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Abstract

Matriptase is a member of the family of type II transmembrane serine proteases that is essential for development and
maintenance of several epithelial tissues. Matriptase is synthesized as a single-chain zymogen precursor that is processed
into a two-chain disulfide-linked form dependent on its own catalytic activity leading to the hypothesis that matriptase
functions at the pinnacle of several protease induced signal cascades. Matriptase is usually found in either its zymogen form
or in a complex with its cognate inhibitor hepatocyte growth factor activator inhibitor 1 (HAI-1), whereas the active non-
inhibited form has been difficult to detect. In this study, we have developed an assay to detect enzymatically active non-
inhibitor-complexed matriptase by using a biotinylated peptide substrate-based chloromethyl ketone (CMK) inhibitor.
Covalently CMK peptide-bound matriptase is detected by streptavidin pull-down and subsequent analysis by Western
blotting. This study presents a novel assay for detection of enzymatically active matriptase in living human and murine cells.
The assay can be applied to a variety of cell systems and species.

Citation: Godiksen S, Soendergaard C, Friis S, Jensen JK, Bornholdt J, et al. (2013) Detection of Active Matriptase Using a Biotinylated Chloromethyl Ketone
Peptide. PLoS ONE 8(10): e77146. doi:10.1371/journal.pone.0077146

Editor: Matthew Bogyo, Stanford University, United States of America

Received June 19, 2013; Accepted August 22, 2013; Published October 18, 2013

Copyright: � 2013 Godiksen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Faculty of Science, University of Copenhagen, Architect Holger Hjortenberg and wife Dagmar Hjortenberg’s Foundation;
Grocer Kristian Kjær and wife’s Foundation, the Kjær-Foundation; Dagmar Marshalls Foundation; Master Cabinetmaker Sophus Jacobsen and wife Astrid
Jacobsen’s Foundation; Wholesale Dealer Valdemar Foersom and wife Thyra Foersom’s Foundation; Manufacturer Einar Willumsen’s Foundation; and the
Lundbeck Foundation. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: vogel@sund.ku.dk

Introduction

Matriptase (also known as MT-SP1, epithin, TADG-15 and

SNC19) is a type II transmembrane serine protease that is

expressed in most epithelia and has pleiotropic roles in epithelial

development and homeostasis [1–5]. Matriptase is a multi-

modular, approximately 95 kDa protease that consists of a short

cytoplasmic N-terminal peptide, a signal anchor that functions as a

single-pass transmembrane domain, a sea urchin sperm protein,

enteropeptidase, agrin (SEA) domain, two complement C1r/s

urchin embryonic growth factor and bone morphogenetic protein-

1 (CUB) domains, four low-density lipoprotein receptor class A

(LDLRA) domains, and a trypsin-like serine protease domain

(SPD) [6,7].

Matriptase, like other trypsin-like serine proteases, is synthesized

as a catalytically inactive, single chain protein (zymogen). The

activation of matriptase zymogen (also termed zymogen conver-

sion) is extraordinarily complex and still incompletely understood

at the mechanistic level. Matriptase activation involves two

sequential endoproteolytic cleavages, and may also require

transient interactions with its cognate inhibitor, hepatocyte growth

factor activator inhibitor (HAI)-1 [7,8] [reviewed in [9,10]] or

HAI-2 [11]. Full-length matriptase is first hydrolysed at the

Gly149-Ser150 peptide bond, which is located in a conserved

GSVIA motif within the SEA domain, whereby the SEA

domain-cleaved zymogen form is generated. The protease remains

attached to the membrane by strong non-covalent interactions

within the cleaved SEA domain. The SEA domain cleavage

appears to occur within the secretory pathway, as only the SEA

domain-cleaved form of the protease is present on the surface of

cells [12]. Matriptase is next converted into its active conformation

by proteolytic cleavage after Arg614 within the conserved

activation cleavage site R-VVGG located within the serine

protease domain. Importantly, this cleavage has been reported

to require the proteolytic activity of matriptase, as mutations in

any of the residues of the catalytic triad renders matriptase unable

to undergo activation site cleavage. This finding has led to a model

for matriptase activation in which a weak intrinsic proteolytic

activity of the SEA domain-cleaved matriptase zymogen activates

neighboring SEA domain-cleaved matriptase molecules [7].

Consistent with this model, the purified SEA domain-cleaved

soluble matriptase has been shown to be capable of hydrolyzing

synthetic peptide substrates in solution, although catalytic activity

of the cell surface matriptase zymogen still needs to be

demonstrated [13,14].

The capacity of matriptase zymogen to autoactivate is unusual

and has led to the proposal that matriptase serves as an initiator of

proteolytic cascades. Indeed, matriptase has been shown to

facilitate activation of the urokinase plasminogen activation

cascade, of epidermal kallikreins, and of the GPI-anchored serine
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protease, prostasin [15–17]. Recent studies, however, have

unexpectedly shown that matriptase activation in some contexts

is critically dependent on prostasin [18–20]. This suggests that

prostasin may directly mediate the activation site cleavage of

matriptase, that matriptase activates an unidentified ternary

matriptase-activating protease or that prostasin serves as a non-

enzymatic allosteric co-factor for matriptase autoactivation. The

specific physiological mechanisms that trigger the complex series

of events leading to the activation of matriptase are also poorly

understood. In cultured cells, matriptase activation has been

reported to occur in response to exposure to sphingosine-1-

phosphate, suramin, androgens, low pH, and either soluble or

membrane-anchored prostasin [19,21–27].

The absence of probes to specifically detect active non-inhibitor

complexed matriptase in situ has been a principal obstacle in

unraveling the complex biochemistry of the protease. In this

paper, we have combined antibody specificity with the high

affinity of biotin-streptavidin interaction to design a peptide

inhibitor-based assay for the detection of matriptase activity.

Specifically, we have engineered a chloromethyl ketone-based

tetra-peptide with an N-terminal biotin moiety that allows for the

segregation of non-reacting proteins, including forms of matriptase

that are not able to bind the peptide. Specificity of the assay is

obtained by Western blot analysis employing specific antibodies

against matriptase. We validate the probe in human and murine

cell-based models, show that active matriptase represent only a

minor fraction of total cell surface matriptase, and demonstrate

that cell surface matriptase zymogen is catalytically active.

Materials and Methods

Chromogenic assay
Matriptase SPD expressed and purified from P. pastoris [28] was

prepared in 20 mM Hepes pH 7.4, 140 mM NaCl supplemented

with 0.1% BSA (Sigma-Aldrich, Copenhagen, Denmark) and

100 ml was added to wells of a 96 well plate at a concentration of

0.4 nM. Stocks of varying concentrations (5 nM or 50 mM) of

biotin-Arg-Gln-Arg-Arg-CMK (biotin-RQRR-CMK) peptide

(American Peptide, Derbyshire, UK) were incubated in the same

buffer at 37uC for up to 3 h. At specific time points, 100 ml of

inhibitor solution was added to the well containing the active

catalytic domain of matriptase. Following additional 10 min

incubation at 37uC, 10 ml 6.3 mM chromogenic substrate H-D-

Isoleucil-L-prolyl-L-arginine-p-nitroaniline (cat. no. S2288, Chro-

mogenix, Essen, Germany) was added and substrate conversion

was followed in a standard plate reader by 30 min continuous

measurements of the absorbance at 405 nm at 37uC. The rate of

substrate turnover was determined from the slope of the

corresponding curve of color development resulting from a pseudo

first order reaction. To test pH effects on substrate turnover and

biotin-RQRR-biotin binding efficiency, the buffer component of

the assay was changed from Hepes, pH 7.4 to 20 mM Citric acid

pH 6.0.

Cell culture
The human colon epithelial cell line Caco-2 [29] was grown in

Dulbecco’s modified Eagle medium supplemented with 2 mM L-

glutamine, 20% fetal bovine serum (Gibco, Copenhagen, Den-

mark), 16 non-essential amino acids, 100 units/ml penicillin and

100 mg/ml streptomycin (Invitrogen, Copenhagen, Denmark) at

37uC in an atmosphere of 5% CO2. For all experiments, 1–26106

cells were seeded into 35 mm tissue culture plates or 0.4 mm-pore-

size 24 mm TranswellH filters (Corning, Copenhagen, Denmark)

allowing separate access to the apical and the basolateral plasma

membrane. The cell culture medium was changed every day.

Filter-grown cells were cultivated until 11 days post-confluence

before they were used in experiments. The tightness of filter-grown

cells was assayed by filling the inner chamber to the brim and

allowing it to equilibrate overnight.

Ethics Statement
All animal work was performed in accordance with protocols

approved by the National Institute of Dental and Craniofacial

Research Animal Care and Use Committee (Animal Study

Proposal Number: 10-577).

Isolation and short-term culture of primary keratinocytes
from newborn mice

Epidermis was isolated from newborn mice (p1-2) and grown in

culture as previous described [30]. Briefly, newborn pups were

euthanized by decapitation and the torso was submerged in

betadine and ethanol to sterilize the skin. The skin was incubated

in 0.25% trypsin w/o EDTA (Sigma-Aldrich) o/N at 4uC. The

dermal portion was discarded, and the epidermis was minced to

release keratinocytes. The minced epidermis was resuspended in

45 mM Ca2+/10% FBS/Keratinocyte-SFM (Invitrogen) media

and was filtered through a 100 mm cell strainer and centrifuged to

remove stratum corneum pieces. The cell pellet was resuspended

in low calcium medium (45 mM Ca2+/Keratinocyte-SFM media)

and plated in culture plates coated with collagen I (BD

Biosciences, New Jersey, USA). Cells were grown in low calcium

medium to sub-confluence and cell culture medium was changed

every second day.

Labeling with biotin-Arg-Gln-Arg-Arg-chloromethyl
ketone (biotin-RQRR-CMK) peptide inhibitor and S-NHS-
SS-biotin

Cells were washed twice; filter-grown Caco-2 cells with PBS++

(PBS supplemented with 0.7 mM CaCl2 and 0.25 mM MgCl2)

and primary murine keratinocytes with PBS. For labeling of active

matriptase, cells were incubated with 50 mM biotin-RQRR-CMK

(American Peptide) in serum-free minimal essential medium

(MEM) eagle with Earle’s supplemented with 0.2% NaHCO3,

100 units/ml penicillin and 100 mg/ml streptomycin (Invitrogen)

at 37uC for the times indicated. As a negative control, cells were

treated with 50 mM of a corresponding peptide without a CMK

group; biotin-Arg-Gln-Arg-Arg (biotin-RQRR). Peptides were

prepared as 50 mM stocks in DMSO and were stored at

220uC. For acid-induced activation of matriptase, cells were

labeled in a physiological phosphate buffer (25 mM Na2HPO4,

175 mM NaH2PO4) pH 6.0 or pre-treated with physiological

phosphate buffer pH 6.0 before labeling in serum-free MEM eagle

with Earle’s supplemented with 0.2% NaHCO3, 100 units/ml

penicillin and 100 mg/ml streptomycin. For labeling of surface

proteins, cells were biotinylated from the basolateral side with

1 mg/ml EZ-linkTM Sulfo-NHS-SS-Biotin (Pierce) dissolved in

PBS++ for 30 min at 4uC as previously described [31]. After

peptide- and/or ordinary biotin-labeling, the cells were washed

four times with ice-cold PBS++. For biotin-labeling, residual biotin

was quenched with 50 mM glycine/PBS++ for 5 min at 4uC and

the cells were washed twice with PBS++. Cells were lysed in PBS

containing 1% Triton X-100, 0.5% deoxycholate and protease

inhibitors (10 mg/l benzamidine, 2 mg/l pepstatin A, 2 mg/l

leupeptin, 2 mg/l antipain, and 2 mg/l chymostatin). Insoluble

material was precipitated at 20,0006g for 20 min at 4uC and equal

amounts of supernatants were transferred to clean Eppendorf

tubes.

Detection of Active Matriptase
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Streptavidin pull down
Cleared lysates were incubated for 2 h with end-over-end

rotation at 4uC with 50 ml/24 mm filter pre-washed streptavidin-

coated resin (Pierce), prepared as described by manufacturer. The

streptavidin-coated resin was washed four times with 25 mM

TRIS-HCl, 500 mM NaCl, 0.5% Triton X-100, pH 7.8, and

three times with 10 mM TRIS-HCl, 150 mM NaCl, pH 7.8.

Biotinylated proteins were eluted from the streptavidin-coated

resin by boiling in SDS sample buffer.

SDS-PAGE and Western blotting
Proteins were separated on 10% acrylamide gels and transferred

to Immobilon-P PVDF membranes (Millipore, Copenhagen,

Denmark). The membranes were blocked with 10% non-fat dry

milk in PBS containing 0.1% Tween-20 (PBS-T) for 1 hr at RT

and were probed with primary antibody diluted in 1% non-fat dry

milk in PBS-T at 4uC o/N. The next day the membranes were

washed 3 times with PBS-T, followed by detection of bound

primary antibody with horseradish peroxidase (HRP)-conjugated

secondary antibody (Pierce) or alkaline phosphatase (AP)-conju-

gated secondary antibody (Sigma-Aldrich). After 3 washes with

PBS-T, the signal was developed using the ECL reagent Super

Signal West Femto Maximum Sensitivity Substrate (Pierce) for

HRP-conjugated secondary antibodies according to the protocol

supplied by the manufacturer and visualized with a Fuji LAS1000

camera (Fujifilm, Stockholm, Sweden) or by nitro-blue tetrazolium

and 5- bromo-4-chloro-39-indolyphosphate (Pierce) according to

the protocol supplied by the manufacturer for AP-conjugated

secondary antibody.

Antibodies
The antibodies used for detection of matriptase in Western

blotting were monoclonal mouse anti-human matriptase antibody

M32 or monoclonal mouse anti-human matriptase antibody M24

(1 mg/ml 1% milk in PBS-T), which detects a 70 kDa band

(representing both active and zymogen matriptase both in boiled

and non-boiled samples) and the 120–130 kDa complex of

matriptase with HAI-1, which can only be detected in non-boiled

samples [32]; monoclonal mouse anti-human matriptase antibody

M69 (1 mg/ml 1% milk in PBS-T), which recognizes the 120–

130 kDa complex of matriptase with HAI-1 [32]; monoclonal

mouse anti-human HAI-1 antibody M19 (1 mg/ml 1% milk in

PBS-T), which recognizes free 55 kDa HAI-1 and the 120–

130 kDa matriptase-HAI-1 complex [32]; polyclonal rabbit anti-

human matriptase (1.5 mg/ml 1% milk in PBS-T) raised against

the SPD of matriptase recognizing a 70 kDa band (both active and

zymogen matriptase) under non-reducing conditions and the

70 kDa zymogen form and the 30 kDa serine protease domain of

cleaved matriptase under reducing conditions (Cat. no. IM1014,

Calbiochem). For detection of matriptase in murine cells, sheep

anti-matriptase was used (AF3946 diluted 1:1000, R&D). Second-

ary antibodies include goat anti-mouse HRP-conjugated (2 ng/ml

1% milk in PBS-T) (Pierce), goat anti-rabbit HRP-conjugated

(1.5 mg/ml 1% milk in PBS-T) (Pierce) and donkey anti-sheep AP-

conjugated (2 ng/ml 1% milk in PBS-T) (Sigma-Aldrich).

Results

Biotin-RQRR-CMK peptide inhibitor designed to react
with active matriptase

In order to detect active matriptase, we designed the peptide-

based probe, biotin-RQRR-CMK, consisting of a tetra-peptide;

RQRR with an N-terminal biotin moiety and a C-terminal CMK

group (figure 1A). This inhibitor was designed based on a

preferred substrate sequence of matriptase [33]. The CMK group

ensures that the protease-peptide interaction results in the

formation of a covalent bond between the peptide and the

protease, thereby attaching a biotin moiety to the now inactivated

enzyme [34]. In a complex media, the biotin group allows for

efficient isolation of biotin-RQRR-CMK-labeled proteases and

endogenously biotinylated proteins by streptavidin precipitation,

whereby catalytically-inactive matriptase not able to bind the

substrate is segregated away [35].

Biotin-RQRR-CMK inhibits the proteolytic activity of
matriptase SPD in vitro

To verify that biotin-RQRR-CMK binds and inhibits matrip-

tase, we tested whether the peptide inhibitor was able to block the

hydrolysis of a chromogenic substrate by recombinant matriptase

SPD. Although matriptase has a pH optimum at pH 9 [33], this

assay was performed at pH 7.4 in order to mimic the conditions

on the plasma membrane. We found that 50 mM biotin-RQRR-

CMK renders 0.2 nM matriptase SPD unable to cleave the

chromogenic substrate (figure 1B, crosses), whereas matriptase

SPD in the absence of biotin-RQRR-CMK cleaved the substrate

efficiently (figure 1B, squares). Chloromethyl ketones are known to

be hydrolyzed in aqueous solutions often with a half life 5–20 min

[34]. To test the stability of the inhibitor, 50 mM biotin-RQRR-

CMK was pre-incubated in aqueous solution at 37uC for 180 min

before being added to the matriptase SPD. We found that the

remaining active fraction of the pre-incubated biotin-RQRR-

CMK is still sufficient to efficiently inhibit the activity of 0.2 nM

matriptase SPD (figure 1B, diamonds). To further explore the

stability of biotin-RQRR-CMK in aqueous solution, 0.2 nM

matriptase SPD was incubated with just 5 nM biotin-RQRR-

CMK after various times of pre-incubation at 37uC. Our

experiments show that 5 nM biotin-RQRR-CMK is capable of

fully inhibiting the peptidolytic activity of 0.2 nM matriptase SPD

(figure 1C, crosses) even after 60 min of pre-incubation at 37uC
(figure 1C, circles) whereas pre-incubation for 120 min or longer

gradually reduces the efficiency of biotin-RQRR-CMK inhibition

(figure 1C, stars and diamonds). This shows that biotin-RQRR-

CMK is an efficient inhibitor of matriptase SPD and that biotin-

RQRR-CMK is sufficiently stable in aqueous solutions to conduct

the experiments described below. We have roughly estimated the

half-life of biotin-RQRR-CMK to be 25 min under the experi-

mental conditions described (data not shown).

Biotin-RQRR-CMK reacts with a subset of matriptase
molecules on the surface of cells in culture

Next, we addressed whether the biotin-RQRR-CMK peptide

inhibitor is able to bind active matriptase on the surface of cells in

culture. Differentiated Caco-2 cells express matriptase that can be

detected mainly in the SEA domain-cleaved zymogen form but

also in the Arg614-cleaved form in complex with HAI-1 [36,37].

We have previously shown that activation site cleavage of

matriptase after Arg614 takes place on the basolateral plasma

membrane of 11 days post-confluent Caco-2 cells [36] indicating

that these cells should at least momentarily contain Arg614-

cleaved matriptase not in complex with HAI-1 on the basolateral

plasma membrane if it exists. Therefore, in order to test whether

biotin-RQRR-CMK is able to bind to plasma membrane-

associated matriptase, we treated 11 days post-confluent filter-

grown Caco-2 cells with biotin-RQRR-CMK from the basolateral

side at 37uC for 2–180 min or at 4uC for 180 min. The inhibitor-

treated cells were lysed, and biotin-RQRR-CMK-labeled prote-

ases were extracted from cleared lysates using streptavidin-coated

Detection of Active Matriptase
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resin. Proteins were released from the resin by boiling in SDS

sample buffer. Due to substrate overlap of matriptase with other

trypsin-like serine proteases [33], we detected active matriptase by

Western blot analysis using a matriptase specific antibody. To

assess the steady state level of total surface-associated matriptase,

parallel cultures were surface-biotinylated with S-NHS-SS-biotin

at 4uC, whereby protein transport is inhibited. S-NHS-SS-biotin is

plasma membrane impermeable and reacts with amine groups in

an unspecific manner and therefore in this setup labels membrane-

bound proteins in general.

Matriptase endogenously expressed by Caco-2 cells binds

biotin-RQRR-CMK, as demonstrated by Western blotting

(figure 2A, lanes 4–6), and no matriptase could be detected when

labeling with a control peptide; biotin-RQRR (figure 2A, lane 2:

CTRL). This shows that matriptase is not endogenously

biotinylated. Biotin-RQRR-CMK labeling displayed time and

temperature dependence. The amount of matriptase reacting with

biotin-RQRR-CMK within a 2 min labeling time frame was

below the detection limit of the assay (figure 2A, lane 3). Likewise,

labeling with biotin-RQRR-CMK at 4uC produced no significant

signal (figure 2A, lane 7). Comparison of steady state surface-

associated matriptase as determined by biotinylation with S-NHS-

SS-biotin to the accumulated biotin-RQRR-CMK labeled

matriptase over a 30 min period or longer shows that only a

fraction of surface-associated matriptase on Caco-2 cells is able to

bind biotin-RQRR-CMK (figure 2A, compare lane 1 to lanes 4–

6). In the experiments described above, we are not able to

distinguish whether the biotin-RQRR-CMK-reactive matriptase is

present on the cell surface or whether biotin-RQRR-CMK is

endocytosed and encounters matriptase in an intracellular

compartment, as labeling was performed at 37uC. To verify that

the biotin-RQRR-CMK-reactive matriptase is present on the

plasma membrane, we performed a similar experiment, labeling

11 days post-confluent filter-grown Caco-2 cells from either the

apical or the basolateral side for 180 min at 4uC or 37uC in

triplicates and pooled the resulting cell lysates. This experiment

showed that biotin-RQRR-CMK reactive matriptase is present on

the basolateral plasma membrane at low levels, whereas reactive

matriptase could not be detected on the apical plasma membrane

of Caco-2 cells (figure 2B). Together this shows that only a fraction

of the membrane-associated matriptase on the basolateral plasma

membrane of Caco-2 cells binds biotin-RQRR-CMK. Biotin-

RQRR-CMK also reacts with other serine proteases, as prostasin

could be detected in the streptavidin pull-downs of biotin-RQRR-

CMK labeled cells when analyzed by Western blotting using a

prostasin specific antibody (data not shown), emphasizing that

specificity of the assay depends on the antibody used for the

Western blot analysis.

Biotin-RQRR-CMK does not react with the matriptase-
HAI-1 complex

After Arg614 cleavage, matriptase rapidly forms a non-covalent,

but SDS-resistant complex with HAI-1 that can be detected by

SDS-PAGE under non-reducing conditions [32]. In order to

investigate whether biotin-RQRR-CMK binds to the matriptase-

HAI-1 complex, we took advantage of the fact that cells exposed to

slightly acidic conditions have been reported to rapidly convert

matriptase from the SEA domain-cleaved form into the Arg614-

cleaved form of matriptase in complex with HAI-1 [21–23]. First,

we verified that exposure to slightly acidic conditions also converts

SEA domain-cleaved matriptase into a complex of Arg614-cleaved

matriptase with HAI-1 in Caco-2 cells. For this purpose, 11 days

Figure 1. Biotin-RQRR-CMK efficiently inhibits matriptase even after 3 hours of pre-incubation at 376C. (A) Schematic structure of the
biotin-RQRR-CMK peptide inhibitor. (B) The reactivity of biotin-RQRR-CMK was tested after 180 min of pre-incubation at 37uC (diamonds) or without
preincubation (crosses). 0.2 mM matriptase SPD was incubated for 10 min at 37uC with (diamonds and crosses) or without (squares) 50 mM biotin-
RQRR-CMK before addition of the chromogenic substrate to a final concentration of 300 mM. (C) The stability of 5 nM biotin-RQRR-CMK was further
tested after the time points 0 (crosses), 60 (circles), 120 (stars), and 180 min (diamonds) of pre-incubation at 37uC and compared to a control not
containing biotin-RQRR-CMK (squares). As described above, 0.2 nM matriptase SPD was added to each sample and incubated for 10 min at 37uC
followed by addition of the chromogenic substrate to a final concentration of 300 mM. In all cases, the enzymatic activity of SPD was monitored by
conversion of the chromogenic substrate (S2288). Each plot shows the change in optical density at 405 nm of the reaction mixture as a function of
reaction time. The presence of active protease results in a continued release of a yellow cleavage product resulting in a linear color development in
agreement with a pseudo 1st order reaction due to the high molar excess of substrate to protease. Results shown are representative of 3 independent
experiments.
doi:10.1371/journal.pone.0077146.g001
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post-confluent filter-grown Caco-2 cells were treated with phys-

iological phosphate buffer pH 6.0 for 20 min (figure 3A, lanes 2, 4,

6, and 8) or left untreated (figure 3A, lanes 1, 3, 5, and 7). The cells

were lysed and the two lysates were investigated by Western

blotting under non-boiled and non-reducing conditions (figure 3A,

lanes 1–4 and 7–8) and under reducing conditions (figure 3A, lanes

5 and 6) using different antibodies recognizing matriptase, HAI-1,

and their complex. Untreated Caco-2 cells mainly contained

matriptase that is not in complex with HAI-1 as it migrates as a

70 kDa band under non-boiled and non-reducing conditions

(figure 3A, lane 1). This material is mainly in the SEA domain-

cleaved form, as it migrates at 85 kDa under reducing conditions

(figure 3A lane 5). Caco-2 cells treated with a pH 6.0 buffer

contain matriptase mainly in complex with HAI-1, as it migrates

as 130 kDa under non-boiled and non-reducing conditions

(figure 3A, lanes 2 and 4) and can be detected using antibodies

against HAI-1 (figure 3A, lane 8). Most of this material is in the

Arg614-cleaved form, as it migrates as two bands around 25–

30 kDa under reducing conditions (figure 3A, lane 6). Thus,

treatment with physiological phosphate buffer pH 6.0 induces

cleavage of matriptase after Arg614 and complex formation with

HAI-1 in Caco-2 cells.

To investigate whether Arg614-cleaved matriptase is able to

react with biotin-RQRR-CMK at pH 6.0, we measured the

catalytic activity of matriptase SPD at this pH in the presence and

absence of biotin-RQRR-CMK in the chromogenic assay

described above (figure 1). Matriptase SPD was able to cleave

the chromogenic substrate at pH 6.0, although at a lower rate

than at neutral pH (compare figure 3B, squares to figure 1B,

squares). When 50 mM biotin-RQRR-CMK was added to the

reaction, no cleavage of the substrate was observed (figure 3B,

crosses). Thus, biotin-RQRR-CMK is still able to inhibit

matriptase SPD-mediated substrate hydrolysis at pH 6.0, which

allows us to test whether biotin-RQRR-CMK can label matriptase

in complex with HAI-1. For this purpose, we employed

physiological phosphate buffer pH 6.0 to induce cleavage of

matriptase after Arg614 and matriptase-HAI-1 complex forma-

tion. Eleven days post-confluent filter-grown Caco-2 cells were

treated with 50 mM biotin-RQRR-CMK from the basolateral side

at 37uC for 30 min under different conditions; labeling with

biotin-RQRR-CMK at pH 7.4 (figure 4, lanes 3 and 7), labeling

with biotin-RQRR-CMK in physiological phosphate buffer

pH 6.0 (figure 4, lanes 4 and 8), or pre-treatment with

physiological phosphate buffer pH 6.0 for 30 min followed by

labeling with biotin-RQRR-CMK at pH 7.4 for 30 min (figure 4,

lanes 5 and 9). Additional controls were lysates of untreated cells

(figure 4, lane 1) and cells treated with physiological phosphate

buffer pH 6.0 (figure 4, lane 2) to confirm pH 6.0 induced

complex formation between matriptase and HAI-1. In all cases,

aliquots of the total lysates (figure 4, lanes 1–5) as well as the boiled

streptavidin pull downs were analyzed in Western blot analysis

(figure 4, lanes 6–9).

Exposure to low pH clearly induced matriptase-HAI-1 complex

formation (figure 4, compare lanes 1 and 2). Biotin-RQRR-CMK

labeling of matriptase was detected when labeling was performed

at pH 7.4 (figure 4, lane 7) and pH 6.0 (figure 4, lane 8) but not

when the cells had been exposed to pH 6.0 for 30 min to induce

matriptase-HAI-1 complex formation before labeling with biotin-

RQRR-CMK figure 4, lanes 9). These results suggest that

matriptase-HAI-1 complex is not labeled with biotin-RQRR-

CMK. It was also observed that HAI-1 and biotin-RQRR-CMK

compete for binding to matriptase as reduced levels of matriptase-

HAI-1 complex is formed in the presence of biotin-RQRR-CMK

as compared to in the absence of biotin-RQRR-CMK (figure 4,

compare lanes 2 and 4). Higher levels of biotin-RQRR-CMK

reactive matriptase was observed when labeling was performed at

pH 6.0 as compared to pH 7.4 (figure 4, compare lanes 7 and 8)

despite the lower specific activity of matriptase at pH 6.0

compared to pH 7.4 (figure 1B squares compared to figure 3B

squares and [33]). Presumably cleavage of matriptase after Arg614

occurs both at pH 6.0 and at pH 7.4 albeit not at the same rate.

We interpret the increased formation of biotin-RQRR-CMK

labeling at pH 6.0 to be due to a time window between cleavage of

matriptase after Arg614 and formation of the matriptase-HAI-1

complex.

Biotin-RQRR-CMK reacts with both SEA domain-cleaved
and Arg614-cleaved matriptase

To investigate whether the biotin-RQRR-CMK reactive

matriptase present on Caco-2 cells includes both SEA

Figure 2. Biotin-RRQR-CMK reacts with a subset of matriptase molecules on the surface of Caco-2 cells. (A) Eleven days post-confluent
Caco-2 cells grown on Transwell filters were labeled with 50 mM biotin-RQRR-CMK from the basolateral side for the times indicated (2–180 min) at
37uC (lanes 3–6) or for 180 min at 4uC (lane 7). As a measure of the steady state level of matriptase, membrane proteins on the basolateral plasma
membrane of filter-grown Caco-2 cells were labeled by incubation with S-NHS-SS-biotin at 4uC for 30 min (lane 1). As a negative control, cells were
labeled from the basolateral side with 50 mM control peptide; biotin-RQRR (lane 2). All cells were lysed and biotinylated proteins were precipitated
using streptavidin-coated resin and were analyzed by non-reducing SDS-PAGE and Western blotting using the monoclonal matriptase antibody; M32.
A tenth of the surface biotinylated sample was loaded (lane 1); whereas total sample volume was loaded for the other samples (lanes 2-7). (B) Caco-2
cells grown on Transwell filters were labeled with the biotin-RQRR-CMK peptide inhibitor from either the apical (lanes 1, 4, and 7) or the basolateral
(lanes 2, 5, and 8) side for 180 min at either 4uC or 37uC. An overexposure of lanes 1–3 is shown in lanes 7–9. As a negative control, cells were labeled
from the basolateral side with a peptide corresponding to the inhibitory peptide but lacking the CMK moiety (CTRL, lanes 3, 6, and 9). Cells were lysed
and the lysates of multiple filters were pooled. Biotinylated proteins were precipitated using streptavidin-coated resin and the streptavidin pull
downs were released by boiling in SDS-PAGE samples buffer and analyzed by SDS-PAGE and Western blotting using the monoclonal M32 antibody.
Positions of the molecular weight markers (kDa) are indicated on the left. Results shown are representative of 3 independent experiments.
doi:10.1371/journal.pone.0077146.g002
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domain-cleaved and Arg614-cleaved matriptase, 11 days post-

confluent filter-grown Caco-2 cells were labeled with biotin-

RQRR-CMK from the basolateral side for 180 min at 37uC.

Biotin-RQRR-CMK labeled proteases were precipitated with

streptavidin-coated resin, and subjected to reducing SDS-PAGE.

Samples were analyzed by Western blot analysis using an antibody

against matriptase SPD (IM1014). Under reducing conditions,

matriptase could be detected both as the 70 kDa form represent-

ing SEA domain-cleaved matriptase and the 25-30 kDa forms

representing Arg614-cleaved matriptase (figure 5, lane 2). No

matriptase could be detected when labeling Caco-2 cells with the

control peptide; biotin-RQRR (figure 5, lane 1: CTRL). This

indicates that both Arg614-cleaved matriptase not in complex with

HAI-1 and the SEA domain-cleaved matriptase zymogen is

present on the basolateral plasma membrane of Caco-2 cells.

Biotin-RQRR-CMK also reacts with murine matriptase
The described assay can be easily modified to detect active

matriptase from other species, as the specificity of the assay

depends only on the antibody used. To verify this, the presence of

active matriptase was investigated in cultured primary murine

keratinocytes. Keratinocytes from the skin of matriptase wildtype

(WT) and matriptase-deficient (KO) newborn pups were isolated,

plated on collagen-coated plastic and labeled with 50 mM biotin-

RQRR-CMK at subconfluence for 180 min at 37uC or labeled

with S-NHS-SS-biotin for 30 min at 4uC to assess surface-

associated matriptase. As a negative control, keratinocytes were

labeled with biotin-RQRR. Equal aliquots of cleared lysates were

analyzed by Western blot for total matriptase, prior to streptavidin

pull down of biotinylated proteins. Proteins were released from the

streptavidin-coated resin by boiling in SDS sample buffer and

analyzed by Western blotting. While at very low levels, we were

able to detect biotin-RQRR-CMK reactive matriptase by labeling

of keratinocytes isolated from mice expressing matriptase with

biotin-RQRR-CMK (figure 6, lane 2). No matriptase was detected

when labeling with the corresponding control peptide; biotin-

RQRR (figure 6, lane 3). No matriptase could be detected in

lysates or pull downs of keratinocytes from matriptase-deficient

mice (figure 6, lanes 4–6 and 10–12), whereas matriptase was

Figure 3. Arg614-cleaved matriptase is able to form complexes with HAI-1 and biotin-RQRR-CMK at pH 6.0. (A) Eleven days post-
confluent filter-grown Caco-2 cells were treated with either a physiologically phosphate buffer pH 6.0 for 20 min (lanes 2, 4, 6, and 8) from both the
apical and the basolateral side or left untreated (lanes 1, 3, 5, and 7). Cells were lysed and lysates were analyzed by Western blotting using antibodies
against total matriptase (M24; lanes 1 and 2), matriptase SPD (IM1014; lanes 5 and 6), matriptase-HAI-1 complex (M69; lanes 3 and 4) and HAI-1 (lanes
7 and 8). Samples in lanes 1–4, 7, and 8 were not boiled to avoid dissociation of matriptase-HAI-1 complexes, while samples in lanes 5 and 6 were
boiled and reduced to dissociate the S-S bridged SPD from the stem domain of activated matriptase in order to distinguish between the SEA domain-
cleaved form (70 kDa) and the Arg614 cleaved form (25–30 kDa). Treatment with phosphate buffer pH 6.0 and DTT is indicated by +/2. Positions of
the molecular weight markers (kDa) are indicated on the left. (B) A solution of 0.2 mM SPD was incubated for 10 min at 37uC with (crosses) or without
(squares) 50 mM biotin-RQRR-CMK before addition the chromogenic substrate to a final concentration of 300 mM. All experiments were performed in
20 mM citric acid buffer pH 6.0, 140 mM NaCl and 0.1% BSA at 37uC. Results shown are representative of 3 independent experiments.
doi:10.1371/journal.pone.0077146.g003

Figure 4. Biotin-RQRR-CMK does not react with matriptase-
HAI-1 complexes. Eleven days post-confluent Caco-2 cells grown on
Transwell filters were labeled with 50 mM biotin-RQRR-CMK at pH 7.4
(lanes 3 and 7), in physiological phosphate buffer pH 6.0 (lanes 4 and 8),
or at pH 7.4 with a 30 min pre-incubation treatment with physiological
phosphate buffer pH 6.0 (lanes 5 and 9) for 30 min at 37uC. All cells
were lysed and samples of lysates were analyzed under non-boiled and
non-reducing conditions (lanes 1–5). Labeled proteases in the lysates
were precipitated using streptavidin-coated resin and released from the
beads by boiling (lanes 7–9). The streptavidin pull downs were analyzed
by SDS-PAGE and Western blotting (lanes 6–9). As a negative control,
lysate of cells treated with only physiological phosphate buffer pH 6.0
for 30 min was also streptavidin-precipitated and analyzed (CTRL, lanes
6). All lanes were analyzed using the M32 antibody. Positions of the
molecular weight markers (kDa) are indicated on the left. Results shown
are representative of 3 independent experiments.
doi:10.1371/journal.pone.0077146.g004
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easily detected in all lysates of the 3 differently treated keratinocyte

cultures from mice expressing WT matriptase (figure 6, lanes 7–9).

Comparison of S-NHS-SS biotin labeling and biotin-RQRR-

CMK labeling of WT murine keratinocytes showed that only a

fraction of surface-associated matriptase on WT keratinocytes cells

could be detected by means of biotin-RQRR-CMK (figure 6,

compare lanes 1 and 2). This suggests that biotin-RQRR-CMK

and the described assay can be applied for a range of cell systems

as well as other species when an appropriate antibody is used.

Discussion

Due to the importance of the membrane-anchored serine

protease matriptase in physiological and pathological processes [2–

4,38–43], it would be advantageous to be able to detect active

matriptase in cell culture samples in a simple and inexpensive way.

Several assays to detect active matriptase have been established,

but they are either indirect [18,36] or technical demanding, e.g.

requiring access to a 2D fluorescent imager [44].

This study describes a simple and efficient assay for detection of

active matriptase in cultured cells by combining antibody

specificity, the high affinity of the biotin-streptavidin interaction,

and a specifically designed chloromethyl ketone peptide inhibitor;

biotin-RQRR-CMK.

In the present study, live cells in culture were allowed to react

with biotin-RQRR-CMK for a period of time after which surplus

biotin-RQRR-CMK was thoroughly washed away, followed by

lysis of the cells and isolation and analysis of the biotinylated

proteins. It is therefore unlikely, that activation of matriptase and/

or labeling occurs after lysis of the cells. We have used Caco-2 cells

as a model in the present study since Caco-2 cells have an

endogenous expression of matriptase and all necessary auxiliary

proteins required for matriptase activation. We have previously

shown that cleavage of matriptase after Arg614 takes place on the

basolateral plasma membrane of 11 days post confluent Caco-2

cells [36], confirming that matriptase is activated in these cells.

Recent studies show that the SEA domain-cleaved zymogen

form of matriptase is at least partially biologically active

[13,14,45]. It is accepted that the zymogen form of serine

proteases can exhibit proteolytic activity without being proteolyt-

ically activated. Zymogen activity is described by the zymogenicity

factor, which is the ratio between the catalytic efficiency of the

activated form and the zymogen form. The zymogenicity for most

proteases is in the range of 103–106, which means that the

zymogen is virtually inactive [46]. However, for some proteases

the zymogenicity is as low as 3–9 as seen for tPA [47–51]. The

zymogenicity for rat matriptase towards a small model substrate in

vitro has been determined to 27 [13,14,52]. This suggests that the

zymogen form of matriptase has significant proteolytic acitivity. It

is generally believed that zymogens as in the case of matriptase

alternates between different conformations, one in which the

conformation of the active site and underlying catalytic machinery

resemble that of the active enzyme [51] and it can therefore be

expected that only part of the SEA-domain cleaved zymogen

matriptase is in the active conformation.

We would ideally prefer the assay to detect the Arg614-cleaved

form of matriptase in addition to the active SEA domain-cleaved

zymogen form, but not the inactive SEA domain-cleaved form and

not the inhibitor-bound form of matriptase.

We clearly show that biotin-RQRR-CMK reacts with the

Arg614-cleaved form of matriptase, as represented by both

purified SPD and matriptase endogenously expressed by Caco-2

cells. Biotin-RQRR-CMK inhibits matriptase SPD-mediated

substrate hydrolysis and biotin-RQRR-CMK-labeled matriptase

can be detected as 25–30 kDa bands under boiling and reducing

conditions from lysates of 11-days post confluent Caco-2 cells as

would be expected of Arg614-cleaved matriptase (figure 5, lane 2).

We have previously shown that at steady state, matriptase

expressed by 11 days post confluent Caco-2 cells is primarily

present on the plasma membrane [36] and mainly present in the

SEA domain-cleaved zymogen form (figure 3, lane 5). Our results

show that biotin-RQRR-CMK reacts with the SEA domain-

cleaved matriptase, as labeling of Caco-2 cells with biotin-RQRR-

CMK also result in a 85 kDa band under boiled and reducing

conditions as would be expected for the active SEA domain-

cleaved matriptase.

Biotin-RQRR-CMK is an efficient inhibitor of matriptase at the

concentrations used and biotin-RQRR-CMK and NHS-SS-biotin

have approximately the same molecular weight and half-life.

However, even though we detected an efficient labeling of

matriptase on the basolateral plasma membrane with NHS-SS-

biotin, only low levels of biotin-RQRR-CMK-reactive matriptase

could be detected. This suggests that large amount of SEA

domain-cleaved matriptase was present and accessible but only a

fraction of it in a biotin-RQRR-CMK reactive form. Our

interpretation of this is that biotin-RQRR-CMK only reacts with

the ‘‘active’’ form SEA domain-cleaved zymogen form of

Figure 5. Biotin-RQRR-CMK detects both SEA domain-cleaved
zymogen matriptase and Arg614-cleaved matriptase. Eleven
days post-confluent Caco-2 cells grown on Transwell filters were labeled
with 50 mM biotin-RQRR-CMK from the basolateral side for 180 min at
37uC. As a negative control, cells were labeled from the basolateral side
with 50 mM control peptide; biotin-RQRR (CTRL), under the same
conditions. Labeled proteases were precipitated using streptavidin-
coated resin and the streptavidin pull downs were analyzed by
reducing SDS-PAGE and Western blotting using the IM1014 antibody
raised against matriptase SPD. Positions of the molecular weight
markers (kDa) are indicated on the left and position of SEA domain-
cleaved zymogen matriptase and matriptase SPD is indicated on the
right. Results shown are representative of 3 independent experiments.
doi:10.1371/journal.pone.0077146.g005
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matriptase, which only constitute a fraction of the total SEA

domain-cleaved matriptase.

The biotin-RQRR-CMK seems not to react with matriptase in

complex with HAI-1. We show that SEA domain-cleaved

matriptase after exposure to pH 6.0 for 30 min at 37uC efficiently

induces activation of matriptase and matriptase-HAI-1 complex

formation. We have previously shown that endocytosis of

biotinylated matriptase-HAI-1 complex from the basolateral

plasma membrane of 11 days post-confluent Caco-2 cells takes

more than an hour [36]. In the present study, a 30 min incubation

at pH 6.0 was needed for maximum matriptase-HAI-1 complex

formation to take place which was followed by treatment with

biotin-RQRR-CMK. We therefore expect that at least part of the

matriptase-HAI-1 complex formed after exposure to pH. 6.0 for

30 min were exposed to biotin-RQRR-CMK suggesting that

matriptase-HAI-1 does not bind the biotin-RQRR-CMK inhib-

itor.

Thus the data suggest that the biotin-RQRR-CMK peptide

reacts with two active forms of matriptase; the Arg614-cleaved

form and the active SEA domain-cleaved form but not the inactive

SEA domain uncleaved form and not with the matriptase-HAI-1

complex.

For most proteases, the serine protease domain cleaved form is

also the biologically active form. However, we recently showed

that zymogen-locked matriptase is able to activate prostasin [45].

This suggests that at least under some circumstances the SEA

domain-cleaved zymogen form of matriptase is the biologically

active form. It has been difficult experimentally to detect the non-

complexed Arg614-cleaved active form of matriptase [21,53]. This

is probably due to a low abundance of non-complexed Arg614-

cleaved active matriptase. However, data obtained in the present

study suggests that Arg614-cleaved matriptase not in complex with

HAI-1 does exist albeit at very low concentrations as biotin-

RQRR-CMK clearly binds Arg614-cleaved matriptase. For some

time it was speculated that the matriptase-HAI-1 complex was

formed before or concomitantly with matriptase cleavage after

Arg614. However, when comparing biotin-RQRR-CMK labeling

at pH 7.4 with labeling at pH 6.0 it is clear that even though

matriptase activity is lower at pH 6.0 (figure 3B squares, [33]) than

at pH 7.4 (figure 1B squares) more matriptase reacts with biotin-

RQRR-CMK at pH 6.0. This suggests that a time window exists,

in which reaction with biotin-RQRR-CMK can take place,

subsequent to matriptase cleavage after Arg614 and before the

matriptase-HAI-1 complex is formed.

We found that HAI-1 and biotin-RQRR-CMK compete for

binding to matriptase. This corresponds well with the recently

published structure of matriptase in complex with HAI-1 showing

that Kunitz domain 1 of the protease inhibitor interacts with the

substrate binding cleft of matriptase [28]. Furthermore, although

HAI-1 binds matriptase in a reversible, but yet very stable manner,

biotin-RQRR-CMK is not able to dissociate the matriptase-HAI-1

complex under the conditions used in the study although biotin-

RQRR-CMK is present at high concentrations.

The presence of Arg614 cleaved matriptase as detected by

analysis of total cell lysates by western blot under reducing

conditions using the IM1014 antibody indicates the amount of

Arg614 cleaved matriptase present in the sample, but not whether

the Arg614 cleaved matriptase is unbound and active or if

matriptase is bound to HAI-1 and therefore inactive. Actually in

some cases low amount of Arg614 cleaved matriptase can be

detected (figure 3, lane 5) of which some reacts with biotin-

RQRR-CMK indicating that active matriptase is present (figure 4,

lane 7). Whereas the same cells after exposure to pH 6.0 contains

larger amounts of Arg614 cleaved matriptase (figure 3, lane 6) of

which no biotin-RQRR-CMK reactive matriptase can be detected

(figure 4, lane 9) indicating the absence of active matriptase. In

contrast to analysis of the total lysate using IM1014 on Western

blots, the biotin-RQRR-CMK assay offers the possibility to detect

(and distinguish between) the active SEA domain-cleaved zymo-

gen form and the non-complexed Arg614-cleaved form of

matriptase.

In summary, we have established an assay for detection of active

matriptase on cells in culture. The availability of a simple and

inexpensive assay for detection of active matriptase may help us

understand the complex regulation of matriptase activity. The

assay described here can be transferred to other species as shown

by detection of active matriptase in primary cultures of mouse

keratinocytes.
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Figure 6. Detection of active matriptase in cultured primary murine keratinocytes. Murine keratinocytes were isolated from newborn
wildtype (WT) or matriptase-deficient pups (KO) and cultured on collagen-coated plastic. The cells were grown until sub-confluent and then labeled
with S-NHS-SS-biotin (lanes 1, 4, 7, and 10), or with 50 mM biotin-RQRR-CMK (lanes 2, 5, 8, and 11), or with 50 mM control peptide; biotin-RQRR (lanes
3, 6, 9, and 12). Cells were lysed and analyzed on Western blot (lanes 7–12). The remaining lysates were precipitated using streptavidin-coated resin,
released from the beads by boiling under non-reducing conditions and lysates were analyzed by SDS-PAGE and Western blotting using the
matriptase antibody AF3946. Results shown are representative of 2 independent experiments.
doi:10.1371/journal.pone.0077146.g006
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