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Abstract

Cystine-knot miniproteins define a class of bioactive molecules with several thousand natural members. Their eponymous
motif comprises a rigid structured core formed by six disulfide-connected cysteine residues, which accounts for its
exceptional stability towards thermic or proteolytic degradation. Since they display a remarkable sequence tolerance within
their disulfide-connected loops, these molecules are considered promising frameworks for peptide-based pharmaceuticals.
Natural open-chain cystine-knot trypsin inhibitors of the MCoTI (Momordica cochinchinensis trypsin inhibitor) and SOTI
(Spinacia oleracea trypsin inhibitor) families served as starting points for the generation of inhibitors of matriptase-1, a type
II transmembrane serine protease with possible clinical relevance in cancer and arthritic therapy. Yeast surface-displayed
libraries of miniproteins were used to select unique and potent matriptase-1 inhibitors. To this end, a knowledge-based
library design was applied that makes use of detailed information on binding and folding behavior of cystine-knot peptides.
Five inhibitor variants, four of the MCoTI family and one of the SOTI family, were identified, chemically synthesized and
oxidatively folded towards the bioactive conformation. Enzyme assays revealed inhibition constants in the low nanomolar
range for all candidates. One subnanomolar binder (Ki = 0.83 nM) with an inverted selectivity towards trypsin and
matriptase-1 was identified.
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Introduction

Cystine-knot peptides, often referred to as knottins, can be

considered as one of Nature’s combinatorial libraries [1–4]. These

peptides have been identified in various organisms, among them

fungi, plantae, porifera, mollusca, arthropoda, and vertebrata.

While they share a common fold, they display a notably large

diversity within the primary structure of flanking loops that is also

correlated with a diversity of biological activities [2–5]. Their

amide backbone of about 30 to 40 amino acid residues is

compacted by three disulfide bonds which form the characteristic

mechanically interlocked structure [6]. Three b-strands linked

through three disulfide bonds define their structural core, where

the ring-forming connection of CysI to CysIV and CysII to CysV

is penetrated by a third cystine between CysIII and CysVI

(Figure 1) [1–4]. NMR measurements of dynamics of backbone

NH groups revealed high structural rigidity [7]. Considering the

extensive network of hydrogen bonds which permeates the inner

core, especially via the b-strands, thus adding a substantial

thermodynamic stability, the cystine-knot motif displays an

exceptional structural and thermal robustness [8–10].

Trypsin inhibitors isolated from the bitter gourd Momordica

cochinchinensis (MCoTI, Figure 1A) and the squirting cucumber

Ecballium elaterium (EETI) are prominent members of the ICK

(inhibitor cystine-knot) family. Both share the typical architecture

of an ICK peptide with the functional loop comprising six amino

acids located between CysI and CysII (Figure 1) [3,11]. In

contrast, recently reported miniproteins isolated from spinach

Spinacia oleracea (SOTI I–III, Figure 1B) have shown no similarity

to known plant protease inhibitors, but to antimicrobial peptides

from the seeds of Mirabilis jalapa with the inhibitory loop located

between CysV and CysVI (Figure 1) [12,13]. Structural informa-

tion is available for the members of both inhibitor families [13–

17].

Sequence and structure alignments of members of a respective

miniprotein family reveal a conserved structural core, while the

surface-exposed loops possess a high flexibility in terms of primary

structure [3]. Thus, through substitution of surface-exposed

residues bioactive variants can be generated that can serve as

tailor-made compounds for potential diagnostic and therapeutic

applications [10,18–20]. Several knottins have already been

optimized by rational design or combinatorial library screening

towards binding to targets of medical relevance [18,21–32]. For

example, a MCoTI-II-derived miniprotein comprising a non-

native hydrazone macrocyclization motif was reported to simul-
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taneously inhibit all four monomers of human mast cell tryptase b,

a protease of clinical relevance related to allergic asthma [27,28].

Several rounds of directed evolution and rational design of the

scorpion-derived miniprotein Leiurotoxin I from Leiurus quinques-

triatus hebraeus resulted in its enhanced binding to gp120 of the viral

particle of HIV, thus inhibiting cell entry [25,26,33]. Furthermore,

cancer-related integrins have been successfully labeled in vivo with

radioactive 64Cu and 111In via selective targeting with knottins

containing an integrin-binding RGD motif and used for PET

(positron emission tomography) and SPECT (single-photon

emission computed tomography) imaging [21–24].

Knottins are readily accessible both by recombinant production

and SPPS (solid-phase peptide synthesis) [3]. Indeed, obvious

difficulties arising upon on-support chain assembly can be easily

overcome using the wide-ranging repertoire of modern peptide

synthesis, and the crucial step, regioselective formation of a

tridisulfide pattern, can be efficiently controlled using optimized

oxidation conditions [3,34].

Matriptase-1, a TTSP (type II transmembrane serine protease)

of about 855 amino acids, belongs to the family of S1 trypsin-like

proteases [35,36]. It combines an amino terminal hydrophobic

transmembrane region with an extracellular section of several

domains, among them a trypsin-like catalytic and a low-density

lipoprotein region [35–37]. Autocatalytic activation of the

zymogen is assisted by its cognate inhibitor HAI-1 (hepatocyte

growth factor activator inhibitor-1) and does not depend on other

proteases. To date, the mechanism of autocatalytic activation has

not been fully understood [35,37–39]. Interestingly, matriptase-1

is also activated via acidification of the enzyme, therefore

indicating its role in cellular acidosis [40]. Studies on knock-out

mice have shown that matriptase-1 is essential for epidermal

barrier functions, hence postnatal survival, as well as growth of

hair follicles, and thymic homeostasis [41]. Moreover, matriptase-

1 has been reported to be expressed not only in epithelial cells, but

also in mast cells, B-cells, and blood monocytes [42–44]. Among

its numerous substrates of which most are important for cell

adhesion and tissue remodeling, processing of pro-uPA (pro-

urokinase plasminogen activator) and pro-HGF (pro-hepatocyte

growth factor) have been shown to be significantly involved in

tumor growth and metastasis [45]. Expression rates of matriptase-

1 were reported to reflect the degree of tumor progression in

several types of cancerous cells, thus indicating a crucial role of this

protease in tumor metastasis [46–48]. This was evidenced through

various experiments, both in vitro and in vivo, in which the enzyme

was inhibited [35,49–51]. The ratio of matriptase-1 and HAI-1,

which is shifted towards matriptase-1 in cancer cells, is of major

importance for tumor invasiveness [45,52,53]. Moreover, ma-

triptase-1 has been reported to be implicated in a number of other

diseases, among them osteoarthritis and atherosclerosis, and to

induce cancer itself [42,54,55]. In conclusion, matriptase-1 has

become a promising target for drug development. To date, only

one peptide-based inhibitor of matriptase-1 with a picomolar Ki

has been reported [56,57]. Despite its excellent inhibition

constants against matriptase-1, this four-amino-acid peptide with

the sequence H-R-Q-A-R-Bt (Bt stands for carboxy terminal

benzothiazole substituent) displays a low selectivity. Since for

in vivo experiments a high selectivity and serum half-life are

indispensable, this inhibitor presumably is not suitable for

experiments towards tumor targeting in vivo. Here we describe

the isolation of selective cystine-knot peptides of high affinity from

knowledge-based combinatorial miniprotein libraries and their

functional characterization in vitro and in cell culture.

Materials and Methods

Media and Reagents
All media were prepared as previously reported [18,58,59].

YPD medium contained 20 g/L peptone, 20 g/L dextrose, and

10 g/L yeast extract. Selective SD-CAA medium incorporated

6.7 g/L yeast nitrogen base without amino acids, 20 g/L dextrose,

8.6 g/L NaH2PO4?H2O, 5.4 g/L Na2HPO4, and 5 g/L Bacto

casamino acids. SG-CAA medium was prepared similarly except

for the addition of 100 mL/L polyethylene glycol 8000 (PEG

8000) and the substitution of dextrose by galactose. DYT medium

contained 10 g/L yeast extract, 16 g/L tryptone, 5 g/L and

100 mg/L ampicillin. Phosphate-buffered saline (PBS) was com-

posed of 8.1 g/L NaCl, 0.75 g/L KCl, 1.13 g/L Na2HPO4, and

0.27 g/L KH2PO4 at pH 7.4.

RPMI cell culture media (with and without phenol red) was

supplemented with 10% (v/v) fetal calf serum (FCS) and

antibiotics. These materials were purchased from Sigma-Aldrich.

Figure 1. Sequences and structures of cystine-knot trypsin inhibitors. (A) Knottin oMCoTI-II (pdb: 1ha9). (B) SOTI-III (pdb: 4aor). Secondary
structure is shown as cartoon with surface, and cysteine residues are depicted as yellow sticks; protease-binding regions (or inhibitor loops) are
depicted in red, b-sheets - in blue, and a-helices - in green. Cystine-forming residues are marked bold, and the numbering of respective cysteines is
according to their appearance in the sequence.
doi:10.1371/journal.pone.0076956.g001
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Human matriptase-1 was produced recombinantly, autocata-

lytically activated and purified as previously reported

[35,49,51,60]. Bovine pancreatic trypsin, thrombin and uPA were

purchased from Sigma-Aldrich and Hepsin from R&D Systems.

Variant Cloning and Library Synthesis
For the initial display experiments of SOTI-III wild type and the

yeast libraries based on the MCoTI-II and SOTI-III scaffold the

encoding gene fragments were amplified by PCR with Taq

polymerase with the use of primers with 50-bp overlap to the pCT

plasmid up- or downstream of the NheI and BamHI restriction sites,

respectively. Positions for randomization in case of the SOTI-III

library contained the NNK degenerate codon. For the MCoTI-II

library, weighted randomization of respective residues was

achieved upon synthesis using pre-made codon mixtures as

described [61]. Amplified PCR products were purified by

phenol/chloroform extraction. The vector was digested with NheI

and BamHI and purified via sucrose density gradient for

homologous recombination in yeast. For the electroporation

reaction 1–4 mg of linearized plasmid and 10–12 mg of insert

were used [58]. After 1 h incubation (YPD medium, 30uC) library

size was estimated by dilution plating. The yeast cells were

transferred into selective SD-CAA medium, grown at 30uC to

OD600 = 10–12 and split into new SD-CAA medium. Library

stocks were stored at –80uC [58]. Yeast cells were induced in SG-

CAA medium (starting OD600 of 0.1–0.2, 20uC, 48 h, 220 rpm).

Surface Binding Assays and Library Screening
Surface presentation of miniproteins was monitored by flow

cytometry. 1?107 cells were labeled consecutively with 1:20

dilutions of anti-cMyc antibody (monoclonal, mouse, Abcam),

anti-mouse IgG biotin conjugate (polyclonal, goat, Sigma-Aldrich),

and Streptavidin, R-phycoerythrin conjugate (SPE) for 10 min on

ice.

Protease binding assays and one-dimensional screenings of

recombinant knottin libraries were conducted by incubation of

knottin-presenting yeast cells with the respective biotinylated

protease for 30 minutes on ice. Subsequently, the cells were

resuspended in a 1:20 dilution of SPE for 10 min. The cells were

analyzed in an Accuri C6 (Becton Dickinson) or were sorted using

a MoFlo cell sorter. Sorting parameters were: trigger side scatter

650, PMT FL2 600, ex. 488 nm filter FL2 570/40. FCS files were

analyzed using CFlow software or Summit 4.3, respectively.

For two-dimensional screening the yeast cells were consecutively

incubated for 30 min at 0uC with 1:20 dilutions of each anti-cMyc

antibody containing the desired concentration of biotinylated

protease as well as a mixture of SPE and anti-mouse-IgG FITC

(parameters: trigger side scatter 650, FL1 600, FL2 600).

Approximately 26108 yeast cells were run through the flow

cytometer at the first round of sorting. The selected cells were

cultured after each screening round in SD-CAA medium. Next

screening rounds were performed with at least 10 times the

number of yeast cells collected in the previous round to ensure

library diversity. Sort stringency was increased by reducing the

protease concentration in subsequent screening rounds.

Plasmid DNA from positive clones was isolated and transformed

into DH5a competent E. coli cells for plasmid amplification. DNA

sequencing was performed using the oligonucleotide pCT-seq-lo.

Cell Inhibition Assay
Human prostate cancer cells (PC-3, Merck KGaA) were

cultured in DMEM medium with 10% FCS at 37uC and 5%

CO2, washed with cation-free PBS and harvested by scraping.

16105 cells were incubated in presence of 250 mM Bz-b-Ala-Gly-

Arg-pNA?AcOH (American Diagnostica), which is a specific

inhibitor of urokinase, and the inhibitor of interest in defined

dilutions overnight. Product formation was monitored at 405 nm

before and after incubation in a microplate reader. IC50 was

calculated by non-linear regression using SigmaPlot 11.

Synthesis of Cystine-knot Miniproteins
Peptides were assembled using standard Fmoc-SPPS chemistry

on a fully automated microwave-assisted CEM LibertyH peptide

synthesizer. Peptide acids were generated using an Fmoc-Gln-

preloaded TentaGel resin, whereas peptide amides were synthe-

sized on a ChemMatrix Fmoc-Rink amide resin. After cleavage from

the solid support, oxidative folding was conducted as recently

reported [34]. About 40 mg of the corresponding lyophilized

crude peptide were suspended in 500 mL acetonitrile and treated

in an ultra-sonic bath for 5 min. Afterwards, 3500 mL of the

folding mixture consisting of 10% (v/v) DMSO, 10% (v/v) TFE

and guanidinium hydrochloride (GuHCl) (1 M) in aqueous

sodium phosphate buffer (50 mM, pH 7) were added [34].

Reaction progress was monitored via analytical HPLC and ESI-

MS (Figures S7 and S8) [34]. For termination of the reaction and

purification of the bioactive miniprotein, the mixture was directly

injected into a semi-preparative HPLC system.

RP-HPLC, LC-ESI-MS, and CD Spectroscopy
Analytical RP-HPLC was performed using a Varian LC 920

system equipped with a Phenomenex Synergi 4 m Hydro-RP 80 Å

(25064.6 mm, 4 mm) column applying linear gradients of

acetonitrile at a flow rate of 1 mL/min. Semi-preparative RP-

HPLC purifications were performed using a Varian LC 940

system equipped with an axia-packed Phenomenex Luna C18

(250621.2 mm, 5 mm, 100 Å) column applying linear acetonitrile

gradients at a flow rate of 18 mL/min. Isocratic elution (10%

eluent B over 2 (on analytical scale) or 5 min (on semi-preparative

scale)) was followed by a linear gradient of 10R60% B (for

MCoTI variants) or 10R80% B (for SOTI variants) over 20 min,

respectively.

LC-MS was performed with a Shimadzu LC-MS 2020 equipped

with a Phenomenex Jupiter C4 (5061 mm, 5 mm, 300 Å) column

using linear acetonitrile gradients at a flow rate of 0.2 mL/min

(Figures S7 and S8). Isocratic elution (2% eluent B over 2 min) was

followed by a linear gradient of 2R100% B over 10 min. Cystine-

knot disulfide bond topology of MCoTI Var. 4 was confirmed

using MS3-technology (AB Sciex, 4000 QTRAPH LC/MS/MS

System; data not shown).

CD spectroscopy was performed as previously reported [34].

The peptides were dissolved in 2 mM aqueous Na2HPO4 (pH 7)

to a final concentration of 50 mM. The resulting spectra (Figure S9

and S10) were obtained through accumulation of 10 spectra each,

using a 0.1 mm quartz cuvette at 0.5 nm steps.

Inhibition Assays
Protease inhibition assays which resulted in substrate-indepen-

dent inhibition constants were performed as previously described

[11,13,34,62].

Measurements were carried out in triplicate using a Tecan Genios

ELISA reader. The normalized residual proteolytic activity (v/v0)

of proteases was determined using substrates Boc-QAR-pNA

(250 mM, (pNA stands for para-nitro aniline), Boc-QAR-AMC

(250 mM, AMC stands for amino-methyl coumarin) or Spectro-

zym tPA (250 mM, American Diagnostica, CH3SO2-D-CHT-Gly-

Arg-pNA AcOH). Product formation was monitored after

preincubation (30 min, RT) with inhibitor at different concentra-

tions over 30 min by measuring the absorbance at 405 nm for

Potent Cystine-Knot Inhibitors of Matriptase-1
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pNA substrates or the fluorescence emission for AMC substrates

(ex. 360 nm, em. 465 nm), respectively. Selectivity data were

carried out in duplicates with final protease concentrations of uPA

and thrombin of 5 nM. In case of hepsin 50 mM Tris/HCl

pH 9.0 was used as assay buffer.

Apparent inhibition constants (Ki
app) were calculated by fitting

the Morrison equation (1) for tight-binding inhibitors to the

relative reaction velocity using non-linear regression (Marquardt-

Levenberg algorithm, Sigma Plot 11) [63].

v
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Substrate-independent inhibition constants Ki were calculated

from Ki
app and Km of the enzyme according to (2). The Michaelis-

Menten constant Km for the substrates and proteases were

determined previously [49,64].

Results

Selection of Knottin Scaffolds
Since the overall structure of matriptase-1 is similar to trypsin,

the preference for cleavage at basic residues at the P1 position is

maintained [49]. Hence, we considered trypsin-inhibiting mini-

proteins as a starting point for functional combinatory library

design to isolate inhibitors of matriptase-1 [17]. From the plethora

of miniproteins that are characterized to date, scaffolds were

selected matching the following criteria: inhibitor of a trypsin-like

protease, known three-dimensional structure, tolerance to varia-

tion of loop lengths and sequence, known mechanism of folding

and disulfide bond formation, as well as availability through

chemical and recombinant routes of synthesis [2–4]. Two different

scaffold proteins have been selected based on the aforementioned

requirements. The first selected scaffold was based on the spinach-

derived inhibitor SOTI-III. The structure of this protease inhibitor

has been recently elucidated by X-ray crystallography [13]. Since

the inhibitor loop of SOTI-III is located between CysV and

CysVI, this miniprotein is structurally and sequentially very

distinct to MCoTI-II, which was chosen as second scaffold (Figure

S1). This scaffold is based on miniproteins from the seeds of the

squash plant M. cochinchinensis. This plant produces a number of

miniprotein-based trypsin inhibitors, both backbone-cyclized

macrolactams and variants lacking this motif (so-called ‘open-

chain’ variants), which are slightly different in their sequences

[1,17]. To evaluate which of the natural MCoTI variants could

serve as a scaffold for the generation of matriptase-1 inhibitors,

natural inhibitors were isolated form the M. cochinchinensis seeds

using known extraction procedures followed by HPLC separation

(Figure S2) [17,65]. Miniproteins from various fractions were

identified by ESI-MS and examined for inhibition of matriptase-1

(Table S1). MCoTI-II, a macrolactam-cyclized miniprotein

consisting only of natural amino acids, was found to be the most

efficient natural inhibitor of matriptase-1 and therefore chosen as

starting scaffold. Synthetic open-chain MCoTI-II (oMCoTI)

displayed a Ki
app similar to that of its cyclic counterpart (Table

S1). Interestingly, SOTI-III is a less potent inhibitor of trypsin and

did not display measurable inhibitory activity against matriptase-1

(Table 1).

SOTI-III-based Library Screening
To obtain knottin-based matriptase-1 binders, yeast surface

display was chosen as its applicability to the screening of cystine-

knot-based peptide libraries has been already demonstrated

[22,58,59,66]. To this end, the SOTI-III wild type or library-

encoding DNA was genetically fused to the Saccharomyces cerevisiae

Aga2p coding sequence. The resulting constructs are under

control of the galactose promoter [22]. Induction with galactose

yields a fusion protein consisting of Aga2p, a glycine-serine linker,

an HA-epitope, the miniprotein, and a cMyc epitope (Figure 2A)

[58,66–68]. The fusion is covalently bound to the surface-

anchored Aga1p [58,66]. Functional display of SOTI-III wt was

shown by binding of biotinylated bovine pancreatic trypsin

followed by flow cytometric analysis (Figure 2B). After verification

of functional display of the wild type miniprotein, the inhibitor loop

was randomized by PCR using oligonucleotides with NNK codon

randomization (materials and methods section). All ten loop

residues of SOTI-III were considered for full randomization

including the P1 residue arginine, since for optimized matriptase-1

binding the P1 residue may be shifted to another position within

the inhibitor loop. The resulting miniprotein library had a clonal

diversity of 26108.

To isolate matriptase-1-binding SOTI-III variants, four con-

secutive fluorescence-activated cell sorting (FACS) screening

rounds were performed (Figure 2, Figure 2C for flow cytometry

screening, and materials and methods section) and one dominant

clone was isolated after four sorting rounds (Figure 2D).

Subsequently, an alanine scan was conducted to determine the

essential arginine residues within the inhibitor loop that contained

four arginine residues. As a result, Arg29 and Arg32 were found

imperative for binding and bioactivity, while Arg30 and Arg35

were dispensable without major loss of binding (Figure S4). The

SOTI-based cystine-knot peptide Var. 1 was synthesized chem-

ically using microwave-assisted Fmoc-SPPS followed by oxidative

folding and HPLC purification yielding the bioactive peptide

(Table S2). Subsequent inhibition assays revealed the inhibition

constants against matriptase-1 and trypsin as 28.9 nM and

.1 mM, respectively (Table 1).

MCoTI-II-based Library Design
Encouraged by these promising results, we further optimized

the library design towards more potent cystine-knot inhibitors of

matriptase-1. A codon-based randomization of the oMCoTI-II

Table 1. Inhibition constants of inhibitors studied in this
work.

Inhibitor Ki (Trypsin) (nM) Ki (Matriptase-1) (nM)

SOTI-III wt 60.668.4 .1000

SOTI Var. 1 .1000 28.963.5

MCoTI-II wt 2.3760.96 80.7610.0

MCoTI Var. 1 31.764.3 4.460.6

MCoTI Var. 2 19.262.8 3.360.4

MCoTI Var. 3 22.363.0 7.861.0

MCoTI Var. 4 35.864.7 0.8360.14

S1a [51] 118616 7.160.87

S2a [51] 544674 28.263.5

aStructural information for reference compounds S1 and S2 are depicted in
Figure S3.
doi:10.1371/journal.pone.0076956.t001
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scaffold was used for library generation (Figure 3A and 3B), which

included the inhibitor loop and neighboring residues that may

contribute to target binding [61]. It is well known that a proline is

required at position P2 (amino-terminal to P1, Figure 1) of the

inhibitor loop [2,4]. Thus, Pro5 was not modified since it is

essential for the formation of the six-residue canonical inhibitor

loop conformation that is found in many protease inhibitors

[1,2,4]. Codon 6 was randomized to code for Arg or Lys (50%

each), and positions 7–10 were randomized to code for the full set

of 19 canonical amino acids, excluding cysteine, using a codon-

based randomization scheme (Figure 3A) [22]. In addition,

neighboring residues were also included into the variegation

scheme to enable improved subsite binding that may contribute to

both enhanced affinity and specificity. Since these residues outside

the inhibitor loop may be of relevance for oMCoTI-II folding and

stability, simultaneous full randomization was avoided by main-

taining the original residue at each position for 50% of the

variants. As a consequence, in approximately 3% of the variants

all five original amino acids that are located adjacent to the

inhibitor loop are expected to be preserved and the average

number of residue replacements was expected to be 7 (Figure S5).

In oMCoTI-II, the carboxy-terminal loop is located adjacent to

the inhibitor loop and therefore can affect target binding.

Tolerance of this loop region towards amino acid exchanges has

been extensively investigated for the structurally similar knottin

EETI [18,29,69,70]. This loop region is thought to be involved in

the early folding process of the miniprotein via formation of a type

II b-turn [2,4,11,18,70]. Since this loop sequence is a folding

determinant, only moderate sequence variations were included by

randomizing each position to 10%. Thus, over 50% of the variants

can be expected to have none or one amino acid exchange within

that region (Figure S5). The same moderate mutagenesis scheme

was applied for D14 and D16 that are conserved in the ICK family

of miniproteins and are involved in stabilization of the oMCoTI

scaffold [2,4]. As the active site of matriptase-1 is negatively

charged, it may be beneficial for binding to allow replacement of

these residues [49]. Overall, the randomization scheme applied

here includes 17 out of 30 residues. However, on average only 6 to

8 of the 17 residues are expected to be changed in each variant

and four of these are most likely located within the inhibitor loop.

MCoTI-II Library Screening
To evaluate the feasibility of library design that includes 17 of

30 residues in the randomization scheme, two relatively small yeast

libraries with a diversity of 26106 and 26107 clones, respectively,

were independently constructed from the same synthetic library

DNA and screened separately. After two to four rounds of

screening, matriptase-1-binding populations were enriched. Indi-

vidual matriptase-1-binding clones were identified using flow

cytometry (Figure 3C). DNA sequences were obtained (10 from

the screen of the library with a diversity of 26106 clones as well as

12 of the 3rd and 16 out of the 4th round of the library containing

26107 clones, respectively; Figure S6). From these, four binders

were selected for detailed investigations (Figure 3D) that were

independently identified several times in screening rounds three

and four or displayed high affinity binding upon yeast cell surface

affinity titration (Figure S6).

To determine the inhibition constants, chemical synthesis and

oxidative folding of the putatively inhibiting cystine-knot peptides

were performed as previously reported (Table S2) [34]. Correct

fold of the miniproteins was proven through bioactivity, since it is

known that knottins of the ICK family displaying an incorrect

disulfide connectivity show a decreased inhibitory efficiency

[3,11,15,30,34]. Moreover, CD spectra of SOTI wt, SOTI Var.

1, MCoTI wt and MCoTI Var. 4 indicated b-sheet formation

(Figures S9 and S10). Disulfide bond connectivities were

confirmed by MS3 mass spectrometry for MCoTI Var. 4 via

continuous injection of a 3 mM solution of the miniprotein at a

flow rate of 10 mL/min into an ABSCIEX 4000 QTRAPH LC/

MS/MS system (data not shown) [71]. Inhibition constants in the

low nanomolar to sub-nanomolar range were obtained for all

MCoTI-based miniproteins (Table 1). An additionally performed

selectivity study for the best MCoTI-based inhibitor candidate

Var. 4 revealed inhibition constants Ki .10 mM against thrombin,

uPA, and hepsin (Table 2). Moreover, inhibitory activity for

matriptase-1 was approximately fortyfold higher than for trypsin

(Table 1).

Figure 2. Yeast surface display of SOTI-III wild type and screening against matriptase-1. (A) Schematic illustration of Aga1p/Aga2p
surface-displayed inhibitor (red) flanked by the amino terminal HA (Human influenza hemagglutinin) epitope (green) and the carboxy terminal cMyc
epitope (purple). Functional display of the inhibitor is monitored by incubation with biotinylated trypsin followed by fluorescence labeling with
streptavidin, R-phycoreythrin conjugate (SPE). (B) FACS histogram overlay of yeast surface presented SOTI-III wild type labeled with anti-cMyc
antibody (yellow), trypsin (blue), matriptase-1 (green) and chymotrypsin (brown). (C) FACS overlays of matriptase-1 binder enrichment. The sorting
round (R) and the matriptase-1 concentration used in each round (mM) is given in the figures. Dark grey: FACS histogram during sorting. Light grey:
FACS histogram during resort (only rounds 2 and 4). (D) Sequence alignment of SOTI-III wild type and matriptase-1-binding SOTI variant 1.
Randomized residues are colored in red. Cysteines are depicted in bold letters, while cystine connections are omitted for clarity.
doi:10.1371/journal.pone.0076956.g002
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Inhibition of uPA Activation
Urokinase-type plasminogen activator (uPA) causes the degra-

dation of the extracellular matrix and plays a critical role in tumor

invasion and metastasis [72,73]. It was shown that activation of

receptor-bound pro-uPA is affected by matriptase-1, which results

in a decreased ability of uPAexpressing tumor cells to invade an

extracellular matrix layer upon inhibition of membrane-bound

matriptase-1 [72]. To investigate the inhibitory activity of the

newly isolated matriptase-1 inhibitors on pro-uPA activation, a

dose-response assay of uPA activity was performed in cell culture

with SOTI-based variant (Var. 1) and the most potent MCoTI-

based inhibitor (Var. 4) on human prostate carcinoma cancer cells

(PC-3), as a upregulation of matriptase-1 expression level has been

reported for this cell line [45,69,72].

For the indirect determination of the IC50 of SOTI Var. 1 and

MCoTI Var. 4 on the surface of these cancer cells, the turnover of

an uPA substrate was monitored. Pro-uPA is activated through

non-inhibited matriptase-1 and substrate turnover was measured

and compared to the previously reported small molecule inhibitor

S1 of matriptase-1 (Figure 4) [51]. In this experimental setting, the

MCoTI-based inhibitor Var. 4 (Ki = 0.83 nM) exhibited an IC50

of 213 nM, while SOTI-III derived inhibitor Var. 1 displayed only

minor activity. S1 a small-molecule inhibitor (Figure S3) that has

been identified recently as potent matriptase-1 inhibitor with an Ki

in the single digit nanomolar range was used as reference

compound that displayed an tenfold higher IC50 value than

MCoTI-based inhibitor Var. 4 in this assay [51]. For control

SOTI wt was also applied in this experimental setting at a

Figure 3. Summary of MCoTI-II-based library design and screening against matriptase-1. (A) Sequence of open-chain MCoTI-II wild type.
Cysteines are depicted in bold letters. R1 represents the amino-terminal flanking sequence, including the HA-epitope. R2 represents the carboxy-
terminal flanking sequence, including the cMyc-epitope. Codon randomization for (A), (B), and (D) as indicated by color (at pos. 6 only Lys or Arg was
allowed, grey). (B) Secondary structure of MCoTI-II is shown as cartoon with surface, cysteine residues are shown as orange sticks. (C) FACS
histograms showing four rounds of sorting with decreasing target concentration for enrichment of matriptase-1 binders. R denotes the sort round
with the concentration of matriptase-1 indicated. Actual sort gates are shown. (D) Sequence alignment of matriptase-1-binding MCoTI variants.
Cysteines are numbered according to the appearance in the sequence and depicted in bold letters, while cystine connections are omitted for clarity.
doi:10.1371/journal.pone.0076956.g003

Table 2. Selectivity profile of MCoTI-based inhibitor Var. 4.

Protease Ki (nM)

Trypsin 35.864.7

Matriptase-1 0.8360.1

Thrombin .10000a

Urokinase .10000a

Hepsin .10000a

aNo inhibition was observed at 10 mM inhibitor concentration.
doi:10.1371/journal.pone.0076956.t002
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concentration of 10 mM, displaying no inhibition of either

matriptase-1 or uPA.

Discussion

For the isolation of miniprotein-based inhibitors by combina-

torial library screening the design of the variant library is a crucial

step. We chose a knowledge-based strategy that takes into account

the expected contribution to target binding, as well as the natural

variability and the contribution to structure and folding of each

residue at each position. While we followed a classical variegation

scheme for SOTI-III with a full randomization that is restricted to

the carboxy terminal loop, a position-specific randomization

scheme was applied for oMCoTI-II.

Screening of the SOTI-III library resulted in the isolation of a

variant that displayed 29 nM Ki with respect to matriptase-1

inhibition and contained the sequence motif RRAR in the

inhibitor loop. This agrees with the consensus sequence for

matriptase-1 substrates and the highly potent inhibitor peptide H-

R-Q-A-R-Bt [45,49,56,57]. Despite the fact that the absolute

position of the P1 arginine residue within the inhibitor loop

remained unchanged, increased inhibitory activity towards

matriptase-1 interestingly led to the total loss of trypsin inhibition.

Hence, in comparison to the wild type miniprotein, the isolated

SOTI-based matriptase-1 inhibitor (Var. 1) showed improved

inhibitory activity and selectivity. Notably, the recently reported

crystal structure of SOTI-III wild type revealed that out of the 10

carboxy terminal loop residues only 8 were in direct contact to

trypsin [13]. Thus, exclusion of core-forming residues from the

randomization scheme of SOTI-based inhibitor Var. 1 and

generating a sub-library for the flanking residues might result in

variants with further improved binding characteristics. Moreover,

experiments on co-crystallization of matriptase-1 and SOTI Var. 1

are required to understand the mode of interaction of protease and

inhibitor. Additionally, it would be beneficial to gain further

knowledge on whether the conformational constraints that are

imposed on the SOTI-III wild type inhibitor loop via integration

into the cystine-knot scaffold are also conserved in the matriptase-

1 inhibitor Var. 1. Assuming an unchanged mode of action, the

knottin-based peptide acts as a matriptase-1 inhibitor rather than

as a substrate that is readily and irreversibly cleaved.

Screening of the oMCoTI-scaffold-derived library resulted in

several inhibitors that all displayed Ki values in low nanomolar to

sub-nanomolar range. Despite the fact that the library diversity

was 10-fold lower than for the SOTI scaffold and with 26107

clones relatively small, more potent binders were isolated

corroborating the concept of knowledge-based library design. It

should also be noted that oMCoTI-II wt in contrast to SOTI-III wt

already displayed inhibitory activity against matriptase-1 and

therefore may be the more suitable scaffold for optimization

towards matriptase-1-binding and inhibition. Branched aliphatic

residues were observed at the P1’ position of isolated matriptase-1-

binding oMCoTI library variants, while leucine was the preferred

P2’-positioned amino acid. In contrast to reported substrates and

inhibitors, lysine was obviously favored over an arginine residue at

the P1 position (Figure 3D) [45,56]. While amino acid residue 1

displayed a large variability, replacements of the ‘GV-motif’ at

positions 2 and 3 rarely occurred, demonstrating the importance

of these residues for binding and/or folding (Figure 3D). Whereas

no substitutions within loop 2 (flanked by CysII and CysIII) were

observed, Arg24 was exchanged for leucine in the most potent

inhibitor Var. 4 (Figure 3D). It remains to be elucidated, whether

this residue replacement contributes to enhanced inhibition.

To investigate the inhibition of pro-uPA activation cell culture

upon matriptase-1 inhibition, miniproteins SOTI Var. 1 and

MCoTI Var. 4 as well as reference compound S1 were applied to

human pancreatic PC-3 cells (Figure 4) [45,72]. MCoTI-based

knottin Var. 4 that had a subnanomolar Ki towards matriptase-1

also displayed the lowest IC50 with respect to the inhibition of

proteolytic activity in a PC-3 cell line [74–76]. This indicates that

inhibitor-mediated reduction of matriptase-1 activity contributes

to the decrease of uPA activity. IC50 values ranged from a

nanomolar to micromolar range and MCoTI-based inhibitor Var.

4 was found to be 10-fold more potent than recently described

peptidomimetic small-molecule inhibitors (Figure 4) [51].

All three inhibitors investigated displayed IC50 values of

protease inhibition on PC-3 cells more than 100-fold higher

compared to their Ki of matriptase-1 inhibition. This discrepancy

may arise from the complicated situation in cell culture since

matriptase-1 activity is regulated by the cognate natural tight-

binding inhibitor HAI-1. Co-expression of HAI-1 and matriptase-

1 suppresses matriptase-1 proteolytic activity. Interestingly, HAI-1

has also been considered to be required for activation of

matriptase-1 and to be involved in its expression and autoproces-

sing [38,39,41,57,77]. Moreover, absence of HAI-1 seems to cause

rapid turnover of active matriptase-1 [57,77]. Hence, the

complicated conditions in the cell-culture media, in the cell and

on its surface may account for the observed differences of Ki and

IC50.

In recent years, matriptase-1 has attracted keen scientific

interest as a target for the development of inhibitors. Steinmetzer

and coworkers reported small molecule inhibitors that display

similar potency and selectivity in vitro as well as in cell-based assays

as the miniproteins generated in this study [51,76]. In addition,

two types of peptidic matriptase-1 inhibitors have been identified

to date [49,56]. The short substrate-derived inhibitor H-R-Q-A-R-

Bt displays an inhibition constant in the double-digit picomolar

range. Due to the small size and susceptibility to proteolytic

degradation, in vivo half-life can be expected to be short.

Moreover, the universal sequence is not selective for matriptase-

1, but inhibits various proteases in the pico- to nanomolar range

[56]. Compared to the tetrapeptide, the sunflower trypsin inhibitor

(SFTI)-based matriptase-1 inhibitor that has been described

recently has an increased size (14 residues) combined with a

constrained structure, thus being potentially more stable and

Figure 4. Inhibition assay of uPA activation by matriptase-1 on
the surface of PC-3 cells. Depicted is the logarithmic inhibitor
concentration against the absorption at 405 nm.
doi:10.1371/journal.pone.0076956.g004
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applicable for in vivo experiments [49]. Recently, Daly and

coworkers obtained by rational design and positional scanning

mutagenesis a cyclic MCoTI-II variant with subnanomolar

inhibition constant of matriptase-1 that was found to be more

potent than SFTI derived variants, corroborating the notion that

the McoTI-II miniprotein scaffold provides an excellent structural

environment for the development of potent and selective

matriptase inhibitors [78]. Serum stability and potential oral

availability has been shown for several knottins and it will be

interesting to see whether the MCoTI-derived inhibitors display

similar stability in cell culture and serum while maintaining

activity and selectivity.

Knottins have been introduced by Cochran and coworkers as a

new class of agents for imaging of tumor marker expression in

living systems [18,24,79]. For example, 64Cu-DOTA-conjugated

knottin peptides were stable in mouse serum, and in vivo metabolite

analysis showed minimal degradation in blood or tumor rendering

this type of stable peptides very promising candidates as clinical

diagnostics for a variety of cancers [79]. The spectrum of tumor

targeting knottins, which is currently restricted to cystine-knot

peptides containing integrin binding RGD sequences in their

binding loops, can be extended by matriptase-1 binders for

imaging applications. The miniproteins described in this study

selectively detect cell-surface-exposed and enzymatically active

matriptase-1 on tumor cells that is not complexed with the natural

inhibitor HAI-1. In contrast, with one notable exception most

antibodies cannot distinguish between the active and inactive form

of matriptase-1, due to their binding to accessible epitopes that are

not linked to the active site or conformational changes upon

activation. Recently, Craik and coworkers showed that an active-

site-specific, recombinant human antibody for matriptase-1 can be

used to visualize the tumorigenic epithelium using near-infrared

and single-photon emission computed tomography imaging,

corroborating the notion that the active form of matriptase-1 is

a tumorigenic biomarker [81]. Since matriptase-1 provides the

major contribution to tumor invasion and progression, knottins

selectively addressing the active site of matriptase-1 may become

valuable tools for tumor imaging, particularly for the prediction of

tumor invasiveness.

Conclusions

To conclude, we have proven the applicability of a knowledge-

based miniprotein library design to the development of potent

inhibitors of human matriptase-1 using a codon-based, weighted,

and selective randomization scheme. A set of cystine-knot

miniprotein variants was generated that included a relatively large

number of residues that may contribute to binding while the

average number and position-specific frequency of amino acid

replacements was carefully controlled. As a consequence, screen-

ing of a relatively small library revealed (sub2) nanomolar

inhibitors. Bioactivity was confirmed in cell culture through a

dose-response inhibition assay on the surface of human cancer

cells. Taking into consideration the high affinity and selectivity

combined with the high general thermodynamic stability of

miniproteins, the variants described here may become promising

tools for applications in cancer diagnostics. In vivo experiments

towards tumor targeting with labeled synthetic miniproteins are

currently in progress.

Supporting Information

Figure S1 Sequences and structure alignment of cys-
tine-knot trypsin inhibitors. Secondary structure of oM-

CoTI-II (light brown, pdb: 1ha9, upper left) and SOTI-III (light

blue, pdb: 4aor, upper right) is shown as cartoon and cysteine

residues are depicted as yellow sticks; protease-binding regions are

depicted in red. Cystine-forming residues are marked bold, and

the numbering of respective cysteines is according to their

appearance in the sequence.

(PNG)

Figure S2 HPLC trace of MCoTI-variants isolated from
seeds of Momordica cochinchinensis. x marks an uniden-

tified peak. [b-Asp]-MCoTI-II possesses a b-aspartyl residue at

position 4. Cyclic miniproteins were isolated from 5 g of

homogenized seeds. Extraction was performed using 20 mL

aqueous sodium acetate (20 mM, pH 4.5) at ambient temperature

for 16 h. The suspension was filtrated and proteins were

denatured with 20 mL aqueous acetone (40%, v/v), while the

miniproteins remained their native conformation. After removal of

acetone under reduced pressure, the suspension was filtrated and

the filtrate was purified by semi-preparative HPLC using an axia-

packed Phenomenex Luna C18 (250621.2 mm, 5 mm, 100 Å)

column applying linear acetonitrile gradients at a flow rate of

10 mL/min. Isocratic elution (10% eluent B over 5 was followed

by a linear gradient of 10R55% B over 30 min.

(TIF)

Figure S3 Small-molecule inhibitors of matriptase-1
that were used as reference compounds.

(PNG)

Figure S4 Matriptase-1 binding analysis of miniprotein
variants SOTI Var. 1 and MCoTI Var. 4 via flow
cytometry. (A) Sequence of the isolated matriptase-1 inhibitors

with randomized residues depicted in the according color. (B)

Overlay of FACS histograms after labeling of miniprotein-

displaying yeast cells with 1 mM of biotinylated matriptase-1

followed by incubation with Streptavidin, R-phycoerythrin

conjugate.

(PNG)

Figure S5 Knottin library design. Expected distribution of

the appearance of amino acid exchanges in loop 1 (red), flanking

regions of loop 1 (yellow), and loop 4 (green). The calculation was

performed assuming a binominal distribution function.

(PNG)

Figure S6 Sequence alignments of MCoTI variants
isolated from two screening cycles. Amino acids marked

in red are identical to those of the MCoTI-wt; amino acids

highlighted in red are conserved for all aligned sequences. The

blue frames show the consensus of at least two amino acids. The

consensus sequence (bottom line) was calculated with a threshold

of 0.5. Consensus sequence: upper-case letters indicate sequential

identity, lower-case letters illustrate consensus. MCoTI wt was

taken as lead sequence for the alignment. Sequences that were

selected for chemical peptide synthesis and further studies are

marked on the right.

(PNG)

Figure S7 HPLC and MS analysis of folded miniprotein
SOTI Var. 1. (A) HPLC trace (10 to 80% B over 20 min) at

220 nm. (B) ESI-MS of peptide-containing fraction.

(TIF)

Figure S8 HPLC and MS analysis of MCoTI Var. 1. (A)

HPLC trace (10 to 60% B over 20 min) at 220 nm. (B) ESI-MS of

peptide-containing fraction.

(TIF)
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Figure S9 CD spectroscopy of the reduced (unfolded)
and oxidized (folded) variants of SOTI wt and SOTI Var.
1. Smoothed with the ‘smooth’ function of Sigma Plot 11.

(TIF)

Figure S10 CD spectroscopy of the reduced (unfolded)
and oxidized (folded) variants of MCoTI wt and MCoTI
Var. 4. Smoothed with the ‘smooth’ function of Sigma Plot 11.

(TIF)

Table S1 Apparent inhibition constants towards ma-
triptase-1 of the isolated cyclic MCoTI variants.
(PDF)

Table S2 Characterization of synthetic miniproteins.
(PDF)
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