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Abstract

Exposure to ionizing radiation was shown to result in an increased risk of breast cancer. There is strong evidence that steroid
hormones influence radiosensitivity and breast cancer risk. Tumors may be initiated by a small subpopulation of cancer
stem cells (CSCs). In order to assess whether the modulation of radiation-induced breast cancer risk by steroid hormones
could involve CSCs, we measured by flow cytometry the proportion of CSCs in irradiated breast cancer cell lines after
progesterone and estrogen treatment. Progesterone stimulated the expansion of the CSC compartment both in
progesterone receptor (PR)-positive breast cancer cells and in PR-negative normal cells. In MCF10A normal epithelial PR-
negative cells, progesterone-treatment and irradiation triggered cancer and stemness-associated microRNA regulations
(such as the downregulation of miR-22 and miR-29c expression), which resulted in increased proportions of radiation-
resistant tumor-initiating CSCs.
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Introduction

Worldwide, breast cancer represents 16% of all cancer

incidence among women and 13.7% of cancer deaths [1]. It was

shown that women who had received medium or high-dose

ionizing radiation to the chest (for example, as treatments for other

cancers, such as Hodgkin’s lymphoma) have a relative risk of

breast cancer between 2.1 and 4.0 [2]. By age 45 years, up to 20%

of women exposed to chest ionizing radiation for a pediatric

malignancy are diagnosed with breast cancer [3]. New data are

coming to light indicating that even low dose exposures (such as

diagnostic chest X-rays for tuberculosis or pneumonia) might raise

this risk [4]. Sex steroid hormones such as estrogen and

progesterone play a crucial role in the development and

homeostasis of the mammary gland, by regulating proliferation,

differentiation and apoptosis. Evidence from the last few decades

supports the idea that accumulated exposure to steroid hormones

(for example in post-menopausal women under hormonal

replacement therapy) is also a risk factor for breast cancer [5].

The interplay between steroid hormones and radiation-induced

risks has been described. For example, we have shown that

progesterone protects cultured mammary cells against radiation-

induced apoptosis and increases the number of proliferating cells

containing chromosomal damage [6]. However, our knowledge of

hormonal action in the irradiated breast is far for complete and

new discoveries are challenging some established paradigms.

Recently, a lot of attention has be given to a small population of

malignant cells thought to be responsible for tumor maintenance

and initiation of relapse. These cancer stem cells (CSCs) possess

the ability to self-renew (thus to form tumors) and to cause the

different lineage of cancer cells comprising a tumor [7]. Breast

CSCs were first observed by Al Hajj et al., who described the

existence of a subpopulation of CD44+CD24lowESA+lineage2

human breast cancer cells capable of initiating tumors in immune-

deficient NOD/SCID mice [8]. CSC populations have been

defined using several combinations of cell-surface markers, such as

CD44+CD242 [9,10], or by measuring cellular activities, such as

the expression of aldehyde dehydrogenase (ALDH) [11]. In a

recent study, it was shown that breast cancer cell lines contain

breast CSCs [12]. CSCs may arise from normal stem cells, or from

a differentiated progenitor, which acquired self-renewal abilities.

CSCs are thought to be radio-resistant [13,14] and have a distinct

molecular signature [12].

Both estrogens and progesterone have strong proliferative

effects on stem/progenitor cells. Several studies have shown that

progesterone regulates genes (Notch pathway genes DLL-1, DLL-

3, IL6, PRSS2, Interleukins IL6 and IL8 and others) potentially

involved in stem cell regulation [15]. Estrogen was recently shown

to stimulate CSC expansion through FGF signaling [16]. It was

also shown that radiation exposure or steroid hormones can

contribute to the initiation of epithelial-to-mesenchymal transition

(EMT) and the expansion of CSCs subpopulation [17]. However,

to date, the potential involvement of steroid hormones in the

radiation-triggered EMT is unknown.

New developments also bring new light into the molecular

mechanisms of hormonal action. In the normal human breast,

estrogen and progesterone receptors (ER and PR, respectively) are

expressed in only 15 to 30% of the luminal epithelial cells and not in

other cell types [18]. It is thought that receptor-containing cells

secrete paracrine factors that influence the proliferation and activity

of nearby receptor-negative cells [19]. Recent investigations have
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shown that cultured MCF10A normal epithelial cells that do not

express PR are nonetheless responsive to progesterone [20].

Furthermore, CSCs can be generated during the transformation

of MCF10A cells [21].

In this study, we tested the hypothesis that steroid hormones

(estrogen and progesterone) could influence the radiosensitivity of

human breast cells and the potential breast cancer risks by

stimulating the expansion of breast CSCs. We also evaluated the

ability of progesterone to generate CSCs in irradiated PR2

MCF10A cells and we measured progesterone-associated miRNA

regulations.

Materials and Methods

Cell Cultures
T-47D and MCF10A cell lines were provided by Dr Daino

(NIRS), MCF7 cell line was provided by Dr Mori (NIRS). T-47D

and MCF7 breast cancer cell lines were maintained as previously

[6]in Dulbecco’s modified Eagle medium (DMEM) with 4.5 g/L

glucose, 0.11 g/L sodium pyruvate, glutamate (GlutaMAX 1t) and

pyridoxine, supplemented with 5% fetal calf serum, penicillin and

streptomycin. Non-tumorigenic MCF10A breast epithelial cells

[22] were maintained in DMEM/F12 supplemented with 5%

horse serum, 20 ng/mL epidermal growth factor (EGF), 10 mg/

mL insulin, 100 mg/mL hydrocortisone and 10 ng/mL cholera

toxin. Cultures were grown in 5% CO2 at 95% humidity.

Irradiation and Hormonal Treatment
Cells were irradiated in serum-free medium 72 hours after

plating, using an X-ray generator (ISOVOLT Titan-320, General

Electric, Fairfield, CT, USA). Irradiation dose was 10 Gy at a

dose-rate of 0.9 Gy/min. Starting one day after plating, natural

progesterone and estrogen diluted in ethanol (10 mM) were added

to the culture medium once a day until cell collection at a final

concentration of 10 nM. MCF10A cells were also cotreated with

10 mM mifepristone (diluted in ethanol) or 10 mM PD173074

inhibitor (diluted in DMSO).

Proliferation and Survival
At least 200 cells per sample (in three separate experiments)

were scored for proliferation and survival analysis. Discrimination

between viable and dead cells (including dead cells in the

supernatant) was performed after trypan blue staining.

Measurement of ROS Levels
Intracellular levels of ROS in MCF10A cells were measured

using 5-(and-6)-chloromethyl-29,79-dichlorodihydrofluorescein di-

acetate, acetyl ester (CM-H2DCFDA, Molecular Probes, Eugene,

OR, USA). Cells were plated in 12-well plates and loaded with

pre-warmed PBS containing 10 mM CM-H2DCFDA. Next, cells

were returned to pre-warmed medium and incubated for 40

minutes with 10 nM progesterone and mifepristone. Then,

fluorescence intensities were measured using a SpectraMax M5

microplate reader (Molecular Devices, Sunnyvale, CA, USA)

(excitation at 493 nm, emission at 520 nm). Unstained cells were

used as negative control. Cells treated with 100 mM H2O2 were

used as positive control.

Separation of ALDEFLUOR-positive Cells by Flow
Cytometry

ALDH activity in the cells was evaluated by flow cytometry

using the ALDEFLUOR kit (Stemcell technologies, Vancouver,

BC, Canada). Cells expressing with low and high levels of ALDH

enzymatic activity (respectively ALDH2 and ALDH+ cells) were

identified and sorted with a FACSAria cell sorter (BD Biosciences,

Franklin Lakes, NJ, USA). As a negative control, cells were treated

with diethylaminobenzaldehyde, a specific ALDH inhibitor.

Anchorage-independent Culture
Sorted ALDH2 and ALDH+ cells were resuspended in

complete mammosphere cell culture medium (MammoCult;

Stemcell Technologies) supplemented with Mammocult prolifer-

ation supplement, hydrocortisone and heparin. Then they were

seeded in ultra-low adherent plates (Corning, Corning, NY, USA)

at densities of 5,000 to 40,000 cells per well and grown for 7 days.

Spheres larger than 60 mm in size were counted.

Total RNA Extraction
Total RNA containing microRNAs was extracted using TRIzol

and a protocol slightly modified from the manufacturer’s

instructions. During the precipitation phase, 0.8 mL of isopropa-

nol was added per 1 mL of TRIzol reagent, then the samples were

incubated for 2–3 min at room temperature. RNA was washed

with 70% ethanol. Quantity and quality of RNA samples was

evaluated using a NanoDrop ND-1000 spectrophotometer

(NanoDrop Technologies, Montchanin, DE, USA).

Real-time PCR-based miRNA Expression Profiling
250 ng RNA per sample was reverse transcribed using the RT2

first strand kit (SABiosciences, Frederick, MD, USA), then real-

time PCR reactions were performed in triplicate with an Applied

Biosystems 7300 Real-Time PCR system (Life Technologies,

Carlsbad, CA, USA), using the RT2 SYBR Green PCR Master

Mix (SABiosciences) on 96-well Human Breast Cancer miRNA

PCR Arrays (MIHS-109Z, SABiosciences), which allowed to

analyze the differential expression of 84 miRNAs known or

predicted to be associated with breast cancer, according to the

manufacturer’s instructions.

microRNA Expression Data Analysis
Data analysis was performed using the web-based miRNA PCR

Data Analysis Software from SABiosciences (http://

pcrdataanalysis.sabiosciences.com/mirna/arrayanalysis.php). The

DDCt2 method was used the relative microRNA expression levels

in each group. For each microRNA, fold changes (compared to

levels in control cells) were calculated, then expressed as fold

regulations (for fold changes ,1, fold regulations were equal to

21/fold change; for fold changes $1, fold regulations were equal

to fold change).

We identified the molecular pathways potentially altered by

deregulated microRNAs (fold change .4, p,0.05) using the

DIANA-mirPath software combined with the DIANA-microT

v3.0 prediction software [23], which provided a list of enriched

KEGG pathways, with associated p-values.

Results

Steroid Hormones Modulate Radiation-induced Cell
Death

We first measured proliferation and viability three days after X-

ray irradiation in cultured steroid receptor-positive and receptor-

negative cells exposed to progesterone and estrogens treatment

(Fig. 1). In order to assess the role of PR in the observed

progesterone-induced effects, cells were also treated with mifep-

ristone, a PR antagonist. Because estrogen effects were shown to

Steroid Hormones and Breast Cancer Stem Cells
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be mediated through FGF signaling, cells were treated as well with

PD173074, an FGF-receptor inhibitor.

Exposure to 10 Gy X-rays inhibited proliferation in T47D,

MCF7 and MCF10A cells (Fig. 1A, C, E). Exposure to

progesterone inhibited the proliferation of non-irradiated T47D

and MCF7 cells, but did not modulate the proliferation of

MCF10A cells. Progesterone stimulated the proliferation of

irradiated T47D, MCF7 and MCF10A cells. Progesterone effects

on the proliferation of T47D and MCF7 cells were inhibited by

mifepristone, suggesting that progesterone mediated its effects

through PR. Mifepristone did not have any effect on the

proliferation of MCF10A non-irradiated and irradiated cells,

indicating that progesterone effect on MCF10A proliferation did

not rely on PR.

The percentage of dead cells was not significantly modulated by

hormonal treatment (it did not exceed 2% in each cell line), but it

increased significantly after exposure to 10 Gy X-rays (Fig. 1B, D,

F). In accordance with our earlier results [6], progesterone

treatment significantly reduced the radiation-induced cell death in

T47D cells. Interestingly, a similar protective effect of progester-

one was also observed in MCF10A cells. Co-treatment with

mifepristone counteracted the protective effect of progesterone in

T47D but not in MCF10A cells, confirming that this hormonal

protective effect did not rely on PR in MCF10A cells. Even though

progesterone did not significantly decrease the percentage of dead

MCF7 cells, we observed a significant increase of dead MCF7 cells

after co-treatment with mifepristone, which might suggest that

progesterone might also slightly protect MCF7 cells against

radiation-induced cell death through PR.

On the contrary, estrogen treatment elicited a weak protective

effect only in T47D cells (about 15% dead cells), as the percentages

of dead cells were non significantly different in treated and non-

treated irradiated MCF7 and MCF10A cells (Fig. 1B, D and F).

Co-treatment of irradiated MCF7 cells with PD173074 inhibitor

drew inconclusive results, because the differences were not

significant.

In summary, progesterone and oestrogen partly counteracted

the radiation-induced proliferation inhibition. Progesterone pro-

tected against radiation-induced cell death. In PR2 MCF10A

cells, progesterone effects were independent of PR expression.

Ionizing Radiation and Steroid Hormones Increase the
Proportion of ALDH+ Cells

We measured the proportion of cancer stem cells (CSCs) by flow

cytometry, using activity of aldehyde dehydrogenase (ALDH) as a

marker with the ALDEFLUOR kit (Fig. 2). About 1% of untreated

T47D cells, 0.5% of untreated MCF7 cells and 0.2% of untreated

MCF10A cells were ALDH+. On the contrary, the proportion of

ALDH+ T47D cells was significantly increased after 10 Gy

irradiation (2.2%) and after hormonal treatment with progesterone

(3.4%) and estrogen (3.6%). Progesterone treatment of irradiated

T47D cells resulted in a similar increase in the proportion of

ALDH+ cells (3.6%), but no additive effect of irradiation and

progesterone treatment was observed. The proportion of ALDH+

cells after estrogen treatment of irradiated T47D cells was slightly

higher than in irradiated non-treated cells, but slightly lower than

in treated non-irradiated cells (2.7%, non-significant differences).

In the MCF10A cell line, no increase in the proportion of ALDH+

cells was observed after hormonal treatment or after 10 Gy

Figure 1. Proliferation and viability of MCF7, T47D and MCF10A cells after irradiation and steroid hormone treatment. Proliferation
of T47D (A), MCF7 (C) and MCF10A (E) cells and the number of dead T47D cells (B), MCF7 (D) and MCF10A (F) cells were measured three days after
irradiation. Cells were seeded at a density of 105 cells/mL three days before irradiation. Hormonal treatment was performed two days before
irradiation and every day afterwards. Pg: progesterone, Mif: mifespristone, E2: estrogen, Inh: PD173074. Results are representative of at least three
independent experiments. Error bars represent standard deviation. Asterisks denote significant differences (t-test, *p,0.05, **p,0.01).
doi:10.1371/journal.pone.0077124.g001
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PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e77124



radiation exposure alone (less than 0.5%). A significant increase

was observed only when MCF10A cells were exposed both to

progesterone treatment and radiation exposure (4.0%). Cotreat-

ment with mifepristone did not significantly reduce the proportion

of ALDH+ cells (2.7%). Significant increases in the proportion of

CD44+/CD24- cells were also observed after progesterone

treatment and radiation exposure (Figure S1). These results

suggested that ionizing radiation and/or steroid hormone treat-

ment could stimulate the expansion of CSCs. In irradiated

MCF10A cells, progesterone action was independent of PR

expression.

ALDH+ Cells Show Increased Tumorphere-forming
Abilities and Radioresistance

In order to confirm whether the population of ALDH+ cells had

indeed tumor-initiating ability, we measured the capacity of

ALDH+ cells to grow ‘‘tumorspheres’’ (or ‘‘mammospheres’’) in

anchorage-independent conditions [12]. In each cell line, ALDH+

cells showed increased tumorsphere-forming capacity, compared

with ALDH2 cells, as observed in Fig. 3 (the numbers of

mammospheres formed for 1000 cells plated were: T47D: 2.7

ALDH2, 12 ALDH+/MCF7:3.4 ALDH2, 15.8 ALDH+/

MCF10A: 1.5 ALDH2, 17.7 ALDH+).

Figure 2. Proportion of CSCs after irradiation and steroid hormone treatment. The percentages of ALDH+ T47D (A), MCF7 (B) and MCF10A
(C) cells were evaluated by flow cytometry three days after irradiation. Hormonal treatment was performed two days before irradiation and every day
afterwards. Pg: progesterone, Mif: mifespristone, E2: estrogen, Inh: PD173074. Results are representative of at least three independent experiments.
Error bars represent standard deviation. Asterisks denote significant differences (t-test, *p,0.05, **p,0.01).
doi:10.1371/journal.pone.0077124.g002

Figure 3. Mammosphere-forming ability of ALDH2 cells and
ALDH+ CSCs. Sorted ALDH2 and ALDH+ T47D, MCF7 and MCF10A
cells were plated in ultra-low adherence plates and the number of
mammospheres formed after 7 days was counted. Error bars represent
standard deviation. Results are representative of three independent
experiments. Error bars represent standard deviation. Asterisks denote
significant differences (t-test, *p,0.05, **p,0.01).
doi:10.1371/journal.pone.0077124.g003

Steroid Hormones and Breast Cancer Stem Cells
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Reproductive clonogenic viability of ALDH2 and ALDH+ cells

was evaluated by the colony forming assay (Fig. 4). In each cell

line, ALDH+ cells showed increased radioresistance compared to

ALDH2 cells. The dose that gave 50% mean clonogenic survival

was higher in ALDH+ (T47D: 2.5 Gy/MCF7:2.5 Gy/MCF10A:

2.3 Gy) than in ALDH2 cells (T47D: 1.9 Gy/MCF7:2 Gy/

MCF10A: 2.1 Gy).

Overall these results suggested that the ALDH+ cell population

was enriched in radioresistant CSCs.

Progesterone Treatment in MCF10A Cells Results in
Increased ROS Levels

Because the observed progesterone effects in MCF10A cells

were independent of PR expression, we decided to assess its

possible mechanisms of action. In order to confirm recent reports

of non-genomic action of progesterone in MCF10A cells, we first

measured ROS levels after progesterone treatment in MCF10A

cells. 40 minutes after progesterone addition, ROS levels were

significantly higher than in control cells (Fig. 5). Co-treatment with

mifepristone did not decrease the ROS levels.

The Modulation of CSC Levels by Progesterone and
Radiation in MCF10A Cells Involves Cancer-associated
microRNA Regulations

In order to assess whether progesterone action in MCF10A cells

involved miRNA regulations, we measured using PCR arrays the

expression levels of 84 miRNAs known or predicted to be

regulated during breast cancer initiation or progression. miRNA

levels were profiled in (1) untreated control MCF10A cells, (2)

MCF10A cells exposed to progesterone treatment alone, (3)

ALDH2 cells and (4) ALDH+ cells after progesterone treatment

and irradiation. Fig. 6 shows a heatmap of microRNA expression

levels for each group. Fold changes compared to control group

were calculated and expressed as fold regulations. Comparative

microRNA expression levels are presented in Fig. 7. Some

significant microRNA regulations (fold change .4 or ,24,

p,0.05) are presented in Table 1. A functional analysis of the gene

targets of these microRNAs was performed using the DIANA-

miRPath software. An enrichment analysis of these gene targets

provided a list of cell functions and pathways (based on Kyoto

Enyclopedia of Genes and Genomes – KEGG – nomenclature)

likely to be affected or involved in each experimental group

(Table 2, p,0.01). Several of these KEGG pathways were related

to cellular interactions (ECM–receptor interaction, Focal adhesion,

Adherens junction), signaling pathways (MAPK signaling pathway, p53

signaling pathway, VEGF signaling pathway, Phosphatidylinositol signaling

system, TGF-beta signaling pathway) or other cancers. A similar

enrichment analysis was performed to compare target gene

functions in ALDH2 and ALDH+ cells (Table 3); these functions

were related to cell adherence (ECM –receptor interaction, Focal

adhesion, Adherens junction), signaling pathways (MAPK signaling

pathway, TGF-beta signaling pathway) and other cancers.

Discussion

In the light of increased breast cancer risks in women exposed to

ionizing radiation, it is crucial to better evaluate the various

additional risk factors that could further result in breast cancer.

There is strong evidence that steroid hormones influence breast

cancer risk, but the molecular mechanisms are poorly understood.

Figure 4. Dose-response curves for clonogenic survival of
ALDH2 cells and ALDH+ CSCs. Sorted ALDH2 (squares, continuous
lines) and ALDH+ (circles, dotted lines) T47D (A), MCF7 (B) and MCF10A
(C) cells were exposed to various doses of ionizing radiation. Lines
represented fitted curves according to linear quadratic regression.
Results are representative of at least three independent experiments.
Error bars represent standard deviation. Statistical significance of the
difference between dose-response curves (p,0.05) was performed
using one-way Analysis of Variance (one-way ANOVA) with Bonferroni
correction for pairwise group comparisons.
doi:10.1371/journal.pone.0077124.g004

Figure 5. ROS levels in MCF10A cells. ROS levels were measured 40
minutes after treatment with progesterone or co-treatment with
progesterone and mifepristone. As a positive control, MCF10A were
treated with H2O2. Results are representative of at least three
independent experiments. Error bars represent standard deviation.
Asterisks denote significant differences (t-test, **p,0.01).
doi:10.1371/journal.pone.0077124.g005

Steroid Hormones and Breast Cancer Stem Cells
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We, and others, had previously shown that steroid hormones can

influence radiosensitivity in breast cells. In this study, we assessed

in vitro the potential role of breast cancer stem cells (CSCs) in the

modulation of radiosensitivity by steroid hormones, and we

observed for the first time that progesterone treatment of

irradiated PR- cells results in increased numbers of CSCs.

A protective effect of progesterone (in the three cell lines) and

estrogen (in MCF7 cells only) against radiation-induced cell death

was observed, confirming earlier reports [24–26]. Unsurprisingly,

the protective effect of progesterone was dependent on PR in

T47D and MCF7 cells, but not in MCF10A cells. This protective

effect was a direct effect of progesterone on the induction of

radiation-induced apoptosis, which might result from the modu-

lation of pro- or anti-apoptotic genes, such as HRK [6], or from

the regulation of cell signaling pathways involved in apoptosis

(PI3/Akt…). In MCF10A cells, it was shown that progesterone

treatment inhibited apoptosis induced by activation of the FasL

pathway, as seen by decreased caspase 3 and caspase 7 levels [20].

The apoptosis-regulating properties of estrogen are also well

known: depending on the experimental model, estrogen action has

been described as anti-apoptotic or pro-apoptotic [27]; in T47D

and MCF7 cells, estrogen regulates the expression of anti-

apoptotic proteins such as bcl-2 [28]. However, only a weak

protective effect of estrogen was observed in our study.

Compared to their non-CSC counterparts, CSCs in each cell

line showed increased radioresistance, in accordance with

published data. For example, in MCF7 and MDA-MB-231 cell

lines, CSCs (CD44+/CD242) were shown to be more radioresis-

tant than non-CSCs, based on clonogenic survival, ROS levels

and phosphorylation of cH2AX [29]. Radioresistance of progen-

itors cells was also shown in several other models. For example,

mouse mammary stem cells (defined as a lin2CD24+CD29+ side

population) exhibited resistance to radiation [30]. Radiation

exposure resulted in the expansion of human (MCF7) and murine

side population progenitors [30].

We measured the proportion of CSCs in the three cell lines in

order to assess the role of CSCs in this hormonal modulation of

radiosensitivity. Neither hormonal treatment nor irradiation

modulated the proportion of ALDH+ MCF7 cells. We did not

observe any increase in the proportion of ALDH+ MCF7 cells

after estrogen treatment, contrary to a recent report showing an

expansion of CD44+/CD242 cells [16]. However, estrogen was

added at a final concentration of 10 nM in our study and 1 nM in

that other study; a possible dose effect cannot be ruled out. On the

contrary, progesterone and estrogen stimulated the expansion of

the CSC population in irradiated and non-irradiated luminal

breast cancer T47D cells, which could result either from a

stimulation of CSC proliferation or from the reprogramming of

non-CSCs which would acquire a stem-like phenotype. In the

normal mammary gland, stem/progenitor cells do not express

progesterone receptor (PR) nor estrogen receptor (ER), but receive

hormonal paracrine signaling from luminal PR+/ER+ cells [31].

Similarly, in cultured breast cancer cells, the non-CSC compart-

ment might stimulate the expansion of CSCs through paracrine

signaling. Indeed, it has been shown that the secretion of FGF9 in

Figure 6. Heatmap of microRNA expression in MCF10A cells.
Each column represents one experimental group and each row
represents one microRNA. microRNAs were arranged by unsupervised
hierarchical clustering. Green and red indicate down- and upregulation,
respectively, relative to the overall mean expression for each microRNA.
The four experimental groups were: 1) non-irradiated cells (control); 2)
cells exposed to progesterone treatment alone (Pg); 3) ALDH2 cells and
4) ALDH+ cells after irradiation and progesterone treatment.
doi:10.1371/journal.pone.0077124.g006

Steroid Hormones and Breast Cancer Stem Cells
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estrogen-treated MCF7 cells leads to the increase of the CSC

population [16]. On the other hand, in T47D cells, progesterone

was shown to transform PR+/ER+ cells into PR2/ER2 cells

expressing a myoepithelial CK5+ phenotype (associated with

stemness in the human breast), through an autocrine mechanism

[15,32], suggesting that progesterone might contribute to the

transformation of cells into CSCs.

It is generally accepted that in the normal breast, steroid

hormones target only a small proportion of hormone receptor-

expressing cells, which communicate with other cells through

paracrine interactions [7]. However, some evidence has emerged

showing that PR-negative MCF10A cells are also directly

responsive to progesterone [20,33,34], suggesting that progester-

one action in the normal breast might also target PR-negative

epithelial cells. For this reason, we investigated whether proges-

terone could influence the proportion of CSCs in irradiated

MCF10A cells. Untreated MCF10A containted less than 0.5%

CSCs [12]. Progesterone treatment of non-irradiated MCF10A

did not trigger any effect at any of the considered endpoints

(proliferation, cell death, proportion of CSCs), but the fact that we

observed hormonal effects (protection against radiation-induced

cell death and increased numbers of CSCs) in irradiated cells

suggested that progesterone nonetheless has direct action on

MCF10A cells.

To date, our understanding of non PR-related progesterone

action remains partial. Several controversial novel candidate

receptors mediating genomic and non-genomic progesterone

effects were identified during the last decade. A G-protein coupled

receptor, called membrane (m)-PR, was first characterized in fish

ovaries [35]. The three human mPR isoforms (mPRa, mPRb and

mPRx) present different tissue distributions and expression

patterns through the reproductive cycle. mPRa expression was

observed in MCF7 and SK-BR-3 cells, and its expression was

higher in breast tumor biopsies than in normal tissue from the

same breast [36]. However, the role of mPRs in progesterone

signaling is debated by several studies questioning its localization

or even its ability to bind progesterone [37,38]. Progesterone

membrane receptor component 1 (PGMRC1) is another mem-

brane progesterone receptor [39], whose expression was observed

in various models including breast cancer cells.

Figure 7. Comparative microRNA expression levels in MCF10A cells. Each scatter plot shows microRNA expression levels (logarithmic scale)
for two experimental groups: cells exposed to progesterone treatment alone (Pg) vs non-irradiated cells (Control) (A), ALDH2 cells (after irradiation
and progesterone treatment) vs Control (B), ALDH+ cells (after irradiation and progesterone treatment) vs Control (C), ALDH+ cells vs ALDH2 cells (D).
The outer diagonal lines indicate 4-fold differences in microRNA expression. Each microRNA is represented by a circle.
doi:10.1371/journal.pone.0077124.g007

Steroid Hormones and Breast Cancer Stem Cells
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In MCF10A cells, non-genomic action of progesterone resulted

in increased mitochondrial activity (observed as increased mito-

chondrial potential) and subsequent inhibition of Fas-induced

apoptosis [20]. A strong correlation exists between mitochondrial

membrane potential and reactive oxygen species (ROS) levels

[40,41]. In accordance with these results, we observed a PR-

independent increase in ROS levels after progesterone treatment

of MCF10A cells.

In addition to non-genomic effects, our results indicated that

progesterone action in MCF10A cells involves genomic effects.

Several microRNAs were strongly down- (miR-22-3p, miR-29c-

3p) or upregulated (miR-328, miR-98-5p) by progesterone and

might contribute to the observed hormonal effects. miR-22 is a

tumor suppressor that induces cellular senescence (by targeting

CDK6, SIRT1 and Sp1) [42] and is frequently downregulated in

ER+ breast cancer [43]. miR-29c is downregulated in inflamma-

tory breast cancer [44] and its expression is associated with good

prognosis [45]. Another recent study has shown that progesterone

decreased miR-29 expression in breast cancer cells lines expressing

PR and ER (T47D and BT474), resulting in the upregulation of

Krüppel-like factor 4 (KLF4), a transcription factor required for

the dedifferentiation into pluripotent stem cell phenotype and for

the maintenance of CSCs; as a consequence, the authors observed

an expansion of CK5+/CD44+ tumor-initiating cells [46].

Compared to control cells, both miR-22 and miR-29c were

downregulated not only after progesterone treatment, but also

after irradiation in ADLH2 and ALDH+ cells. miR-98, a Let-7

family member, was recently shown to inhibit Fas-mediated

apoptosis in Hela cells [47], in accordance with the anti-apoptotic

effect of progesterone. The precise role of miR-238 in human

cancer is not yet fully elucidated: while it was overexpressed in

patients with non-small cell lung cancer brain [48], loss of miR-

328 expression occurred in blast crisis chronic myelogenous

leukemia [49]. The involvement of miR-328 in breast cancer has

not been established to date. We performed a functional analysis of

the target genes for the microRNAs deregulated after progesterone

treatment and irradiation. The modulation of cell adhesion (ECM-

receptor interaction, Focal adhesion…) and the remodeling of actin

cytoskeleton are functions which might be important for epithelial-

to-mesenchymal transition (EMT) and cancer initiation [50].

Ionizing radiation was previously shown to predispose breast cells

to transforming growth factor beta (TGFb)-induced EMT [17],

independently of radiation dose or LET [51]. Overall the observed

microRNA regulations are consistent with cancer-related process-

es.

Control and progesterone-treated MCF10A populations con-

tained negligible amounts of CSCs. On the contrary, after

irradiation and progesterone treatment, the cell population

contained both non-CSCs and CSCs, whose microRNA expres-

sion patterns were different both from each other and from non-

irradiated cells (control and progesterone-treated cells). Using an

inducible breast oncogenesis model based on MCF10A cells,

Iliopoulos et al. have shown that CSCs and non-CSCs exist in a

dynamic equilibrium that can be influenced by an inflammatory

feedback loop involving NF-kB, Lin28, IL6, STAT3, PTEN,

CYLD and several microRNAs (let-7, miR-21, miR-181b-1) [21].

In our study, after irradiation and progesterone treatment, two let-

7 family microRNAs were significantly downregulated in ALDH+

cells, compared to ALDH2 cells (Table 1). The let-7 family

microRNAs (which includes 13 human homologues) were among

the first to be directly described as tumor suppressors, by

negatively regulating the expression of the Ras oncogene [52].

Loss of let-7 expression was observed in many human cancers and

is associated with poor survival [53] and stem cell phenotype [54].

Taken together, our results suggested that the increased

numbers of CSCs induced by steroid hormones might contribute

to the modulation of radiosensitivity by the hormone in T47D

breast cancer cells, but not in MCF10A cells. However, we report

for the first time that progesterone directly triggered microRNA

regulations and modulated the radiosensitivity of normal breast

epithelial cells lacking the expression of PR, suggesting that the

classical model of hormonal paracrine action in the normal breast

[55] may need to be completed. Furthermore, the combination of

progesterone treatment and radiation exposure was capable of

generating CSCs. The origin of CSCs is still a matter of ample

controversy: some have suggested that CSCs might result from

already malignant cells through a clonal evolution process [56].

Our results are consistent with the idea that progesterone and

radiation exposure might trigger or contribute to cancer initiation

events, resulting in the appearance of CSCs.

Although MCF10A possess some genetic abnormalities, they

are generally considered as a ‘‘normal’’ cell line, whose

morphogenesis on reconstituted basement membrane is similar

to what is observed with normal breast epithelial cells [57].

MCF10A cells express markers associated with a basal phenotype

[58], which can give rise to basal-type cancers. On that account,

MCF10A might be an appropriate model for evaluating breast

cancer risks and initiation. Therefore, we can hypothesize that the

combined effects of irradiation and progesterone on tumor-

initiating CSCs might contribute to additional cancer risk [59] in

the normal breast.

Additionally, increased numbers of CSCs were also observed in

PR+/ER+ T47D breast cancer cells after steroid hormone

treatment and irradiation. Convincing evidence suggest a link

between CSCs and metastasis in cancer models [60]. For example,

metastatis in inflammatory breast cancer is mediated by ALDH+

CSCs [61]. Similarly, human CSCs are involved in spontaneous

Table 1. Significant microRNA regulations in MCF10A cells.

miRNA
Fold
regulation p-value

Pg vs Control miR-22-3p 211.0 0.01

miR-29c-3p 23.5 0.03

miR-328 33.9 0.00

miR-98-5p 15.4 0.03

ALDH2 vs Control miR-19a-3p 24.7 0.01

miR-210 29.3 0.03

miR-29b-3p 210.0 0.03

Let-7e-5p 19.7 0.04

ALDH+ vs Control miR-128 25.7 0.03

miR-15b-5p 24.2 0.03

miR-17-5p 26.3 0.02

miR-195-5p 228.4 0.04

miR-19a-3p 28.0 0.00

miR-20b-5p 24.0 0.04

miR-22-3p 24.3 0.03

ALDH+ vs ALDH2 Let-7e-5p 219.6 0.04

Let-7f-5p 226.6 0.03

MicroRNA fold regulations were expressed relative to non-irradiated cells
(Control) or to ALDH2 cells. MicroRNAs regulated more than 4-fold (p,0.05)
were reported.
doi:10.1371/journal.pone.0077124.t001
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metastasis in mouse xenographt tumor models [62]. Therefore,

expansion of CSCs by progesterone in breast cancer might result

in additional metastasis risk.

In conclusion, our results suggest that progesterone might

influence radiation-induced breast cancer risk by generating

tumor-initiating breast cancer stem cells. In order to decrease

the potential risks of breast cancer resulting from chest ionizing

radiation exposure, it might be useful to take into account the

variability of progesterone levels during menstrual cycle and

between individuals. Our results also shed additional light on

elevated breast cancer risks in women treated with hormone

replacement therapy [63]. Further investigations are needed to

better understand the mechanisms involved in PR-independent

progesterone action in the normal breast and the generation of

CSCs after exposure to ionizing radiation, in particular in the low-

dose range.

Supporting Information

Figure S1 Proportion of CD44+/CD242 CSCs after
irradiation and steroid hormone treatment. The percent-

ages of CD44+/CD242 MCF10A cells were evaluated by flow

cytometry three days after irradiation, after labeling with

conjugated anti-human CD1332PE (phycoerythrin; Miltenyi

Biotec) and CD442FITC (Miltenyi Biotec). Hormonal treatment

was performed two days before irradiation and every day

afterwards. Pg: progesterone. Results are representative of three

independent experiments. Error bars represent standard deviation.

Asterisks denote significant differences (t-test, *p,0.05).

(TIFF)

Table 2. Functional analysis of the genes targeted by microRNA regulations.

Progesterone ALDH2 ALDH+

KEGG pathways
No of
genes KEGG pathways

No of
genes KEGG pathways

No of
genes

ECM-receptor interaction 26 Focal adhesion 19 Axon guidance 10

Focal adhesion 45 ECM-receptor interaction 12 Renal cell carcinoma 7

MAPK signaling pathway 49 Cell Communication 12 TGF-beta signaling pathway 8

p53 signaling pathway 18 mTOR signaling pathway 7 Pancreatic cancer 7

Glioma 17 Small cell lung cancer 7 Chronic myeloid leukemia 7

Oxidative phosphorylation 1 Prostate cancer 7 Bladder cancer 5

Amyotrophic lateral sclerosis 7 Melanoma 6 Wnt signaling pathway 10

Melanoma 17 Glioma 5 p53 signaling pathway 6

Adherens junction 17 VEGF signaling pathway 5 Prostate cancer 7

Glycerophospholipid metabolism 16 Endometrial cancer 4 Focal adhesion 11

Small cell lung cancer 19 T cell receptor signaling pathway 5 MAPK signaling pathway 13

Regulation of actin cytoskeleton 37 B cell receptor signaling pathway 4 GnRH signaling pathway 7

Glycan structures - biosynthesis 1 24 Renal cell carcinoma 4 Colorectal cancer 6

Ribosome 1 Type II diabetes mellitus 3

T cell receptor signaling pathway 19 C5-Branched dibasic acid metabolism 1

Colorectal cancer 18 Phosphatidylinositol signaling system 4

Pancreatic cancer 4

Apoptosis 4

Heparan sulfate biosynthesis 2

Insulin signaling pathway 5

Non-small cell lung cancer 3

Acute myeloid leukemia 3

Analysis of the gene targeted by each significantly modulated microRNA in each experimental group (relative to control) revealed several significantly enriched KEGG
pathways (p,0.01). KEGG pathway names and the number of associated target genes are reported in this table.
doi:10.1371/journal.pone.0077124.t002

Table 3. Functional analysis of the genes targeted by
microRNA regulations in CSCs.

ALDH+ vs ALDH2 No of genes

TGF-beta signaling pathway 9

MAPK signaling pathway 16

Colorectal cancer 8

Adherens junction 7

Type II diabetes mellitus 5

Pancreatic cancer 6

Chronic myeloid leukemia 6

ECM-receptor interaction 6

Focal adhesion 10

Analysis of the gene targeted by each significantly modulated microRNA in
ALDH+ cells, relative to ALDH2 cells, revealed several significantly enriched
KEGG pathways (p,0.01). KEGG pathway names and the number of associated
target genes are reported in this table.
doi:10.1371/journal.pone.0077124.t003
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Table S1 microRNA expression levels in MCF10A cells,
compared to control. For each experimental group (cells

exposed to progesterone treatment alone, ALDH2 cells and

ALDH+ cells after irradiation and progesterone treatment), fold-

changes (FCs) of miRNA expression were measured as compared

to non-irradiated and non-treated control cells. If the expression

ratios were .1, then FCs were equal to expression ratios. If the

expression ratios were ,1, then FCs were equal to the opposite of

expression ratios.

(PDF)
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homologs of the putative G protein-coupled membrane progestin receptors

(mPRalpha, beta, and gamma) localize to the endoplasmic reticulum and are not
activated by progesterone. Mol Endocrinol 20: 3146–3164.

39. Cahill MA (2007) Progesterone receptor membrane component 1: an integrative

review. J Steroid Biochem Mol Biol 105: 16–36.

40. Korshunov SS, Skulachev VP, Starkov AA (1997) High protonic potential
actuates a mechanism of production of reactive oxygen species in mitochondria.

FEBS Lett 416: 15–18.

41. Turrens JF (2003) Mitochondrial formation of reactive oxygen species. J Physiol
552: 335–344.

42. Xu D, Tahara H (2011) miR-22 represses cancer progression by inducing

cellular senescence. J Cell Biol 193: 409–424.

43. Xiong J, Yu D, Wei N, Fu H, Cai T, et al (2010) An estrogen receptor a
suppressor, microRNA-22, is downregulated in estrogen receptor a-positive

human breast cancer cell lines and clinical samples. FEBS Journal 277: 1684–

1694.

44. Van der Auwera I, Limame R, van Dam P, Vermeulen PB, Dirix LY, et al
(2010) Integrated miRNA and mRNA expression profiling of the inflammatory

breast cancer subtype. Br J Cancer 103: 532–541.

45. Buffa FM, Camps C, Winchester L, Snell CE, Gee HE, et al (2011) microRNA-
associated progression pathways and potential therapeutic targets identified by

integrated mRNA and microRNA expression profiling in breast cancer. Cancer
Res 71: 5635–5645.

46. Cittelly DM, Finlay-Schultz J, Howe EN, Spoelstra NS, Axlund SD, et al (2012)

Progestin suppression of miR-29 potentiates dedifferentiation of breast cancer

cells via KLF4. Oncogene 32: 2555–2564.

Steroid Hormones and Breast Cancer Stem Cells

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e77124



47. Wang S, Tang Y, Cui H, Zhao X, Luo X, et al (2011) Let-7/miR-98 regulate

Fas and Fas-mediated apoptosis. Genes Immun 12: 149–154.
48. Arora S (2011) MicroRNA-328 is associated with non-small cell lung Cancer

(NSCLC) brain metastasis and mediates NSCLC migration. Int J Cancer 129:

2621.
49. Eiring AM, Harb JG, Neviani P, Garton C, Oaks JJ, et al (2010) miR-328

functions as an RNA decoy to modulate hnRNP E2 regulation of mRNA
translation in leukemic blasts. Cell 140: 652–665.

50. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion.

Cancer Metastasis Rev 28: 15–33.
51. Andarawewa KL, Costes SV, Fernandez-Garcia I, Chou WS, Ravani SA, et al

(2011) Lack of radiation dose or quality dependence of epithelial-to-
mesenchymal transition (EMT) mediated by transforming growth factor b.

Int J Radiat Oncol Biol Phys 79: 1523–1531.
52. Esquela-Kerscher A, Slack FJ (2006) Oncomirs – microRNAs with a role in

cancer. Nature Reviews Cancer 6: 259–269.

53. Boyerinas B, Park S-M, Hau A, Murmann AE, Peter ME (2010) The role of let-
7 in cell differentiation and cancer. Endocr Relat Cancer 17: F19–F36.

54. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripo-
tency and cancer progression. Cell Cycle 8: 843–852.

55. Obr AE, Edwards DP (2012) The biology of progesterone receptor in the normal

mammary gland and in breast cancer. Mol Cell Endocrinol 357: 4–17.

56. Badve S, Nakshatri H (2012) Breast-cancer stem cells-beyond semantics. Lancet

Oncol 13: e43–e48.

57. Debnath J, Muthuswamy SK, Brugge JS (2003) Morphogenesis and oncogenesis

of MCF-10A mammary epithelial acini grown in three-dimensional basement

membrane cultures. Methods 30: 256–268.

58. DiRenzo J, Signoretti S, Nakamura N, Rivera-Gonzalez R, Sellers W, et al

(2002) Growth factor requirements and basal phenotype of an immortalized

mammary epithelial cell line. Cancer Res 62: 89–98.

59. Wicha MS, Liu S, Dontu G (2006) Cancer Stem Cells: An Old Idea–A

Paradigm Shift. Cancer Res 66: 1883–1890.
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