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Abstract

Semantic technology plays a key role in various domains, from conversation understanding to algorithm analysis. As the
most efficient semantic tool, ontology can represent, process and manage the widespread knowledge. Nowadays, many
researchers use ontology to collect and organize data’s semantic information in order to maximize research productivity. In
this paper, we firstly describe our work on the development of a remote sensing data ontology, with a primary focus on
semantic fusion-driven research for big data. Our ontology is made up of 1,264 concepts and 2,030 semantic relationships.
However, the growth of big data is straining the capacities of current semantic fusion and reasoning practices. Considering
the massive parallelism of DNA strands, we propose a novel DNA-based semantic fusion model. In this model, a parallel
strategy is developed to encode the semantic information in DNA for a large volume of remote sensing data. The semantic
information is read in a parallel and bit-wise manner and an individual bit is converted to a base. By doing so, a considerable
amount of conversion time can be saved, i.e., the cluster-based multi-processes program can reduce the conversion time
from 81,536 seconds to 4,937 seconds for 4.34 GB source data files. Moreover, the size of result file recording DNA
sequences is 54.51 GB for parallel C program compared with 57.89 GB for sequential Perl. This shows that our parallel
method can also reduce the DNA synthesis cost. In addition, data types are encoded in our model, which is a basis for
building type system in our future DNA computer. Finally, we describe theoretically an algorithm for DNA-based semantic
fusion. This algorithm enables the process of integration of the knowledge from disparate remote sensing data sources into
a consistent, accurate, and complete representation. This process depends solely on ligation reaction and screening
operations instead of the ontology.

Citation: Sun H, Weng J, Yu G, Massawe RH (2013) A DNA-Based Semantic Fusion Model for Remote Sensing Data. PLoS ONE 8(10): e77090. doi:10.1371/
journal.pone.0077090

Editor: Guy J-P. Schumann, NASA Jet Propulsion Laboratory, United States of America

Received March 13, 2013; Accepted September 6, 2013; Published October 8, 2013

Copyright: � 2013 Sun et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This study was supported by the Natural Science Foundation of China (Grant No. 61272413, No. 60903178, and No. 61272073) (URL: http://www.nsfc.
gov.cn/). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: tsunheng@jnu.edu.cn

Introduction

As the hereditary basis of every living organism, DNA has an

ability to store and process information. This information is

determined by the sequence of four distinct bases (A, C, G, T). An

oligonucleotide is a short, single-stranded DNA molecule, and the

complementary base pairing enables hybridization into a double-

stranded polymer. These features of DNA have inspired the idea

of DNA computing [1–3]. DNA computing, known also under the

name of molecular computing, has great advantages of in vivo

computing and in vitro computing, such as massive parallelism,

extraordinary information density and exceptional energy effi-

ciency. In contrast to traditional silicon-based technology, DNA

computing has the natural potential of semantic fusion and

reasoning for big data.

Nowadays, ontology has gained more and more acceptance as

one of semantic technologies to solve the problem of heteroge-

neous knowledge sharing [4]. Many research efforts have been

devoted to ontology modeling over the past decade [5–9], and

quite a few running systems based on manual ontologies have been

developed [10–12]. However, data is accumulating at an

astounding rate with increasing computing power. Many activities,

for instance encoding an organism’s DNA [13], collecting satellite

data [14], and conducting scientific experiments at the Large

Hadron Collider [15], can create a staggering amount of data.

The growth of these big data outstrips the capacities of current

ontology engineering practices and tools. In bioinformatics, the

semantic integration of big data has been identified as a new

frontier [16]. The same trend can also be observed in other

scientific domains. For example, with a vast amount of geograph-

ical data becoming available from satellites, especially the recent

opening of the Landsat archive [17], there comes an increasing

demand for automatic semantic processing of remote sensing

images (RSIs) in a reasonable amount of time. Up to now,

reasoning from big data is challenging. As the winner of the

Semantic Web Challenge, Williams provided the experimental

results showing that reasoning over the Billion Triple Dataset

required 3712 processors from IBM LS21 blade servers and the

computation time was 1314 seconds per processor [18]. Although

this dataset contains 898,966,813 triples and the size of the

combined dataset is around 17 GB, the amount of data obtained

from satellite devices and open sources on the Internet per day is

much higher and beyond the capabilities of analyst to process the

data with the help of ontology [19]. Novel tools and approaches

PLOS ONE | www.plosone.org 1 October 2013 | Volume 8 | Issue 10 | e77090



are needed to address this problem that has arisen during the

current period of rapid data and knowledge growth.

Now DNA computing has become an active research area [20–

24]. DNA-based parallel computing takes advantage of many

different DNA molecules to solve the NP-complete problems in

polynomial or even linear time, while exponentially increasing

time is required in silicon-based computer. In this paper, a DNA

model is introduced for semantic fusion of the RSIs. It utilizes

DNA computing and ontology technologies to enable the complete

representation of the RSI’s knowledge in linear time regardless of

the amount of data obtained.

There is few published work in the literature about the

application of DNA-based approach to semantic fusion. Tsuboi

proposed a pattern matching algorithm based on stickiness of

DNA molecules [25]. Semantic network technology is used to

solve information recognition problem. However, the fusion of

semantic relationship is not involved. This restricts the analysis

and reasoning capacity of the processing system. Moreover, the

encoding scheme in this algorithm is not suitable for arbitrary

digital information and the different data objects have to be

encoded by different oligonucleotides. However, an exhaustive

representation is considered unrealistic. Church proposed a novel

strategy to store digit information in DNA [20]. In Church’s work,

all data blocks can be programmed into a bitstream and then

encoded onto thousands of oligonucleotides. But the sequential

conversion code (Perl) faces the challenge from big data. Xu

provided a new DNA computing model for graph vertex coloring

problem [26], which can effectively reduce the solution space by

seminested polymerase chain reaction. All these approaches

described above lack support for semantic reasoning and little

attention has been given to big data, which have become the key

problems of knowledge sharing and semantic representation in the

web environment.

In an attempt to overcome these difficulties, we propose here a

novel DNA-based semantic fusion model as an extension of our

previous research for distributed data application in remote

sensing field [27]. In previous work, we have implemented a

semantic fusion and reasoning system for the RSIs’ retrieval. At

present, the use of DNA computing in semantic fusion presents

numerous opportunities for our future DNA reasoner. The

inherent massive parallelism of DNA strands allows for big data

storage and reasoning. The main efforts in this paper are to 1)

develop a remote sensing data ontology with 1,264 concepts and

2,030 semantic relationships to annotate the RSIs; 2) encode

arbitrary semantic properties, property values, semantic relation-

ships and data types in DNA, and organize the semantic

information into directed acyclic graph; 3) evaluate the perfor-

mance of our parallel conversion method against the sequential

approach with the Rest dataset [28]; 4) create an algorithm that

takes advantage of the biochemical reaction to fuse the semantic

information.

Results and Discussion

Remote sensing data ontology
Ontology, as a formal representation of both implicit and

explicit domain knowledge, can help to deal with heterogeneous

representations of data and their interrelationships. There exist

several forms of ontology with different semantic richness. As a

specification developed by World Wide Web Consortium, the

Resource Description Framework (RDF) [29] can present

semantic information of web resources. RDF Schema [30]

provides a type system for RDF and defines classes and properties

that may be used to describe classes, properties and other data

resources. It can also be used to build a lightweight ontology by

describing RDF vocabularies.

Figure 1 illustrates the remote sensing data ontology by using

RDF Schema language. The computer code of the ontology is

provided in File S1. All terms in the ontology vocabulary are

divided into five groups (namely, Identification Information, Data

Quality Information, Spatial Data Organization Information,

Instrument Information, and Location Information) to represent

the content, quality, condition, and other characteristics of data.

To enable the extensibility of the ontology, we evaluated the

suitability of several existing geospatial metadata standards,

including the Content Standard for Digital Geospatial Metadata:

Extension for Remote Sensing Metadata [31], ISO 19115 [32] and

ISO/TS 19319 [33]. The Extension defines the metadata elements

published by the U.S. Federal Geographic Data Committee and

documents digital remote sensing datasets in the US. While ISO

19115 does only provide a structure for describing digital

geographic data and many elements in ISO 19115 are from the

Extension standard. ISO/TS 19139 defines an XML schema

implementation derived from ISO 19115. These two ISO

standards are very simple but not suitable for ontology modeling.

Considering the fact that the conceptual model in the Extension

does not provide enough semantic description of geographic data,

we construct a hierarchical structure of the ontology. The

relationships among specific classes are encoded into the ontology

structure. The RDF Schema properties rdfs:range and rdfs:domain

describe the relationships between specific properties and classes,

and a lot of image data relationships have been described using the

domain properties from the Extension standard.

The real RSIs must be first preprocessed with semantic

annotation technique, where semantic tags defined in the ontology

are assigned to the phrases in the descriptive metadata of the RSIs.

This facilitates the fusion and reasoning based on image semantics.

RDF instance of an RSI is shown in Figure 2, where the metadata

of RSI 103001001E1EB700 are annotated with the properties

such as imagequal (image quality), Cloud_Cover and spatresv (spatial

resolution value), etc. The property values are numerous

‘‘intermediate’’ anonymous resources to represent constant values

(called literals) such as Excellent, 0, 1.85, or aggregate concepts such

as RSI’s structured Nominal_Spatial_Resolution values. Anonymous

resources cannot be referred to from outside their defining RDF

instance, and hence do not require meaningful names.

Semantic property and data type
In order to convert the classes and properties representing data

semantics into the sequence of nucleotides, we propose the

property representation and type design suited for DNA imple-

mentation. For example, this paper annotates three RSIs E1EB7,

D87C9 and B8EF1 with three properties: city (ct), imagequal (qa) and

Cloud_Cover (cc). The first image’s property values are Guang Zhou

(GZ), Excellent (E), and 0, respectively. The other two’s values are

Hong Kong (HK), Good (G), 0, and HK, G, 16. Considering the linear

structure of DNA strands, we arrange these properties and their

values in sequence as shown in Figure 3. The label of a vertex is

denoted as two-tuples (property name, property value). The edge

denotes the connection between the vertices in the directed graph.

To simplify the graphic structure, two new vertices labeled as

‘‘Start’’ and ‘‘End’’ are added to the directed graph and the vertices

are integrated into one if they have the same property and

property values. As shown in Figure 4, there are directed paths

representing the annotation results of the RSIs between initial and

terminal vertex in property network.

Everything would be simple if the type of property to be

recorded was obviously in the form of the simple character string

DNA-Based Semantic Fusion Model
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literal (plain literal) illustrated so far. However, most RSIs data

involve structures that are more complex than that. Many constant

values that serve as property values in the RSIs are numbers (e.g.

the value of a Nominal_Spatial_Resolution property) or some other

kinds of more specialized values. For example, Figure 4 illustrates

a network diagram recording information about three RSIs, where

the values of RSIs’ Cloud_Cover property are literals ‘‘0%’’ and

‘‘16%’’. However, there is no explicit indication that ‘‘0%’’ or

‘‘16%’’ should be interpreted as a number. The common practice

in computer programming or database systems is to provide

additional information about how to interpret a literal by

associating a data type, such as integer, boolean, or string, with

this literal. In our new DNA model, 4-nt oligonucleotides are used

to provide this kind of information. Since DNA strand has no

built-in data type system of its own, our model simply provides a

way to explicitly indicate, for a given data type, what oligonucle-

otide should be associated with it. Table 1 shows the common data

types. The data types in this model refer to the XML Schema

Datatypes defined in [34]. An advantage of this approach is that it

gives our model the flexibility to directly represent information

obtained from various RSIs or web sources. It is worth noting that

Figure 1. RDF graph of the remote sensing data ontology. This figure contains 1,264 nodes and 2,030 edges. Nodes are a set of classes and
concepts in the remote sensing domain, such as Worldwide_Reference_System, Multiple_Image_Alignment, and Spatial_Domain, etc. Edges are a set of
specific properties that characterize these classes. Classes, properties, and domains are all considered as ontology elements. All the elements are
partitioned according to their namespaces. The namespaces in ontology vocabulary show the Uniform Resource Identifier References (URIrefs) as the
URLs of web resources that provide further information about this vocabulary. The xmlns:ersm (http://cs.jnu.edu.cn/sun/ontology/ersm), xmlns:rdfs
(http://www.w3.org/2000/01/rdf-schema), and xmlns:rdf (http://www.w3.org/1999/02/22-rdf-syntax-ns) are used mainly in our remote sensing data
ontology. (For interpretation of the references to color in this figure, the reader is referred to the web version of this paper.)
doi:10.1371/journal.pone.0077090.g001
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type conversions may still be required when moving data between

systems having different sets of data types.

Moreover, a property value may sometimes appear to be

simple, but may actually be more complex. For example, the unit

information of the spatial resolution for satellite imagery is meter,

but in some cases such information is not explicitly given and

omitted in contexts where it can be assumed that anyone accessing

the property value will understand the unit information being

used. However, this assumption is generally unsafe in the wider

context of the imagery. One might give a resolution value in

kilometer or degree, whilst others might assume that is in meter. In

general, a comprehensive consideration should be given to the

explicit representation of unit information.

Encoding the semantic information
Before the semantic information is converted into DNA, an

encoding model is required. Although diverse coding strategies for

DNA sequences have been developed and some have been

demonstrated [20,35,36], no standard model exists. Church GM

[20] first proposed a simple, universal strategy. In Church’s work,

arbitrary digital information can be converted into bitstreams by

utilizing the ASCII code. These bits are then encoded onto the

oligonucleotide library. Unlike conventional approaches, Church

encodes one bit per base in order to meet the appropriate GC-

content and introduces a 19-nt oligonucleotide to represent the

data’s address space.

However, the common type system is not considered in

Church’s encoding method. Thus, we propose a novel data

encoding approach for semantic information. Firstly, the vertices

and edges in Figure 4 are converted into DNA sequences in order

to efficiently represent the semantic properties. Every vertex is

associated with a 48-nt oligonucleotide which is denoted V. The

full description about the mapping from the vertex property to the

Figure 2. RDF instance description and visualization of an RSI. This figure includes three interactive parts: an RSI in A, an RDF annotation of
the RSI in B, and data instance visualization in C. (A) One example RSI’s ID is 103001001E1EB700 and its resolution is 1.85 meter. (B) The RDF identifies
the data instance using the URIref and the image data can be described by making statements. A statement, such as ‘‘An RSI 103001001E1EB700 has a
nomspres (Nominal Spatial Resolution) whose value is 1.85 meter’’, is represented by these two RDF/XML statement blocks. File S2 provides the
complete RDF code of catalog ID 103001001E1EB700 imagery. (C) The 193 classes and concepts are partitioned into six colors according to their
namespaces. Most of them (120 green nodes) represent blank nodes. They provide a way to more accurately make statements about data because
constant values and most aggregate concepts may not have URIs. The other namespaces include xml:base (http://cs.jnu.edu.cn/sun/ontology/
103001001E1EB700), xmlns:rdfs (http://www.w3.org/2000/01/rdf-schema), xmlns:ersm (http://cs.jnu.edu.cn/sun/ontology/ersm), xmlns:rdf (http://
www.w3.org/1999/02/22-rdf-syntax-ns), and xmlns:owl (http://www.w3.org/2002/07/owl). (For interpretation of the references to color in this figure,
the reader is referred to the web version of this paper.)
doi:10.1371/journal.pone.0077090.g002

Figure 3. The linear model of semantic properties in three RSIs.
doi:10.1371/journal.pone.0077090.g003

Figure 4. Network diagram of semantic property set.
doi:10.1371/journal.pone.0077090.g004
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DNA sequence is provided in the Materials and Methods section.

Now each V, except the start and end vertices, is decomposed into

four oligonucleotides whose lengths are 24, 4, 4, 16: V = NTUA.

N, T, U, and A represent the property name, data type, unit (or

comment), and property value respectively. The unit value U

depends on N and T. For example, the property name cc and

property value 0 in the vertex (cc,0) are represented by the first

and last parts of V(cc,0) respectively, where N(cc,0) = aaCgaagagC-

TaagCCgCCgaaTC and A(cc,0) = gaCTgagaggTTggag. The

oligonucleotide GCAT in V(cc,0) represent the unit %, as shown

in Table 2.

Since the volume of electronic data expands rapidly, it is

important to choose the optimal computer architecture for

converting big data set. Conversion solutions range from cluster-

based computing [37] to cloud-based computing [38]. Considering

the cost-effective way to achieve a supercomputer performance,

we use the cluster computing. All the conversion experiments in

this paper were carried out in the HPC-JNU cluster system. The

description about the HPC-JNU is provided in the Materials and

Methods section. The sequential and parallel codes in C language

are provided in File S3 and File S4 respectively. To evaluate the

performance of these conversion programs, our semantic data are

partly from the Rest dataset in BTC2012 dataset (http://km.aifb.

kit.edu/projects/btc-2012/rest/). This dataset is encoded in

NQuads format [39] and includes three data files that range in

size from 409.99 MB to 2.69 GB. Figure 5 shows the conversion

results of 4.34 GB source dataset in the HPC-JNU cluster system.

As an explanatory scripting language, the Perl language has poor

IO disk performance. The result of the parallel method shows the

Table 2. The oligonucleotides representing the vertex properties.

Vertex Oligonucleotides Denotation

start 59-ggTaagagaTTCgaCCaCTCaCgagCCaaggTgTCTaaCagTCTgCag-39 Vstart

(cty,GZ) 59-aCCggaTTgTCCgCaggCCTTggCTCGATGCAaTagaCCTaCgTTaCa-39 V(cty,GZ)

(qa,E) 59-gaTaagaaaTTCaagTgTTggagTTCGATGCAaaCggagagTgagTaT-39 V(qa,E)

(qa,null) 59-gaTaagaaaTTCaagTgTTggagTTGCATGCAaaCggagagaCagaag-39 V(qa,null)

(cc,0) 59-aaCgaagagCTaagCCgCCgaaTCCATGGCATgaCTgagaggTTggag-39 V(cc,0)

(cc,null) 59-aaCgaagagCTaagCCgCCgaaTCTGCATGCAgaCagagaggTaggag-39 V(cc,null)

end 59-ggTaaggaggTaggagagTaaggagCCggTgCgCCaCCTggTTggTaa-39 Vend

doi:10.1371/journal.pone.0077090.t002

Figure 5. Conversion performance on the test dataset. The result
dataset contain DNA sequence information corresponding to the test
data. (A) The conversion time is about 4,937 seconds, 31,426 seconds
and 81,536 seconds for three programming languages. Error bars depict
Standard Error of the mean. (B) The sizes of the datasets are both
54.51 GB for the sequential C and the parallel C. The size is 57.89 GB for
the Perl program because the code uses different data block size.
doi:10.1371/journal.pone.0077090.g005

Table 1. Mapping from the data types to the
oligonucleotides.

Data types Oligonucleotides

string TCGA

boolean CTGA

float GTCA

dateTime AGTC

duration TAGC

URI ACGT

RName GCTA

integer CATG

undefined TGCA

doi:10.1371/journal.pone.0077090.t001
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best performance although the user of the cluster system has a

maximum limit of 80 cores.

DNA’s storage density
At present, remote sensing data are dramatically increasing in

volume. For example, the U.S. National Climatic Data Center

holds the world’s largest archive of weather data and has archived

3 PB (petabyte) satellite imagery [40]. The extreme compactness

of DNA is incredible. Because the mean molecular weight of a

nucleotide is 330 g/mol [41] and a 200 bp encodes 128 bits in our

encoding method, one gram of DNA can store 5.8461020 bits. We

approximate DNA’s density to water’s density (1023 g/mm3), then

the volume of all DNA sequences encoding 3 PB data is

4.6361022 mm3. We compare favorably contemporaneous stor-

age technologies in Table 3 [42–50]. DNA storage has obviously

the potential of storing data 100 times more compactly than other

technologies.

Semantic fusion based on DNA
Semantic fusion is the key operation that ontology technology

supports. It can automatically implement the union of the

properties and semantic relationships. A resource, such as an

RSI, and its replicas may be widely distributed over several image

replicas databases. The owners of the resource may select

different kinds of feature properties to annotate this RSI. We

must merge these properties and relationships in order to

improve the efficiency and accuracy of the knowledge. As shown

in Figure 6, the semantic fusion enables image’s semantic

information from disparate data sources to be merged. The

initial properties dissolve in the new properties and do not

preserve their duplicate internal structures. However, the

performances of ontology fusion and reasoning degrade rapidly

as data grows. Therefore, we build a semantic fusion model based

on DNA.

Table 2 shows a set of oligonucleotides representing the possible

properties labeling the vertices in Figure 6A. As regards

orientation, all of the oligonucleotides are written 59 to 39. Now

each V in Figure 6A is divided into two oligonucleotides, each of

length 24: V = V’V’’. V’ and V’’ are the first and second half of V.

An edge from the vertex i to the vertex j is encoded as a 48-nt

oligonucleotide, obtainable as the Watson-Crick complement of

the second and the first halves of the oligonucleotides encoding the

vertices i and j touching the edge. For example, the encoding of an

edge from the vertex (cty,GZ) to the vertex (qa,E) is given:

e(cty,GZ)R(qa,E) = AGCTACGTTaTCTggaTgCaaTgTCTaTTC

TTTaagTTCaCaaCCTCa. For every vertex and every edge

in Figure 6A, large quantities of Vi and eij are mixed together in the

hybridization and ligation reaction as shown in Figure 7. The

oligonucleotides Vi served as splints to bring oligonucleotides

associated with compatible edges together for ligation. Conse-

quently, many DNA molecules encoding the property string are

created. The remaining steps, as well as the conclusion in the

output, are filtering and screening procedures. We use the

Adleman style [1,51] algorithm for obtaining the result property

string:

Input: DNA molecules generated randomly in large quantities.

Step 1: Reject all DNA molecules that do not begin with Vstart

and end in Vend.

Step 2: Reject all DNA molecules encoding property strings that

do not involve exactly 5 vertices.

Step 3: Reject all DNA molecules that contain the oligonucle-

otide TGCATGCA encoding the null value.

Output: Read out the property strings (if any).

As shown in Figure 8, we can obtain the result property string

by using the semantic fusion method based DNA. It is consistent

with the semantic properties in Figure 6B.

Table 3. Storage volume calculations for 3 PB data.

Medium type Year Volume (mm3) Notes

CD-ROM [42] 1982 6.2461010 1.2 mm thickness, 120 mm diameter, 700 MB

DVD-R (single layer) [43] 1996 9.086109 1.2 mm thickness, 120 mm diameter, 4.7 GB

Blu-ray (single layer) [44] 2002 1.716109 1.2 mm thickness, 120 mm diameter, 25 GB

Flash memory [45] 2013 1.256108 72 mm626.94 mm621 mm, 1 TB

Magnetic tape (LTO-6) [46] 2012 8.026107 6.1 mm thickness, 846 m length, 12.65 mm width, 2.5 TB

Hard disk [47] 2013 1.986105 10 TB/inch2, platter 1 mm thickness

Quantum storage [48–50] 2012 5.16 567 bit/10610 nm2 on the Cu(111) surface, the average height of Cu(111) terrace
65 nm, bilayer cobalt nano-islands 0.8 nm, two additional capping layer 1 nm

This paper 2013 4.6361022

doi:10.1371/journal.pone.0077090.t003

Figure 6. Semantic fusion pattern of an RSI. (A) Two owners of the
RSI E1EB7 select different properties to annotate it. One of them selects
the properties cty and qa. The other selects the properties cty and cc.
The property value null means the unannotated property. Certainly,
both its data type and its unit are undefined. (B) The result property
string after semantic fusion represents the complete semantic
information of this RSI.
doi:10.1371/journal.pone.0077090.g006

DNA-Based Semantic Fusion Model

PLOS ONE | www.plosone.org 6 October 2013 | Volume 8 | Issue 10 | e77090



Abstract representation of semantic fusion
The above algorithm can be formally described by an abstract

model. This abstract model is based on the data structure of the

tubes. A tube is a multi-set of finite strings over the alphabet {A, C,

G, T}, namely the DNA alphabet. Given a tube, one can perform

the following operations:

1. pre-separate(T, s)/post-separate(T, s)/sub-separate(T, s). Given

a tube T and a string s over the alphabet {A, C, G, T}, this

operation creates a tube containing all strands in T that have

the string s as a prefix/postfix/substring.

2. length-separate(T, n). Given a tube T and integer n, this

operation creates a tube containing all strands in T with length

less than or equal to n.

3. detect(T). Given a tube T, this operation outputs true if T

contains at least one DNA molecule, otherwise outputs false.

In our model, each of the oligonucleotides in T is of length 48.

Thus,

SemanticFusion(T):

1. input(T)

2. T r pre-separate(T, Vstart)

3. T r post-separate(T, Vend)

4. T r length-separate(T, 240)

5. T r sub-separate(T, TGCATGCA)

6. detect(T).

This model starts with the input tube T, containing the result of

the ligation reaction. All separate operations select the oligonu-

cleotides and thus require the amplification of the resulting tubes

by the PCR (polymerase chain reaction).

Indeed, semantic fusion problem have been shown to be an

NP-complete problem [52,53], which means that it is unlikely

to find an algorithm working in polynomial time. The semantic

fusion on image properties of modest size requires an

altogether impractical amount of time on conventional elec-

tronic computer [54,55]. However, we use a finite sequence of

ligation reaction and screening operations described above to

solve the semantic fusion problem. A fusion starts with an

initial tube and ends with one final tube. The fusion time

depends solely on the total time of ligation reaction and five

screening steps instead of the number of semantic properties

and ontology complexity. Then the massive parallelism of DNA

renders exponential time complexity in semantic fusion to

linear time.

Conclusions

Semantic fusion is a process that is ubiquitous in nature. In this

paper, a novel DNA-based semantic fusion model is proposed.

The model combines organically parallel strategy with DNA

encoding, which makes semantic conversion more efficient and

storage density higher. Furthermore, we describe the abstract

representation of semantic fusion and thus show that the fusion

time of semantic properties in remote sensing images depends

solely on the biochemical reactions and operations instead of the

ontology. However, there are still many issues to be considered.

Foremost issue is error. DNA molecules are fragile and they break

easily. The errors of separate operations with DNA strands can

make a really dramatic difference. Thus, steps towards coping with

errors should be taken in. In future work, we also implement the

ligation reaction and screening procedures based on biochemical

techniques and clarify details in another paper.

Figure 7. The oligonucleotides in the hybridization and ligation reaction. For each property i including the labels start and end, a 48-nt
oligonucleotide Vi is generated. For each edge ij, an oligonucleotide eij is derived from the 39 24-nt of Vi and the 59 24-nt of Vj.
doi:10.1371/journal.pone.0077090.g007

Figure 8. DNA sequence representing the complete semantic information.
doi:10.1371/journal.pone.0077090.g008
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Materials and Methods

Mapping from semantic information to an
oligonucleotide

All properties and property values are converted to binary

strings based on ASCII encoding. Each character corresponds to

an 8-bit binary code. For example, the property cty has the binary

code 011000110111010001111001. Conversion code in File S4

can then convert these bits to a or g for 0 and T or C for 1. Bases

are chosen randomly according to the result of function rand().

Considering the big dataset, we add a 32-bit address starting from

00000000000000000000000000000000. For example, the prop-

erties and property values of an RSI E1EB7 in Figure 3 is

represented by the string startctyGZ qa E cc00 end, where the symbol

represents a whitespace character, start and end are the labels of the

new vertices added in Figure 4. This property string has an ASCII

code 001000000111001101110100011000010111001001110100

01100011011101000111100101000111010110100010000001110

00101100001001000000100010100100000011000110110001100

11000000110000001000000010000000100000011001010110111

001100100. It is then encoded to two 200 nt oligonucleotides by

the conversion code given in File S4. Each encodes a 128-bit data

block (128 nt). Before synthesized, the sequence is augmented to

include the bases representing data type and data unit. For

example, an oligonucleotide aCCggaTTgTCCgCaggCCTTggCaTa-

gaCCTaCgTTaCa is the result of encoding the property ctyGZ in the

vertex (cty,GZ). Considering the data type is string and data unit is

undefined, we add TCGA and TGCA to the original oligonucle-

otide according to Table 1. Thus, the final oligonucleotide of the

vertex (cty,GZ) is aCCggaTTgTCCgCaggCCTTggCTCGATGCAaTa-

gaCCTaCgTTaCa, as shown in Table 2.

Specification of the cluster system
The HPC-JNU cluster system (http://hpc.jnu.edu.cn/) has 20

computational nodes. Each node is connected via the InfiniBand

network. Table 4 shows the specifications of the HPC-JNU cluster

system. Figure S1 and Figure S2 show the photographs of the

computational nodes and the storage node.

Supporting Information

Figure S1 Photograph of the computational nodes. (JPG).

(JPG)

Figure S2 Photograph of the storage node. (JPG).

(JPG)

File S1 Code for remote sensing data ontology (see also
http://cs.jnu.edu.cn/sun/ontology). Computer code in the

RDF Schema language is used to generate the remote sensing data

ontology in Figure 1. The RDF/OWL API is required. (RDFS).

(RDFS)

File S2 Code for ID 103001001E1EB700 instance (see
also http://cs.jnu.edu.cn/sun/ontology). Computer code

in the RDF language is ontology annotation file of remote sensing

data (catalog ID 103001001E1EB700) instance in Figure 2. The

RDF/OWL API is required. (RDF).

(RDF)

File S3 The sequential conversion code in C language.
The code accesses and converts the data stored contiguously on

disk. Despite the cache provided by the operating system, an

application that performs a large number of reads, conversions

and writes usually faces the performance challenge. GCC compiler

is required. (C).

(C)

File S4 The parallel conversion code in C language. To

support the run-time allocation of conversion tasks, a manager/

worker-style parallel C program has been built. The multiple

processes of this parallel program can simultaneously access and

convert big data by utilizing the MPI-IO. The MPI API is

required. (C).

(C)
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