weight, which avoids

negative values of Jij . The local and additive plasticity rule is

similar to the one described in the previous study [10]. The

difference from the previous study is the scaling of the synaptic

weight with the number of presynaptic neurons, N . This scaling is

necessary for derivation of the order parameter m
m
k,l , which

measures the overlap between the m-th memory key pattern gm and

the retrieval key pattern y, as we shall discuss later. Since the

magnitude of V(h) is arbitrary, there is no loss of generality due to

the scaling in Eqs. (1) and (2). Each element gm
j of the m-th memory

key pattern gm stored in the model is assigned to an independent

random number in ½0,2p) with a uniform probability, P(gm
j )~

1

2p
.

By the same token, each element hm
i of the m-th memory output

pattern hm is assigned to an independent random number in ½0,2p)

with a uniform probability, P(hm
i )~

1

2p
. Thus, these memory

patterns are not correlated with each other.

Optimal Design for Hetero-Associative Memory
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Network dynamics in the retrieval process. We assume

that the postsynaptic neural population (Fig. 2A) consists of neural

oscillators which share common features: the M postsynaptic

neurons fire rhythmically with a period T~2p=v (v is the angular

frequency), and N presynaptic neurons also fire with a period T .

Let us consider a situation in which rhythmical firing of a

postsynaptic neuron i is perturbed by a total synaptic input current

Gi(t) from N presynaptic neurons and an additive noise current

esi(t):

dX i

dt
~F(X i(t))z(Gi(t)zesi(t))U: ð3Þ

The term (Gi(t)zesi(t))U represents the driving current, in

which the vector U (~½1,0, � � � ,0�T) results in perturbing one

degree of freedom of the neural oscillator. si(t) is a one-

dimensional Langevin force satisfying Ssi(t)T~0,

Ssi(t)sj(t
0)T~2dijd(t{t0), and is the intensity of the Langevin

force. X i is a high-dimensional state vector that represents the

activity of the postsynaptic neuron i, namely, the membrane

potential, calcium concentration, and conductances for voltage-

gated ion channels. F(X i) is a vector field that represents the

intrinsic dynamics of neuron i. We assume that the unperturbed

neural oscillator dX i=dt~F(X i) has a stable limit cycle solution:

X i(t)~W(~wwi(t)),
~wwi~vtzwi, ð4Þ

where ~wwi is the phase of postsynaptic neuron i, and wi is the initial

phase corresponding to the retrieval output pattern.

The total postsynaptic current Gi(t) is given by

Gi(t)~
XN

j~1

Jijr(~yyj(t)),
~yyj~vtzyj , ð5Þ

where r(x) denotes the waveform of the postsynaptic current, and

Jij is the synaptic efficacy determining the magnitude of the

synaptic current. ~yyj is the phase of presynaptic neuron j, and yj is

the initial phase corresponding to the retrieval key pattern.

When e and Gi(t) are sufficiently small, a high-dimensional

system (3) can be reduced to a one-dimensional one expressing the

Figure 2. Structure of hetero-associative memory model. (A) Schematic diagram of a feedforward network with neural oscillators. Presynaptic
neurons numbered j~1,2, � � � ,N are characterized by their initial phases, y1,y2, � � � ,yN , representing their individual spiking timings. The angle of
the radius line in the circle represents the initial phase. Postsynaptic neurons numbered i~1,2, � � � ,M are characterized by their initial phases,
w1,w2, � � � ,wM . The pre- and postsynaptic neurons are fully connected by NM synaptic connections. (B) Phase response curves (PRCs) of hippocampal
CA1 pyramidal neurons recorded in vitro [18,19]. The abscissa represents the phase of a perturbation arrival, and the ordinate represents the phase
shift of the postsynaptic spike in response to the perturbation current. (C) Typical STDP window functions observed in hippocampal CA1 pyramidal
neurons. In the storage process, synaptic weights fJijg are determined in accordance with an STDP learning rule depending on the phase difference
between the pre- and postsynaptic spikes. Left: Symmetric plasticity rule [16]. Right: Asymmetric plasticity rule [17].
doi:10.1371/journal.pone.0077395.g002

Optimal Design for Hetero-Associative Memory
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motion of the phase ~wwi in the limit cycle orbit:

d~wwi

dt
~vzZPRC(~wwi)(Gi(t)zesi(t)), ð6Þ

where ZPRC(w) is the PRC reflecting the sensitivity to the

perturbation current [32,33]. This is called the Langevin phase

equation (LPE) [35,36].

We apply the variable transformation ~wwi~vtzwi and averag-

ing to Eq. (6). wi represents a slow-moving initial phase driven by a

small perturbation (synaptic input) and noise. Accordingly, we can

write the slow dynamics of the initial phase of the postsynaptic

neuron, wi, as

dwi

dt
~
XN

j~1

JijC(wi{yj)zssi(t), ð7Þ

C(wi{yj)~
1

2p

ð2p

0

dxr(x)ZPRC(xzwi{yj), ð8Þ

s~e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2p

ð2p

0

dxZ2
PRC(x)

s
: ð9Þ

C(w) is called the coupling function, and it is represented as a

convolution of r(x) with ZPRC(x). If the time constant of r(x) is

much shorter than the period T of the postsynaptic neuron, r(x)
can be written as a delta function (r(x)~d(x)). Thus, the coupling

function can be written using the PRC: C(w)~
1

2p
ZPRC(w). s is

the intensity of the noise, rescaled with the power of the PRC [36].

The effect of the white noise term ssi(t) can be regarded as

temporal fluctuations in the firing rate of each postsynaptic neuron

around the mean v (i.e., natural frequency). Moreover, if the

fluctuation strength of the measured PRC is constant with respect

to the perturbation timing, the effect of ssi(t) can also be regarded

as a fluctuation of the measured PRC [37].

Here, we expand the STDP window function and the coupling

function into their Fourier series:

V(hm
i {gm

j )~
X?

k~{?

ak exp (ik(hm
i {gm

j )), ak

~
1

2p

ð?
{?

dhV(h) exp ({ikh),

ð10Þ

C(wi{yj)~
X?

l~{?

bl exp (il(wi{yj)),bl

~
1

2p

ð?
{?

dwC(w) exp ({ilw),

ð11Þ

where ak and bl are the Fourier coefficients of the STDP window

function and the coupling function (PRC), respectively. V(h) and

C(w), which are real-valued functions, satisfy a{k~a�k and

b{l~b�l (the superscript * denotes the complex conjugate),

respectively. The parameters k (~0,+1,+2, � � � ) and l
(~0,+1,+2, � � � ) denote the wavenumbers. Note that the initial

synaptic weight J0 can be involved in the DC component a0

without loss of generality. Here, we define Ak and fk as the

amplitude and the phase of ak, respectively (ak~Ak exp (ifk)). Bl

and xl represent the amplitude and the phase of bl

(bl~Bl exp (ixl)). They satisfy the following equations: A{k~
Ak, B{l~Bl , f{k~{fk, x{l~{xl .

The order parameter m
m
k,l , the overlap between the k-th

frequency component of the m-th memory key pattern gm and the

l-th frequency component of the retrieval key pattern y, is defined

as

m
m
k,l~

1

N

XN

j~1

exp (i(kgm
j {lyj)): ð12Þ

Because gm and y do not vary over time, each overlap m
m
k,l takes a

constant value. Note that all the postsynaptic neurons share the

same order parameter m
m
k,l and that m

m
k,l represents the character-

istic function of presynaptic phase disrtibution P(yj jagm
j ) at each

wavenumber: m
m
k,l~

Ð 2p

0
dyP(yjagm) exp (i(kgm{ly)).

By using ak, bl , and m
m
k,l , the LPE (7) can be transformed into

dwi

dt
~

X?
k~{?

X?
l~{?

Xp

m~1

a�kblm
m
k,l exp (i(lwi{khm

i ))zssi(t): ð13Þ

Because the postsynaptic neurons share the same m
m
k,l and are

driven by independent noise, the M neurons can be considered to

be statistically independent of each other and have the same

statistical characteristics.

Equilibrium Distribution when Storing a Finite Number of
Patterns

For mathematical simplicity and tractability, we consider the

case when the number of stored paired patterns p is finite in the

thermodynamic limit as N?? (i.e., pvvN). Given a retrieval

key pattern similar to ag1, ah1 is to be retrieved. As described

above, the memory key patterns gm (m~1,2, � � � ,p) are not

correlated with each other. The same goes for the memory output

patterns hm.

The retrieval key pattern is generated with the following von

Mises probability density function (PDF):

P(yj jag1
j )! exp (c cos (ag1

j {yj)), ð14Þ

where ag1
j corresponds to the mean of this PDF. c is a measure of

the concentration, and it controls the similarity between the

retrieval key pattern and ag1.

Under the above definition of retrieval key pattern generation,

each overlap m
m
k,l (m~1,2, � � � ,p) can be calculated as follows. The

average overlap with m~1 between pairs of frequency components

which satisfy k~al is

vm1
al,lw~

Il(c)

I0(c)
~O(1), ð15Þ

where Il(c)~
1

2p

ð2p

0

dw cos (lw) exp (c cos w) is a modified Bessel

Optimal Design for Hetero-Associative Memory
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function of the first kind. On the other hand, the average overlap

with m~1 between the other components (k=al) is

Sm1
k,lT~

1

N

XN

j~1

Sexp (i(kg1
j {lyj))T~0ifk=al, ð16Þ

and the deviation is O(1=
ffiffiffiffiffi
N
p

). Moreover, for any k and l, the

overlap between the retrieval key y and a memory key pattern

other than the first one (m§2) is on average

Sm
m
k,lT~0 if m§2, ð17Þ

and the deviation is O(1=
ffiffiffiffiffi
N
p

). In the case of a finite p, the

number of terms with m§2 in Eq. (13) is finite. Moreover, the

Fourier coefficients al and bl rapidly approach zero as l increases.

Thus, contributions of the terms except those with m~1 and k~al
to Eq. (13) can be neglected in the limit N??. The phase

dynamics can be rewritten as

dwi

dt
~2

X?
l~1

AalBlm
1
al,l sin (l(wi{ah1

i )zxl{fal{
p

2
)zssi(t): ð18Þ

Note that the term consisting of DC components a0 and b0 in Eq.

(13) is a constant. We can safely neglect this term, because the

constant term can be involved in the natural frequency v without

loss of generality. Equation (18) shows that the statistical properties

of the hetero-associative memory model in the case of finite

loading (pvvN ) and those in the simplest case of just one pair of

patterns to be stored (p~1) are identical.

From Eq. (18), we obtain the equilibrium phase distribution of

each postsynaptic neuron:

P(wijah1
i )~

1

ZNF
exp (

2

s2

X?
l~1

AalBlIl(c)

lI0(c)
cos (l(wi{ah1

i )

zxl{fal{
p

2
)),

ð19Þ

ZNF~

ð2p

0

dw exp (
2

s2

X?
l~1

AalBlIl(c)

lI0(c)
cos (lwzxl{fal{

p

2
)), ð20Þ

where ZNF is the normalizing factor.

Mutual Information per Neuron
Mutual information, which measures how related two random

variables are, is nonnegative and takes 0 only if these variables are

independent.

When recalling the a times spread-out memory pattern ah1, the

mutual information of the retrieval output w relative to ah1 per

neuron, 1
M

H(w; ah1), is given by

1

M
H(w; ah1)~

1

M
H(w){

1

M
H(wjah1): ð21Þ

Here,
1

M
H(w) is the entropy of w per neuron, which measures

the uncertainty associated with w.
1

M
H(wjah1) is the conditional

entropy of w given ah1, which quantifies the remaining uncertainty

of w given that ah1 is known. Because each postsynaptic neuron is

statistically independent of each other and has the same statistical

characteristics as described above,
1

M
H(w) and

1

M
H(wjah1) can

be simply written as follows:

1

M
H(w)~{

1

M

XM
i~1

ð2p

0

dwi

ð2p

0

dhiP(wijah1
i )P(h1

i )

ln

ð2p

0

dhiP(wijah1
i )P(h1

i )~ ln 2p,

ð22Þ

1

M
H(wjah1)~{

1

M

XM
i~1

ð2p

0

dh1
i P(h1

i )

ð2p

0

dwiP(wijah1
i ) ln P(wijah1

i )

~{
2

s2ZNF

ð2p

0

dw
X?
l~1

AalBlIl(c)

lI0(c)
cos (lwzxl{fal{

p

2
)

| exp (
2

s2

X?
l~1

AalBlIl(c)

lI0(c)
cos (lwzxl{fal{

p

2
))z ln ZNF:

ð23Þ

Because
1

M
H(w) is a constant, as shown by Eq. (22),

maximization of the mutual information
1

M
H(w; ah1) in Eq.

(21) is identical to minimization of the conditional entropy
1

M
H(wjah1) in Eq. (23).

Note that in Eq. (21), for any a, the value of
1

M
H(w; ah1) is

equal to that of the reverse pattern retrieval case, i.e.,
1

M
H(w; {ah1). This is because the system is symmetric with

respect to sign inversion of the key and output patterns. Namely,

the system, which can retrieve normal and doubly spread-out

patterns, can also retrieve reversed patterns with the same quality.

In what follows, we search for pairs of PRCs and STDP window

functions that are optimal for retrieving both normal and doubly

spread-out patterns by jointly maximizing two object functions,
1

M
H(w; h1) and

1

M
H(w; 2h1). To solve this joint optimization

problem, we employ a simple sum of these functions,

Itotal~
1

M

X2

a~1

H(w; ah1): ð24Þ

Furthermore, for comparison, we also use an objective function,

Itotal~
1

M
H(w; h1): ð25Þ

As mentioned above, the optimal system derived by maximi-

zation of the objective function is also optimal for retrieving

reversed patterns.
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Phase Response Curve of Hippocampal CA1 Pyramidal
Neurons

In our previous work, we obtained PRCs from rat hippocampal

CA1 pyramidal neurons by performing whole-cell patch-clamp

recording in vitro [18,19]. Figure 2B shows the PRCs from that

research. In the protocol for measuring PRCs, we injected DC

depolarizing currents into the somata of rat CA1 pyramidal

neurons to evoke periodic firing. Using the dynamic clamp, the

mean inter-spike interval (ISI) was adjusted to the target period by

tuning the DC depolarizing current. In measuring these PRCs, the

firing frequencies of those neurons were tuned in the theta

frequency range (4–14 Hz). Next, we evoked a one-shot rectangle

perturbation superimposed on the DC depolarizing current by

using various timings relative to the spike, and measured how the

perturbation current disturbed the timing of the succeeding spike,

i.e., phase response. The spike times randomly fluctuated due to

intrinsic noise in the neurons. To extract the PRCs from the noisy

data of the phase responses, we made use of a PRC measurement

model formulated as an LPE [38] (the same as the one used in the

current study) and applied a maximum a posteriori (MAP)

estimation algorithm based on the measurement model to the

noisy phase response data. The effectiveness of the measurement

model and the reliability of the estimated PRCs were verified by

demonstrating that the LPEs with the estimated PRCs could

predict the stochastic behaviors of the same neurons, whose PRCs

had been measured, when they were perturbed by various periodic

stimulus currents [18]. A detailed explanation of the experimental

conditions and the MAP estimation algorithm can be found in

[36,38,39], while the reliability and quality of PRCs used here has

been discussed in detail in [18,19].

Results

Performance of Hetero-associative Memory Model with
Typical Parameters

We carried out numerical simulations on the hetero-associative

memory model with typical parameters, and we compared the

numerical results with theoretical predictions. Here, we use the

hetero-associative memory model endowed with a PRC (cell #1 in

Fig. 2B [18]) and a typical STDP window function (left panel of

Fig. 2C [16]) of CA1 pyramidal neurons. In the following

numerical simulations, we embedded three pairs of random phase

patterns, gm and hm (m~1,2,3) in the synaptic weight Jij . We used

the following to evaluate the retrieval quality of this model:

M
m
k,l~

1

M

XM
i~1

exp (i(lwi{khm
i )): ð26Þ

This measure is the overlap between the k-th frequency

component of the m-th memory output pattern hm and the l-th
frequency component of the retrieval output pattern w. At

equilibrium, the overlap M
m
k,l can be theoretically obtained with

the PDF (19):

M
m
k,l~

ð2p

0

dwP(wjahm) exp (i(lw{khm)): ð27Þ

As shown in Eq. (27), M
m
k,l represents the characteristic

function of the postsynaptic phase distribution P(wjahm) at each

wavenumber.

First, we verified the effect of intrinsic noise on the retrieval

quality of this model. For simplicity, we gave it a retrieval key

pattern identical to the normal memory key pattern (y~g1),

which corresponds to the special case of c??. Figure 3A plots the

amplitude of the overlap jM1
l,l j (l~1,2, � � � ,5) at equilibrium as a

function of the noise intensity s. In this figure, the LPE (13) was

solved numerically by using the Euler method, and the values of

jM1
l,l j calculated with Eq. (26) were compared with theoretical

predictions obtained by Eq. (27). As shown in Fig. 3A, the

numerical results coincide with the theoretical values for all

wavenumbers l. When the noise intensity is sufficiently small

(sv0:05), the retrieval output pattern w has an appreciable

overlap with h1, i.e., M1
1,1*O(1). As s increases, the overlap M1

l,l

approaches zero. Figure 3B shows an example of the PDF (19) and

a histogram of the phase difference wi{h1
i obtained by

numerically solving LPE (13) at equilibrium. Here, s~0:03 and

c??. In this figure, the PDF (19), which forms a unimodal

distribution, is in good agreement with the histogram normalized

by the bin width.

Next, we verified the effect of the degraded retrieval key

patterns on the retrieval quality of this model. We generated the

phase patterns by using the conditional PDF (14) given g1 and

various values of c, and we used these generated patterns as

retrieval key patterns. Figures 3C and D respectively show

amplitudes of the overlaps jm1
l,l j (defined in Eq. (12)) and jM1

l,l j
(l~1,2, � � � ,5) at equilibrium as a function of c. Here, s~0:03.

The numerical results coincide with the theoretical ones for all l.

When c is sufficiently large (cw3), the retrieval output pattern w

has an appreciable overlap with h1, i.e., M1
1,1*O(1). As c

decreases, the overlap m1
l,l approaches zero faster than M1

l,l

converges to zero.

Note that we got similar results to those above by using the

other PRCs (different from cell #1 in Fig. 2B) and another STDP

window function (right panel of Fig. 2C).

STDP Window Functions Optimally Matched to PRCs of
Hippocampal CA1 Pyramidal Neurons

We searched for STDP window functions optimally matched to

the PRCs of the five hippocampal CA1 pyramidal neurons shown

in Fig. 2B. As described in the Methods section, we considered the

two cases. One is that we maximize the objective function Itotal

defined in Eq. (25) to search for STDP window functions that are

optimal for retrieving normal patterns. The other is that we

maximize the objective function Itotal defined in Eq. (24) to search

for STDP window functions that are optimal for retrieving normal

and doubly spread-out patterns. In both cases, we assigned the

Fourier coefficients of the PRCs of the hippocampal CA1

pyramidal neurons to bl of each mutual information constituting

the objective function Itotal, and under the constraint of the

measured PRC, searched for al , the Fourier coefficients of the

STDP window functions to maximize the objective function Itotal.

Note that a system which can optimally retrieve normal and

doubly spread-out patterns can also retrieve reversed ones,

because it is symmetric with respect to sign inversion of the key

and output patterns.

Because the mutual information
1

M
H(w; ah1) in Eq. (21)

monotonically increases as Al (the amplitude of al ) increases, we

imposed the following constraint condition on the power of STDP

window function:
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X5

l~1

A2
l ƒConst: ð28Þ

Here, we truncated the Fourier series of the PRCs and STDP

window functions after the fifth term. Referring to the value of the

STDP power in a previous study [10], we set Const:~0:12. To

solve this optimization problem, we used the FMINCON function

in the Matlab Optimization Toolbox.

First, we searched for STDP window functions that are optimal

for retrieving normal patterns. By maximizing the objective

function in Eq. (25) under the power constraint (28), we obtained a

connected set of optimal STDP window functions described as

V(g)~2
P5

l~1 Al cos l(gzj)zflð Þ for any j [½0,2p), in which all

members have the same shape, because if fl and ~ffl (the phases of

al ) satisfy ~ffl~flzlj for all j [½0,2p), the values of 1
M

H(w; h1) are

exactly the same in both cases. Figures 4A–D show five sets of

optimal STDP window functions; each set is optimally matched to

each PRC of the five different CA1 pyramidal neurons shown in

Fig. 2B. The four panels of Figs. 4A–D plot examples of optimal

STDP window functions with different phases j. All sets of

functions except for cell #1 have the same form, and they are

almost composed of fundamental frequency components. The

shape of the optimal STDP window function obtained from the

PRC of cell #1 is very similar to the others, even though the PRC

of cell #1 contains a relatively large number of higher frequency

components compared with the PRCs of the other cells (see

Fig. 2B).

Next, we searched for STDP window functions that are optimal

for both retrieving normal and doubly spread-out patterns. By

maximizing the objective function in Eq. (24) under the power

constraint (28), we obtained a connected set of optimal STDP

window functions in the same manner as described above.

Figures 4A9–D9 show five sets of optimal STDP window functions;

each set is optimally matched to each PRC of the five different

CA1 pyramidal neurons shown in Fig. 2B. The four panels of

Figs. 4A9–D9 plot examples of optimal STDP window functions

with different phases j. All sets of functions except for cell #1 have

the same form, and they are almost completely composed of

fundamental and second frequency components. The shape of the

optimal STDP window function obtained from the PRC of cell #1

is very similar to the others, even though the PRC of cell #1

contains a relatively large number of higher frequency components

compared with the PRCs of the other cells (see Fig. 2B).

The results of Fig. 4 suggests that the optimal STDP window

function depends heavily on the fundamental frequency compo-

nents of the PRCs, and thus its shape is nearly invariant for all of

the PRCs of the CA1 pyramidal neurons. In addition, the joint

optimization for retrieving normal and doubly spread-out patterns

only yielded the second frequency components of the STDP

window functions, and thus, the second frequency components of

the STDP window function play a key role in recalling doubly

spread-out phase patterns.

It has been reported that there are two types of STDP window

functions in hippocampal CA1 pyramidal neurons [13,14], i.e.,

symmetric (left panel of Fig. 2C [16]) and asymmetric (right panel of

Fig. 2C [17]). Here, we compared physiologically measured

window functions with purposely designed ones for memory

recalls. We computed the Fourier series of symmetric and

asymmetric STDP window functions in Fig. 2C and compared

the fundamental and second frequency components of the STDP

window functions in Fig. 2C with the frequency components of the

ones in Figs. 4A9–D9. Figure 5A plots symmetric and asymmetric

STDP window functions composed of only the fundamental and

second frequency components of the ones in Fig. 2C. The

purposely designed STDP window functions shown in Figs. 4A9

and B9 qualitatively conform to those of Fig. 5A. Figure 5B shows

the rate of the fundamental and second frequency components for

STDP window functions in Fig. 5A and the purposely designed

ones in Figs. 4A9–D9. We compared the amplitudes between the

two Fourier coefficients of each STDP window function:
A1

A1zA2

and
A2

A1zA2
. As shown in Fig. 5B, the joint optimization for

retrieving normal and doubly spread-out patterns yields equal

amounts of fundamental frequency component and second

frequency component (A1~A2), and the amount of second

frequency component in the symmetric and asymmetric STDP

window functions in Fig. 2C is almost equal to that of the

fundamental frequency components.

Moreover, Figs. 4C9 and D9 show an inverted symmetric

window function and inverted asymmetric one in contradistinction

to Figs. 4A9 and B9. These window functions were found in regions

outside the hippocampal CA1 area (see [40–42]).

Memory Retrieval in the Hetero-associative Memory
Model

By using numerical simulations, we confirmed that the system

with the STDP window functions in Figs. 4A9–D9 can function as

intended. The synaptic weight Jij was determined using the STDP

window function (cell #5 in Fig. 4A9) to store three pairs of

random phase patterns, gm and hm (m~1,2,3), and the retrieval

performance of the system with the determined synaptic weight

and the measured PRC (cell #5 in Fig. 2B) was verified. In the

following simulations, we used the retrieval key pattern generated

with the conditional PDF (Eq. (14)) given ag1, and under this

condition, we checked whether the system could recall a

temporally reversed memory output pattern and/or one stretched

to jaj times its original timescale, ah1. The overlap M
m
k,l between

the k-th frequency component of hm and the l-th frequency

component of w (defined in Eq. (26)) was used as a measure of

retrieval performance.

The three panels of the left column in Fig. 6 show the time

evolution of jMm
k,l j in the cases of the normal, reversed, and

spread-out pattern retrievals. jM1
1,1j~O(1) and the others are

almost zero in the normal pattern retrieval, whereas

jM1
{1,1j~O(1) and the others are almost zero in the reversed

pattern retrieval, and jM1
2,1j~O(1) and the others are almost zero

in the doubly spread-out pattern retrieval. The panels of the center

and right columns in Fig. 6 show samples of memory output patterns

and retrieval output patterns at equilibrium in the cases of the

normal, reversed, and doubly spread-out pattern retrievals. We

also confirmed that the system with the other STDP window

functions in Figs. 4B9–D9 and the other PRCs (different from cell

#5 in Fig. 2B) works just as well as these.

Discussion

Summary of Results and Conclusions
By maximizing the objective functions given by the mutual

information, we derived pairs of STDP window functions and

PRCs optimally recalling normal, reversed, and doubly spread-out

phase patterns in a hetero-associative memory model. We

searched for a set of optimal STDP window functions using the
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measured PRCs from in vitro experiments on hippocampal CA1

pyramidal neurons.

The optimal STDP window function heavily depends on the

fundamental frequency component of the PRCs, and thus its

shape is almost invariant with respect to the PRCs of CA1

pyramidal neurons (see Fig. 4). Even though the PRC of cell #1

contains a relatively large number of higher frequency components

compared with the PRCs of the other cells (see Fig. 2B), the shape

of the optimal STDP window function obtained from the PRC of

cell #1 is very similar to the others. A comparison of results in

Figs. 4A–D and A9–D9 suggests that second frequency components

of STDP window functions play a key role in recalling doubly

spread-out phase patterns. If the memory key and output patterns

are respectively assigned to an independent number in ½0,2p) with

a uniform probability, in the limit of N??, the doubly spread-

out patterns are orthogonal to the original patterns (i.e.,Ð 2p

0
dg exp (i(g{2g))~0). Because of this orthogonality, this

system can retrieve spread-out patterns if the STDP window

function contains higher frequency components.

As shown in Fig. 6B, the system, which can retrieve normal and

doubly spread-out phase patterns, can also retrieve reversed

patterns. This is because the symmetry with respect to sign

inversion for key and output patterns is satisfied as it is in the

conventional associative memory model [43,44]. Thus, the mutual

Figure 3. Performance of hetero-associative memory model with typical parameters. We use a typical STDP window function (left panel of
Fig. 2C [16]) and the PRC (cell #1 in Fig. 2B [18]) measured from hippocampal CA1 pyramidal neurons. In this simulation, M~N~1000. Given a

retrieval key pattern similar to g1, h1 is to be retrieved (i.e., normal spike pattern retrieval). (A) Amplitudes of the overlaps jM1
l,l j (l~1,2, � � � ,5 denotes

the wavenumber) at equilibrium as a function of the noise intensity s when c??. As defined in Eq. (26), M1
l,l is the overlap between the first memory

output pattern h1 and the retrieval output pattern w in the l-th frequency component: M1
l,l~

1

M

XM

i~1
exp (i(lh1

i {lwi)). M1
l,l represents the

characteristic function of the postsynaptic phase distribution P(wijh1
i ) at each wavenumber l. Solid curves are theoretical results obtained from Eq.

(27); The plotted points are from numerical simulations using LPE (13). (B) An example of the PDF (19) and a histogram of phase difference wi{h1
i

obtained by numerically solving the LPE (13) at equilibrium. s~0:03 and c??. (C) Amplitudes of the overlaps jm1
l,l j (l~1,2, � � � ,5) as a function of the

concentration parameter c. As defined in Eq. (12), m1
l,l is the overlap between the first memory key pattern g1 and the retrieval key pattern y in the l-

th frequency component: m1
l,l~

1

N

XN

j~1
exp (i(lg1

j {lyj)). m1
l,l represents the characteristic function of the presynaptic phase distribution P(yj jg1

j ) at

each wavenumber l. Solid curves are theoretical results obtained from Eq. (15); Plots are obtained from a retrieval key pattern randomly generated
with the von Mises PDF (14). (D) Amplitudes of the overlaps jM1

l,l j (l~1,2, � � � ,5) at equilibrium as a function of c. s~0:03. Solid curves are theoretical

results obtained from Eq. (27); The plots are from numerical simulations using LPE (13).
doi:10.1371/journal.pone.0077395.g003
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information in retrieving normal and doubly spread-out phase

patterns is equal to the information involved in retrieving the

reversed patterns.

Furthermore, the mutual information is invariant with respect

to the phases of the STDP window functions and PRCs. Thus, the

set of optimal STDP window functions forms a connected set

homeomorphic to a ring, examples of which have a good

qualitative match to those reported in hippocampal CA1

pyramidal neurons, such as the symmetric [15,16] and asymmetric

window functions [17]. Note that the original data from

Wittenberg and Wang (2006) exhibit a phase delay between the

pre- and postsynaptic spikes in the peak of the symmetric STDP

window function [16]. On the other hand, we used a simplified

STDP window function (left panel of Fig. 2C) that ignored the

phase delay in the peak. This is because the phase shift of the

STDP window function has no effect on the retrieval performance

of the associative memory model, as stated above. As shown in

Fig. 5B, the fundamental and second frequency components of

STDP window functions reported for CA1 neurons have roughly

the same scale, which coincides with those of the theoretically

derived STDP window functions.

Thus, the results obtained here suggest that the properties of the

neural interaction and the synaptic plasticity rule in the CA1

region support a hetero-associative memory function recalling

normal, doubly spread-out, and reversed patterns.

Effect of STDP Multiplicity in Single Neurons in Recalling
Memories

Optical imaging studies have suggested that the shape of STDP

window function in the CA1 pyramidal neuron depends on the

location on the dendrite [13,14]. A symmetric STDP window

function was observed in the proximal-to-soma dendrite, whereas

an asymmetric STDP window function was observed in the distal-

to-soma dendrite.

Here, we verify the effects of symmetric and asymmetric STDP

window functions in single neurons on recall memory. We

assume that synapses between a postsynaptic neuron i

(~1,2, � � � ,M ) and a presynaptic neuron j (~1,2, � � � ,Ns) obey

the symmetric STDP rules, and others between a postsynaptic

neuron i (~1, � � � ,M) and a presynaptic neuron j (~Nsz

1,Nsz2, � � � ,N) obey the asymmetric STDP rules. Ns is the

number of synapses obeying the symmetric STDP rules in a

single neuron. For mathematical simplicity, the symmetric and

asymmetric STDP window functions coexisting in single neurons

are described as

Figure 4. Examples of STDP window functions optimally matched to PRCs of five hippocampal CA1 pyramidal neurons shown in
Fig. 2B. (A–D) By maximizing the objective function Itotal defined in Eq. (25), we searched for STDP window functions that are optimal for retrieving
normal patterns. (A9–D9) By maximizing the objective function Itotal defined in Eq. (24), we searched for ones that are optimal for both retrieving
normal and doubly spread-out patterns. In all cases, c~20, s~0:03. We obtained connected sets of optimal STDP window functions, as described in
the main article. Each of the four panels in the upper and lower rows plots examples of optimal STDP window functions with different phases. The
numbers assigned to each line correspond to the cell indexes in Fig. 2B. All sets of optimal STDP window functions except for cell #1 have the same
form. (A, A9) STDP window functions when fl~0, which corresponds to the symmetric STDP rule. (B, B9) STDP window functions when fl~{ p

2
(B)

and fl~{ p
6

(B9), which correspond to the asymmetric STDP rule. (C, C9) STDP window functions when fl~p, which corresponds to the inverted
symmetric STDP rule. (D, D9) STDP window functions when fl~

p
2

(D) and fl~
p
6

(D9), which correspond to the inverted asymmetric STDP rule.
doi:10.1371/journal.pone.0077395.g004
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VS(hm
i {gm

j )~
X?

k~{?

ak exp ik(hm
i {gm

j )
� �

, j~1, � � � ,Ns,

VA(hm
i {gm

j )~
X?

k~{?

ak exp ik(hm
i {gm

j {j)
� �

, j~Nsz1, � � � ,N:
ð29Þ

Here, the variable j is the phase difference between the

symmetric and asymmetric STDP window functions. The typical

value of j is p=2. Under this condition, we can rewrite Eq. (13) as

follows:

dwi

dt
~

X?
k~{?

X?
l~{?

Xp

m~1

a�kbl(m
S,m
k,l zm

A,m
k,l ) exp (i(lwi{khm

i ))

zssi(t),

ð30Þ

Figure 5. Comparison of purposely designed STDP window functions (Figs. 4A9–D9) and those reported for the hippocampal CA1
region. We computed the Fourier series of symmetric and asymmetric STDP window functions in Fig. 2C and compared the first two frequency
components of the STDP window functions in Fig. 2C with those in Figs. 4A9–D9. (A) Symmetric and asymmetric STDP window functions composed of
only the fundamental and second frequency components of the ones in Fig. 2C. Left: Symmetric plasticity rule [16]. Right: Asymmetric plasticity rule
[17]. (B) Rates of fundamental and second frequency components of STDP window functions in Fig. 5A and the purposely designed ones in Figs. 4A9–
D9. We compared the amplitudes between the two Fourier coefficients of each STDP window function, i.e., A1

A1zA2
and A2

A1zA2
. Symmetric: left panel of

Fig. 5A [16]. Asymmetric: right panel of Fig. 5A [17].
doi:10.1371/journal.pone.0077395.g005
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m
S,m
k,l ~

1

N

XNs

j~1

exp (i(kgm
j {lyj)),m

A,m
k,l

~
1

N

XN

j~Nsz1

exp (i(kgm
j {lyjzkj)):

ð31Þ

Furthermore, in the limit of N?? and Ns??, while keeping

the Ns=N ratio constant at l, the sum of the partial overlaps, m
S,m
k,l

and m
A,m
k,l becomes

m
S,m
k,l zm

A,m
k,l ~Ck exp (irk)m

m
k,l ,

Ck~2(l{1)(l{ cos (kj))z1,

rk~ arctan
(1{l) sin (kj)

lz(1{l) cos (kj)
,

ð32Þ

Figure 6. Confirmation that the system with the STDP window functions in Figs. 4(A9–D9) can function as intended. The synaptic
weight Jij was determined using the STDP window function (cell #5 in Fig. 4A9) to store three pairs of random phase patterns, gm and hm (m~1,2,3),
and when presented with the retrieval key pattern generated with the conditional PDF (Eq. (14)) given ag1 , the retrieval performance of the system
with the determined synaptic weight and the measured PRC (cell #5 in Fig. 2B) was verified by using numerical simulations (M~N~1000, c~20,
s~0:03). (A) Normal spike pattern retrieval (a~1). (B) Reversed pattern retrieval (a~{1). (C) Doubly spread-out pattern retrieval (a~2). Left column:
Time evolution of the amplitude of the overlap between the k-th frequency component of hm and the l-th frequency component of w, jMm

k,l j. Center

column: An example of the memory output pattern as originally stored, h1 . Right column: The retrieval output pattern w at equilibrium (corresponding
to t~300 in left column).
doi:10.1371/journal.pone.0077395.g006
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where m
m
k,l is the same as the order parameter defined in Eq. (12).

Thus, the above model is essentially equivalent to the homoge-

neous STDP model (Eq. (13)) except for the existence of the

coefficient Ck and the phase rk. If the fundamental frequency

components are dominant in the PRCs, this inhomogeneous

model can also work as a hetero-associative memory. Figure S1

(supporting information) shows the results of numerical simulations

when l ~ 0:5. Because Ckv1 if l=1 or l= 0, the retrieval

quality becomes worse than that of the homogeneous model.

Difference between Our Approach and Lengyel’s
Lengyel et al. (2005) tried to determine whether the properties

of neural interactions and the synaptic plasticity rule in the CA3

region support an auto-associative memory function [10]. Figure

S2 (supporting information) illustrates the top-down approach they

used. First, they developed a theory treating auto-associative

memory retrieval as a kind of Bayesian inference and constructed

a gradient ascent algorithm for the MAP estimation. Next, they

reinterpreted this algorithm as phase oscillators consisting of PRCs

and STDP window functions. Finally, they qualitatively compared

the PRCs of hippocampal CA3 pyramidal neurons with ones

theoretically derived from a typical STDP window function. As a

result of their contrasting the top-down approach with Marr’s tri-

level hypothesis [45], their study can be considered as a bridge

from the computational level to the algorithmic level. Further-

more, they tried to bridge the algorithmic and physical levels by

reinterpreting the algorithm they derived as phase oscillators.

On the other hand, contrasting our approach shown in Fig. 1

with Marr’s tri-level hypothesis, our study can be considered as a

bridge between the physical level and the algorithmic level. Note

that the phase equation (e.g., Eq. (13)) reduced from the coupled

oscillator system (Eq. (3)) corresponds to the algorithm of hetero-

associative memory. Unfortunately, there is no clear relationship

between our phase equation derived from the bottom up and

Lengyel’s gradient ascent algorithm derived from the top down at

this moment. In the future, we will explore the correspondence

between our results and Lengyel’s. [10].

How and Where are Key Patterns for Recalling Reversed
and Spread-out Patterns Created?

As shown in Fig. 2, a key pattern has to be input in order to

recall its associated output pattern in a hetero-associative memory.

As summarized in Table 1, to retrieve reversed and spread-out

patterns, the associated key patterns also have to be reversed and

spread-out. Thus, we must answer new questions as to where and

how key patterns for recalling reversed and spread-out patterns are

created. It is possible for a recurrent network such as the CA3

network to create and provide reversed and spread-out patterns.

The CA3 region provides one of the dominant inputs to the CA1

region [25,27]. By applying mean field approximations, our theory

of hetero-associative memory can be straightforwardly extended to

analyses of auto-associative memory. The preliminary results

suggest that the properties of sine-like PRCs of hippocampal CA3

pyramidal neurons recorded by Lengyel et al. (2005) [10] and the

typical STDP rule can support an auto-associative memory

function for recalling reversed and spread-out phase patterns.

Thus, the preliminary results and the results of this paper indicate

the possibility that a combination of the CA1 network and the

CA3 network can consistently work to retrieve reversed and

spread-out patterns. We will report on this issue in our next study.

Role of Reversed and Spread-out Pattern Retrievals
It has been considered that memories are first stored in the

hippocampus and are gradually moved to the neocortex in a more

permanent form of storage. Temporally spread-out pattern

retrieval, in which the temporal order of the memory spike

sequence is preserved and the timescale of retrieval pattern is

about two times longer, may be important for the memory

translation and system consolidation [8]. On the other hand,

temporally reversed pattern retrieval is suggestive of evaluating

event sequences in the manner of reinforcement learning models

[46]. During waking periods, reversed pattern retrieval occurs in

situ, allowing immediately preceding events to be evaluated in

precise temporal relation to the current one, and so it may be an

integral mechanism for learning about recent events [9].

Supporting Information

Figure S1 Effect of coexisting symmetric and asymmet-
ric STDP window functions in single neurons on the
memory retrieval. In this numerical simulation, we used the

PRC (cell #2 in Fig. 2B) and symmetric and asymmetric STDP

window functions (cell #2 in Figs. 4A9 and 4B9) at the same rate in

single neurons. M ~ N ~ 1000, Ns ~ 500, c ~ 20, s~0:01. (A)

Normal spike pattern retrieval (a~1). (B) Reversed pattern

retrieval (a ~{1). (C) Doubly spread-out pattern retrieval

(a~2). Left column: Time evolution of the amplitude of the overlap

between the k-th frequency component of hm (m~1,2,3) and the l-

th frequency component of w, jMm
k,l j. Center column: An example of

the memory output pattern as originally stored, h1. Right column:

The retrieval output pattern w at equilibrium (corresponding to

t~500 in left column).

(EPS)

Figure S2 Outline of the previous study by Lengyel et al.
(2005) [10]. They derive pairs of PRCs and STDP window

functions for optimally recalling the originally stored phase

pattern.

(EPS)
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