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Abstract

Next-generation sequencing technologies provide an unparallelled opportunity for the characterization and discovery of
known and novel viruses. Because viruses are known to have the highest mutation rates when compared to eukaryotic and
bacterial organisms, we assess the extent to which eleven well-known alignment algorithms (BLAST, BLAT, BWA, BWA-SW,
BWA-MEM, BFAST, Bowtie2, Novoalign, GSNAP, SHRiMP2 and STAR) can be used for characterizing mutated and non-
mutated viral sequences - including those that exhibit RNA splicing - in transcriptome samples. To evaluate aligners
objectively we developed a realistic RNA-Seq simulation and evaluation framework (RiSER) and propose a new combined
score to rank aligners for viral characterization in terms of their precision, sensitivity and alignment accuracy. We used RiSER
to simulate both human and viral read sequences and suggest the best set of aligners for viral sequence characterization in
human transcriptome samples. Our results show that significant and substantial differences exist between aligners and that
a digital-subtraction-based viral identification framework can and should use different aligners for different parts of the
process. We determine the extent to which mutated viral sequences can be effectively characterized and show that more
sensitive aligners such as BLAST, BFAST, SHRiMP2, BWA-SW and GSNAP can accurately characterize substantially divergent
viral sequences with up to 15% overall sequence mutation rate. We believe that the results presented here will be useful to
researchers choosing aligners for viral sequence characterization using next-generation sequencing data.
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Introduction

Emerging and re-emerging infectious diseases in the past three

decades have created a significant cause of concern worldwide and

exerted a significant burden on public health. In the past decade

alone, we have seen epidemics of virus variants such as the avian

influenza H5N1 and the swine flu H1N1 that still pose a significant

threat to the public health [1]. Furthermore some infectious agents

such as viruses have been found to be etiological agents of human

cancer, causing 15% to 20% of all human tumors worldwide [2].

Despite significant progress in the fight against infectious diseases

there is clearly a pressing need for fast and accurate methods in the

discovery and identification of viral etiological agents.

Traditional methods for virus identification lack the sensitivity

required to detect viruses that are present in low abundance, and

are biased towards viruses with known sequences (see [3]). These

methods are thus not suitable for the detection of viruses that are

entirely novel, or that differ by a significant number of mutations

in their key primary regions. In contrast, Next-generation

sequencing (NGS) technologies provide an unequaled opportunity

for the identification of known and novel viruses, in an unbiased

way, with high sensitivity, and have recently been successfully

applied in the discovery of novel viral agents (see [4–6]). Viral

sequences can be sequenced from either total DNA (for DNA

viruses) or RNA isolated from host organisms (e.g. human, insects,

etc.) and bioinformatics analysis plays a crucial role in the

processing, analysis and characterization of such sequences. In

principle either whole genome or transcriptome sequencing (RNA-

Seq) can be used for viral identification, however whole

transcriptome sequencing can be performed at a fraction of the

cost of whole genome sequencing and is particularly suitable for

identifying viruses that are actively expressed in the host making

them more likely to be involved in the etiology of disease.

A number of recently published methods for pathogen

identification in humans [7–10] that use NGS data rely on a

computational approach known as digital subtraction [11]. Digital

subtraction consists of subtracting in silico known human

sequences from human transcriptome or genome (DNA) sequence

data, leaving candidate non-human sequences to be aligned

against known pathogen reference sequences. In this approach

reads that do not align to human and pathogen reference

sequences can be assembled de novo into contigs, large contigs

might be indicative of new and as yet undetected organisms.

All digital subtraction is based on the use of alignment

algorithms (e.g. PATHSEQ [7] uses MAQ[12] and BLAST

[13], RINS [8] uses Bowtie [14] and BLAT [15], CaPSID [9] can

use any aligner - as long as it satisfies certain criteria) and choosing

the most suitable one plays a key role in viral identification and

discovery. Choosing the right aligner, however, needs to be based

on an objective evaluation and comparison of different aligner

tools.

Furthermore, while bacterial and eukaryotic organisms have

mutation rates that are between 1027 to 10210 mutations per base
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per generation [16,17] the observed mutation rates for both RNA

and DNA viruses are much higher (for DNA viruses mutation

rates are between 1026 to 1028 mutations per base per generation,

and for RNA viruses between 1023 to 1025 per base per

generation [16]). It is therefore important to evaluate the ability of

various aligners to correctly characterize more highly mutated

viral transcripts, some of which can even exhibit RNA splicing.

The aims of this article are thus threefold (i) evaluate and

understand the extent to which alignment algorithms can be used

for characterizing mutated and non-mutated viral sequences,

including those that exhibit splicing (ii) to evaluate and compare

the performance of alignment algorithms in terms of their

accuracy, sensitivity, precision and runtime (iii) identify the best

overall aligner (or set of aligners) for digital subtraction.

To address these three objectives we developed a realistic RNA-

Seq simulation and evaluation framework (RiSER). RiSER uses

the ART [18] NGS read simulator, which emulates a sequencing

process using technology-specific error models for indels, SNPs

and base quality values, but augments it with the capability to

simulate RNA-Seq data. To the best of our knowledge the only

other realistic RNA-Seq simulator published to date is BEER [19].

BEER, however, cannot be used for data simulation of reference

genomes other than human.

Although recently published benchmarking studies [19,20] did

assess and compare the performance of different aligners, none of

these approaches were suitable (or could be easily modified) for

evaluating aligners’ performance in identifying mutated and non-

mutated viral sequences in transcriptome samples. For example

SEAL [20] is designed to evaluate alignment tools using simulated

genomic data only, while BEER is designed to evaluate alignment

tools using transcriptome data that can only be simulated from the

human reference genome. In this manuscript we describe the

RiSER framework, and use it to evaluate and rank the

performance of eleven alignment algorithms (BLAST [13], BLAT

[15], BWA [21], BWA-SW [22], BWA-MEM [23], BFAST [24],

SHRiMP2 [25], Bowtie2 [14], GSNAP [26], Novoalign (Novo-

craft) and STAR [27]) using a set of metrics, which we have

specifically designed to address the above three objectives.

Results

Viral genomes are generally less complex than eukaryotic ones,

they have limited or no splicing and should present less of a

challenge for aligner algorithms to align short reads to their

reference sequences. With this in mind we selected eleven different

alignment algorithms to evaluate (see Materials and Methods

section for criteria used) using RiSER, five of which are capable of

aligning reads across splice junctions (BLAST, BLAT, BFAST,

GSNAP and STAR), and six that are not (BWA, BWA-SW, BWA-

MEM, SHRiMP2, Bowtie2 and Novoalign), using the four

different viral sequences shown in Table 1. To evaluate the ability

of aligners to align reads across splice junctions in the context of

viral sequences, we chose two viral genomes (HIV-1 and Human

papillomavirus-18, see Tables 1 and 2) which have been shown to

generate distinctly complex patterns of spliced RNA to encode

some of their essential regulatory proteins [28,29].

To evaluate aligners in the context of the digital subtraction we

designed a realistic RNA-Seq simulated benchmark dataset that is

representative of typical datasets for pathogen identification in

humans using whole transcriptome sequencing (or RNA-Seq). In

this respect, our dataset includes three distinct sets of simulated

NGS reads: (i) reads mapping to the human host reference

genome (hg19), (ii) reads mapping to the human host genomic

regions not represented in the hg19 reference genome and (iii)

non-human reads mapping to viruses that the experiment is

designed to characterize - including reads mapping to a host

retrovirus not in the human host reference genome (i.e., the HIV-1

virus) as shown in Tables 1 and 2.

Evaluation of aligners’ performances using RNA-Seq
reads simulated from non-mutated viral genomes

To simulate reads mapping to viruses that the experiment is

designed to characterize (i.e. part (iii) of our benchmark dataset as

explained in the previous paragraph) we used our RNA-Seq

simulation approach, as described in the Materials and Methods

section, to generate Illumina-type realistic sequencing datasets

(single-end reads, read length = 100 bp, total sequence cover-

age = 10 fold, replicates = 10) from each viral genome shown in

Table 1.

Table 2 shows the summary of data generated for each viral

genome using RiSER’s RNA-Seq simulation approach. As

expected, viruses with the highest number of spliced transcripts

also have the largest proportion of simulated reads that cross splice

junction regions. Because most viruses exhibit limited or no

splicing, it is expected that the majority of reads for any given

sequenced virus will not cross a splice junction.

In Figure 1 we show for each individual virus the histogram of

the percentage of aligned reads averaged over 10 runs for each

aligner, each aligner was run with the moderate sensitivity

parameter value settings (for the detailed description of parameter

value settings used for each aligner see section 4 in the Materials

S1).

We first observe that aligners performed consistently across all

four viral genomes for both sets of reads (i.e., for reads that are

crossing a splice junction and for those that are not). Second most

aligners (with the exception of BWA) align reads that do not cross

a splice junction with a high success rate, although we observed

some small variation in performance between aligners.

The results shown in Figure 1 separate into roughly two groups,

aligners that have the ability to align the simulated reads from our

benchmark dataset across splice junctions (Group 1: BLAST,

BLAT, BFAST, GSNAP, STAR, BWA-SW and BWA-MEM),

and aligners that have limited or no ability to align simulated reads

across splice junctions (Group 2: BWA and Novoalign). Bowtie2

and SHRiMP2 lie somewhere in between these two groups, even

though these two algorithms together with BWA-SW and BWA-

MEM were not designed to align reads across splice-junctions.

In Figure 2 we show the alignment accuracy (see the Materials

and Methods section for how alignment accuracy is calculated)

averaged over 10 runs. We note that overall aligners (including the

aligners in Group 1) achieved higher alignment accuracy for reads

that do not cross a splice junction than for those that do.

In order to measure the overall performance of individual

aligners we introduce two scores: S1 and S2. We define the S1

score as a measure of aligner’s performance expressed as the

geometric mean between the percentage of reads aligned outside

splice junction regions (i.e., PA see Materials and Methods section)

and their average alignment accuracy (i.e., S1~
ffiffiffiffiffiffiffiffiffiffiffiffi
PA:�AA
p

), and S2

as the geometric mean between the percentage of reads aligned

across splice junction regions (i.e., PAj see Materials and Methods

section) and their alignment accuracy (i.e., S2~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PAj

:�AAj

q
). The

choice of the geometric mean is based on the observation that both

the percentage of reads aligned and the accuracy of the read’s

alignment are normalized ratios (i.e., the percentage of reads

aligned is normalized to the total number of reads simulated from

a given reference sequence, and the alignment accuracy is

normalized to the total number of bases contained by the read;

Evaluation of Alignment Algorithms
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see Materials and Methods section). Use of the geometric mean

also prevents numeric ranges of either of these two variables (i.e.,

the percentage of the reads aligned and alignment accuracy) from

dominating the weighting when calculating the S1 and S2 scores.

In order to rank aligners we aggregate the results shown in

Figures 1 and 2 across the four viral genomes, and present them in

Table 3.

Ranked by the S1 score (see Table 3) the two best aligners are

Novoalign and BFAST followed closely in decreasing order by

SHRiMP2, BLAST, BWA-SW, GSNAP, BWA-MEM, Bowtie2,

STAR and BLAT. BWA has a significantly lower S1 score.

Though BWA is highly accurate its S1 score is low because it

aligns only a small fraction of reads, which can be explained by the

high stringency with which BWA is designed to align reads (short

queries up to 200 bp with a low error rate, v3%). If the aligners

are ranked by S2 the four best aligners are, as expected, STAR,

GSNAP, BLAT, BFAST and BLAST. We note that among

algorithms that are not designed to align reads across splice

junction per se, Bowtie2, BWA-SW and BWA-MEM align a good

proportion of reads (90.23%, 98.45% and 94.24% respectively)

with similar alignment accuracy to that of BFAST. The

performance of these three aligners to align spliced reads can be

explained by their ability to perform local alignments and align

reads with an unrestricted number of gaps and gap lengths.

To investigate the extent to which the ranking presented in

Table 3 is stable against variation in parameter value settings, we

align the same set of reads using two additional parameter value

settings: the default and high sensitivity (for the detailed

description of parameter value settings used for each aligner see

section 4 in the Materials S1). If we rank aligners by the S1 score

we observe no significant change in the ranking when using either

the default (see Table S1 in Materials S1) or high sensitivity (see

Table S10 in Materials S1) parameter value settings, except for

GSNAP which performs best when using moderate and high

sensitivity parameter value settings. If ranking aligners by the S2

score we find that STAR has the most consistent performance, and

that together with GSNAP (only for moderate and high sensitivity

parameter value settings) these two algorithms show the best

performance when aligning reads across splice junctions.

Evaluation of aligners’ performances using RNA-Seq
reads simulated from mutated viral genomes

Note that for the purpose of this part of the evaluation we did

not take splicing into account. As in the previous section we first

run aligners with moderate sensitivity parameter value settings (for

the detailed description of parameter value settings used for each

aligner see section 4 in the Materials S1), then we investigate the

ranking with two additional parameter value settings (default and

high sensitivity).

As shown in Figure 3, the number of aligned reads correlates, as

expected, negatively with the mutation rate. While BWA and

Novoalign have the lowest percentage of reads aligned for

mutation rates §10%, BLAST, BFAST and SHRiMP2 align

consistently on average the greatest proportion of reads at each

mutation rate across all four viral genomes. As expected for all the

aligners we also observe a drop in the accuracy with which reads

are aligned as the mutation rate increases (see Figure 4), and find

that aligners such as GSNAP, BLAT, STAR, BWA-SW and

BWA-MEM show a much steeper drop in accuracy than BFAST,

SHRiMP2 and BLAST as the mutation rate increases. The same

conclusions can be drawn from results obtained by running the

aligners using default and high sensitivity parameter value settings,

as shown in Figures S3, S4, S5, S6 in Materials S1.

In order to rank the performance of individual aligners in terms

of their precision (see Table S7 in Materials S1), sensitivity (see

Table S8 in Materials S1), S1 and S2 scores we use a measure

FS(b,k) which combines these four metrics into a single score as

defined below

Table 1. Information about four different viruses used in this study.

Group Virus name Accession Genome size (bp) Splicing

dsDNA Human papillomavirus-18 (HPV18) NC_001357.1 7857 Yes

dsDNA Human herpesvirus 1 (HSV1) NC_001806.1 152261 No

ssRNA(-) Influenza A virus (A/avian/Hong Kong/
0719/2007(H5N1)) segment 4

GU050317.1 1751 No

ssRNA-RT HIV-1 vector pNL4-3 (HIV-1) AF324493.2 14825 Yes

doi:10.1371/journal.pone.0076935.t001

Table 2. Summary of data generated for each of the four viral genomes.

Accession Virus name
Genome
size (bp)

Number of
transcripts

Number of spliced
transcripts

Number of reads
generated

Number of reads
crossing splice
junctions

NC_001357.1 HPV18 7857 8 15 3480 219617

NC_001806.1 HSV1 152261 77 0 11960 0

GU050317.1 H5N1 seg-4 1751 1 0 170 0

AF324493.2 HIV1 14825 10 43 5760 922615

Shows the summary of data generated for each viral genome (see also Table 1) using RiSER’s RNA-Seq simulation approach. For each virus we show the genome size,
the total number of transcripts (spliced and un-spliced), the total number of reads generated (for a sequencing depth of 10 fold), and the average number of reads that
cross splice junctions (the average value is calculated across 10 runs).
doi:10.1371/journal.pone.0076935.t002
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FS(b,k)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
F (b):((1{k)S1zkS2)

p
ð1Þ

where F (b) [30] is the harmonic mean of precision and recall (or

sensitivity) and k is the parameter (k[½0,1�) determined by the ratio

of the number of reads crossing splice junction regions to those

that do not – for viruses that exhibit RNA splicing. For the

purpose of viral identification we set the b parameter in eq.(1) to

one, in this way the F (b~1) (or F1) score measures the

effectiveness with which an aligner identifies the correct viral

reference sequence when the same weight is given to both

precision and recall. The FS(b,k) in eq.(1) is thus defined as a

Figure 1. Histogram plot of the percentage of reads aligned (averaged over 10 runs) for each viral genome. Histogram plot of the
percentage of reads aligned (averaged over 10 runs) for each viral genome shown in Table 2 and each aligner. Reads crossing splice junction regions
are shown in pink, reads not crossing splice junction regions are shown in blue.
doi:10.1371/journal.pone.0076935.g001

Evaluation of Alignment Algorithms
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geometric mean between the F (b~1) score and the weighted sum

of the S1 and S2 scores. The k parameter in eq.(1) insures that the

proportionate weight is given to the S1 and S2 scores based on the

estimated amount of splicing. Thus for viruses that exhibit limited

or no splicing the S1 score dominates over that of S2, and

proportionally more weight is given to the S2 score as the amount

of splicing increases. The k parameter in eq.(1) can be estimated

for a single viral sequence or a population of viral sequences by

taking the arithmetic mean of their individual k values.

Table 4 shows the values for FS(b~1,k~0:13) for each aligner

as a function of the viral mutation rate. The value of the k
parameter for the data in Table 4 was estimated from the data

presented in Table 2 using viruses that exhibit RNA splicing and

by taking the arithmetic mean of their individual k values.

Figure 2. Histogram plot of the average alignment accuracy (averaged over 10 runs) for each viral genome. Histogram plot of the
average alignment accuracy averaged over 10 runs for each viral genome shown in Table 1 and each aligner. Reads crossing splice junction regions
are shown in pink, reads not crossing splice junction regions are shown in blue).
doi:10.1371/journal.pone.0076935.g002
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In Table 4, we observe a consistent drop in the FS values across

all aligners as the viral mutation rate increases with BLAST and

BFAST showing the best performance when taking the average

FS values for viral mutation rates §10%. Because precision (see

Table S7 in Materials S1) for the top five aligners (BLAST,

BFAST, SHRiMP2, BWA-SW and GSNAP) remains high and

approximately independent of the mutation rate, the drop in

values of the FS measure is due to a drop in recall (see Table S8 in

Materials S1) caused by a drop in the number of aligned reads at

higher mutation rates. At the low end of the mutation spectrum

(i.e., mutation rate v2%), the top five aligners with highest scores

are STAR, GSNAP, BLAT, BWA-SW and Novoalign, while

BWA achieves a lower score than any other aligner considered in

this study. As the parameter value settings are changed from

moderate sensitivity to high (see Table S11 in Materials S1), the

ranking of aligners for viral mutation rates §10% changes very

little (BLAST and BFAST having the best scores) with the

exception of BLAT which has higher FS values due to an increase

in sensitivity as shown in Table S14 in Materials S1. With default

parameter settings the most significant drop in terms of FS values

is observed for GSNAP for both the high and low viral mutation

rates (see Table S2 in Materials S1). In summary the aligners that

benefit the most in terms of FS values from more sensitive

parameter value settings are BLAST, BLAT and GSNAP.

Table 5 shows the total genome coverage obtained for each

aligner as a function of the viral mutation rate. We define the

genome coverage as the number of genome nucleotides repre-

sented in aligned reads normalized by the genome length. Note

that the results in Table 5 are shown as ranges of observed genome

coverage in terms of their minimum and maximum values (i.e.,

min, max) of the four viral genomes presented in Table 2.

Using moderate sensitivity parameter value settings the results

in Tables 4 and 5 indicate that BLAST, BFAST, SHRiMP2,

BWA-SW and GSNAP can be used to characterize highly mutated

viral sequences (for mutation rates §10% and v20%) with high

precision (see Table S7 in Materials S1) and high coverage (see

Table 5) if sequenced at the depth of at least 10 fold. Of these five

aligners we expect BLAST and BFAST to achieve the best

performance when characterizing viral sequences with mutation

rates §10%. For high sensitivity parameter value settings the

results shown in Table S11 and Table S12 in Materials S1 indicate

that BLAST, BFAST, GSNAP, BWA-SW and BLAT show the

best performance when characterizing highly mutated viral

sequences (for mutation rates §10% and v20%) in terms of

the FS values, genome coverage and high precision (for precision

see Table S13 in Materials S1).

In summary the best performing aligner is BLAST with high

sensitivity parameter value settings, a close second best is BFAST

with moderate sensitivity parameter value settings, the third best is

SHRiMP2 with moderate sensitivity parameter value settings, the

fourth is BWA-SW with high sensitivity parameter value settings,

fifth is GSNAP with high sensitivity parameter value settings and

sixth is BLAT with high sensitivity parameter value settings.

Furthermore, we found that using more conservative aligners to

characterize increasingly divergent viral sequences results in a

marked drop in their sequence coverage due to a high attrition

rate of aligned reads, in addition to lowering the detection rate and

providing more uncertain characterization.

Evaluation of aligners’ performances using RNA-Seq
reads simulated from the human reference

In order to determine the best set of aligners for digital

subtraction we also evaluated the ability of each individual aligner

to subtract human sequences from the host human transcriptome

sequence data. To simulate reads mapping to the human host

reference genome (hg19) (i.e. part (i) of our benchmarking dataset)

we used the RiSER framework to simulate a single dataset with 20

million short reads (single-end reads, read length = 100 bp, total

sequence coverage = 10 fold, replicates = 1) from the human (hg19)

reference genome in the FASTA format. To simulate reads that

cross splice junctions we generated the transcript information file

from the Known Genes dataset [31] accessed from the UCSC

website (http://hgdownload.cse.ucsc.edu/goldenPath/hg19/

database/knownGene.txt.gz).

Because the evaluation process is computationally intensive we

chose to evaluate aligners using a smaller set containing 2 million

short reads simulated from the first human chromosome (chr1).

For this section all aligners were evaluated using moderate

sensitivity parameter value settings (for the detailed description

of parameter value settings used for each aligner see section 5 in

the Materials S1). A summary of the simulated reads for this part

of the evaluation is shown in Table 6. Furthermore, we omitted

Table 3. Summary of S1 and S2 scores for viral reference sequences.

Aligner
PA (percentage of aligned
reads (non-junctions)) (%)

PAj (percentage of aligned
reads (junctions)) (%) �AA non-junctions (%) �AAj (junctions) (%) S1 S2

Novoalign 99.9660.04 21.6260.89 99.9260.01 92.5261.18 99.9460.02 44.7360.96

BFAST 99.9460.03 99.9760.08 98.8260.95 70.1667.92 99.3860.48 83.7564.73

SHRiMP2 99.6160.12 75.0762.00 98.9060.06 77.4860.51 99.2660.07 76.2761.04

BLAST 98.9360.09 99.5360.18 97.4160.06 70.2661.26 98.1760.06 83.6360.75

BWASW 98.660.13 98.4560.39 95.9660.04 69.7661.17 97.2760.07 82.8760.71

GSNAP 96.8760.29 97.1760.37 97.0360.10 89.5562.18 96.9560.15 93.2861.15

BWAMEM 96.8360.20 94.2461.73 96.760.15 69.261.00 96.7760.13 80.7660.94

Bowtie2 93.2160.38 90.2360.96 99.4960.03 70.0760.50 96.3060.20 79.5160.51

STAR 93.7460.33 97.6360.65 98.7960.04 97.5660.33 96.2360.17 97.5960.36

BLAT 96.2260.34 96.9560.18 95.0160.15 83.0961.64 95.6160.19 89.7560.89

BWA 34.6761.58 1.8260.77 99.9460.06 96.1861.10 58.8661.34 13.2362.80

Shows the summary of alignment results aggregated over four viral genomes for non-mutated viral reference sequences and sorted by S1 score. The average alignment
accuracy for reads crossing splice junctions (�AAj ) and those not crossing splice junctions (�AA) is defined in the Materials and Methods section.
doi:10.1371/journal.pone.0076935.t003
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the evaluation of the BLAST algorithm since it is not a commonly

used aligner when aligning a very large number of NGS short

reads against a single human reference genome[12,32].

Table 7 shows the results of the evaluation of the ten aligners

using simulated human (chr1) transcriptome data. GSNAP has the

highest S2 score, indicating its ability to correctly align the

majority of simulated RNA-Seq reads back to the human

reference sequence in the absence of information about splice

junctions. The other two algorithms with high S2 scores are BLAT

and BFAST. However if the information about splice junctions is

available, then aligners with the highest S1 scores and best

performances are BFAST, SHRiMP2, Novoalign, STAR and

GSNAP in descending order.

Table 8 shows the values for precision, sensitivity and the FS

measure for each aligner using the simulated human transcriptome

dataset. While for the purpose of viral characterization we assign

the same weights to both precision and recall (see eq.(1)), for the

simulated human transcriptome data we should score preferen-

tially those aligners that have higher alignment rates (i.e., when

aligning human derived reads back to the human reference

sequence). To do this we set b~2 in eq.(1) to give twice as much

emphasis on recall than precision. We also estimated the value for

the k parameter (k = 0.43) for the FS measure using data from

Table 6. To calculate the precision and sensitivity, all simulated

reads from the human reference genome were aligned against a

database of 4195 known viral reference sequences, as described in

the Materials and Methods section for simulated viral sequences.

While all aligners in Table 8 have high precision, Novoalign and

BWA show a drop in sensitivity due to their inability to align reads

across splice junctions. This drop in sensitivity for Novoalign and

SHRiMP2 (and to a much lesser extent, for all the other aligners) is

reduced once the splice junction library is provided, as shown in

Table 8.

Simulation of reads mapping to the human host genomic

regions not represented in the hg19 reference genome. In

order to evaluate the impact of reads that originate from human

host genomic regions not represented in the human hg19 reference

genome and that could align to viral reference sequences (i.e. part

(ii) of our benchmark dataset), we simulated 61076 reads (100 bp

in length) from chrN_random and chrUn_ chromosomes accessed

from the UCSC website (http://hgdownload.cse.ucsc.edu/

goldenPath/hg19/chromosomes/). For each aligner, we first

aligned all 61076 reads to the human hg19 reference sequences,

of those reads that did not align, we determined the number of

reads that do align to any of the 4195 viral reference genomes. As

shown in Table 9 the number of false positives (i.e host human

reads not represented in the human hg19 reference genome that

align to any of the viral reference sequences) is the highest for

BLAT followed by BFAST and GSNAP. More importantly results

presented in Table 9 indicate that the impact that those reads

could have on viral characterization is relatively small for most

aligners, except for BLAT.

Figure 3. Histogram plot of the number of aligned reads as a function of the viral mutation rate. Histogram plot of the number of
aligned reads as a function of the mutation rate for each aligner averaged over the four viral genomes (see Table 1).
doi:10.1371/journal.pone.0076935.g003
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Runtime measurements
Table 10 shows the time needed for each aligner to align 20

million reads simulated from the human reference genome (hg19)

to (i) the human (hg19) genome and cDNA reference sequences

(downloaded from the Ensembl database) and (ii) 4195 viral

reference sequences (see Materials and Methods section). The

fastest runtimes were achieved by BWA-MEM, Bowtie2, BWA,

STAR and Novoalign.

Evaluation of aligners using real RNA-Seq datasets
In this section we assess the ability of aligners to detect viral

transcripts in two real RNA-Seq datasets and compare it to results

obtained using our simulated dataset with moderate sensitivity

Figure 4. Histogram plot of the average accuracy as a function of the viral mutation rate. Histogram plot of the average accuracy as a
function of the mutation rate for each aligner averaged over the four viral genomes (see Table 1).
doi:10.1371/journal.pone.0076935.g004

Table 4. Summary of values for the FS measure.

Aligner Mutation (0%) Mutation (2%) Mutation (5%) Mutation (10%) Mutation (15%) Mutation (20%) Mutation (25%)

BLAST 89.72 90.15 90.46 87.36 78.96 62.48 34.56

BFAST 89.87 90.14 91 87.79 73.78 50.53 25.64

SHRiMP2 94.85 94.69 94.03 87.56 66.25 29.67 6.99

BWASW 96.76 94.33 89.06 67.43 39.43 13.38 2.9

GSNAP 97.75 93.14 80.96 52.74 33.06 20.16 8.92

BWAMEM 96 92.42 83.63 56.44 27.58 8.48 1.73

BLAT 96.81 92.34 79.22 49.05 24.3 9.93 3.03

Bowtie2 93.45 87.36 74.49 45.59 24.50 11.44 2.51

STAR 97.83 94.83 82.62 44.05 13.13 0.96 0

Novoalign 96.27 95.19 83.85 33.17 3.70 0.08 0

BWA 51.78 28.15 6.69 0.38 0 0 0

Shows values of the FS(b~1,k~0:13) measure averaged over four viral genomes (see Table 2) as a function of viral mutation rates, sorted according to the average
FS(b~1,k~0:13) values for mutation rates w~2%.
doi:10.1371/journal.pone.0076935.t004
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parameter value settings. For the first dataset, we prepared an

RNA-Seq library by isolating RNA from human pancreatic duct

epithelial (HPDE) cells that were immortalized by transfection

with the E6/E7 gene of human papilloma virus 16 [33]. The

isolated RNA was sequenced using an Illumina Genome Analyzer

IIx to generate 80 million single end reads of 100 bp in length.

The RNA-Seq read set was then aligned against 4195 different

viral reference sequences using each of the eight aligners (with the

exception of BLAST, because of its impractical runtime). In

Table 11 we show the alignment results obtained for each aligner

(using moderate sensitivity parameter value settings as shown in

sections 4 of the Materials S1) across the entire HPV16 reference

sequence (RefSeq: NC_001526.2) and across the E6/E7 gene

regions using 80 million reads sequenced from the transfected

human pancreatic duct epithelial cells.

Ranking aligners according to the coverage and the number of

reads aligned across the HPV16 genome we find that GSNAP and

BFAST perform best. Six other aligners show similar coverage

(BLAT, Bowtie2, BWA-SW, BWA-MEM, SHRiMP2 and STAR)

though with different number of reads aligned. Surprisingly

Novoalign shows a marked difference in the number of reads

aligned (but not coverage) from the rest of aligners (excluding

BWA) while BWA aligns a single read across the HPV16 reference

sequence. In Figure 5 we show a genome browser view of data

presented in Table 11. From Figure 5 we infer that the E6/E7

gene regions expressed in the transfected HPDE cell line have a

high degree of sequence similarity to the E6/E7 gene regions of

the NC_001526.2 reference sequence. These results, obtained

using a real dataset, show a good agreement with results obtained

from our simulated study where GSNAP and BWA were ranked

respectively second highest (STAR being the highest) and lowest,

when used for characterizing viral sequences with low mutation

rates (see Table 4 with mutation rate v2%). The only important

deviation from the ranking presented in Table 4 is found for

Novoalign which aligns a significantly smaller number of reads (see

Table 11) than expected (see Table 3).

Our second dataset is composed of two RNA-Seq files (106

million reads in total) containing reads sequenced from the HCC

cancer obtained from a patient with serologic evidence of HBV

infection and available from The Cancer Genome Atlas (TCGA)

database [34]. In Table 12 we show that all aligners (using

moderate sensitivity parameter value settings as shown in sections

4 of the Materials S1) achieve a 100% coverage across HBV gene

regions. The top five aligners with the highest number of reads

aligned across the HBV (RefSeq:NC_003977.1) reference se-

quence in decreasing order are GSNAP, BFAST, STAR and

BLAT. These results are also consistent with our simulated results

presented in Table 4 and in Table S11 in Materials S1 for

mutation rate v2% where the best performing algorithms are

STAR, GSNAP and BLAT.

Discussion

We developed RiSER, a realistic RNA-Seq simulation and

evaluation framework, to evaluate eleven aligners (BLAST, BLAT,

BWA, BWA-SW, BWA-MEM, BFAST, SHRiMP2, Bowtie2,

GSNAP, Novoaligna and STAR) for characterizing viral sequenc-

es in transcriptome samples. We proposed and used a new

combined measure FS(b,k), to rank the overall performance of

aligners in the context of viral sequence characterization and

discovery. We showed that results generated with RiSER are

consistent with those obtained using real RNA-Seq datasets in

Table 5. Genome Coverage.

Aligner Mutation (0%) Mutation (2%) Mutation (5%) Mutation (10%) Mutation (15%) Mutation (20%) Mutation (25%)

BLAST 97–100 97–100 96–100 97–100 95–99 90–95 66–73

BFAST 97–100 97–100 96–100 97–100 94–98 76–85 49–55

SHRiMP2 97–100 97–100 96–100 97–100 87–94 47–57 6–14

BWASW 97–100 97–100 96–100 96–98 72–78 31–42 0–9

GSNAP 97–100 97–100 93–100 82–84 46–57 24–39 8–15

Bowtie2 97–100 96–100 94–99 77–84 42–51 13–21 0–6

BWAMEM 97–100 97–100 94–100 78–83 31–42 7–11 0–3

BLAT 97–100 97–100 93–99 71–74 23–34 7–12 0–3

STAR 97–100 97–100 96–100 69–72 19–28 0–4 0–0

Novoalign 97–100 97–100 92–99 45–54 0–10 0–1 0–0

BWA 96–97 65–69 7–20 0–1 0–0 0–0 0–0

The summary of values of genomes’ coverage in terms of their minimum and maximum values (i.e., min-max) obtained by each individual aligner, averaged over four
viral genomes (see Table 2) as a function of viral mutation rates and sorted according to the average coverage for mutation rates w5%.
doi:10.1371/journal.pone.0076935.t005

Table 6. Summary table for reads simulated from the human reference genome.

RefSeq accession Chromosome name Genome size (bp)
Number of
transcripts

Number of reads
generated

Number of reads
crossing splice
junctions

NC_000001 chr1 249250621 7536 1995040 599844

Table showing the summary of reads simulated using the RiSERJs framework and the first human chromosome (chr1) as the reference.
doi:10.1371/journal.pone.0076935.t006

Evaluation of Alignment Algorithms

PLOS ONE | www.plosone.org 9 October 2013 | Volume 8 | Issue 10 | e76935



terms of the ranking, with the exception of Novoalign which shows

an unexpected drop in the number of reads aligned in real

datasets. Because RiSER can also simulate reads across known

viral splice junctions, our analysis indicates that splicing in viruses

will not significantly impact their characterization when using the

alignment approach behind digital subtraction. Even if the

assumption of uniform distribution of expression levels of viral

transcripts in our model is very approximate (viruses are known to

express different transcripts in different amounts [28,29]) our

model suggests that the ranking of aligners remains virtually

unchanged as k varies between 0 (no reads crossing splice junction

regions) and 1 (all reads crossing splice junctions), except for

Novoalign which scores significantly lower for mutation rates

v2% when k~1 (data shown in Tables S6, S9 and S15 in

Materials S1).

In addition to RNA splicing, we evaluated the extent to which

aligners can be used for characterizing mutated viral sequences

using three distinct parameter value settings for each aligner

(default (D), moderate sensitivity (MS) and high sensitivity (HS)).

Using our combined FS measure we found that BLAST (HS

parameter value settings), BFAST (MS parameter value settings),

SHRiMP2 (MS parameter value settings), BWA-SW (HS param-

eter value settings), GSNAP (HS parameter value settings) and

BLAT (HS parameter value settings) achieved the best overall

performances in characterizing viral sequences at higher mutation

rates (§2%). We find BLAST to be the best aligner for

characterizing viral genomes in terms of the FS score, sensitivity

and overall genome coverage. BLAST however might be

impractical to run (i.e., long runtime with very large number of

reads) unless parallelized. Furthermore BLAST is not designed to

align NGS short reads against reference genomes using base

qualities, which could significantly increase the alignment error

[32]. BFAST is the second most sensitive aligner of all the aligners

tested and can be used effectively in the search and discovery of

highly mutated viral sequences with up to 20% (overall) mutation

rate. However, BFAST shows a drop in precision as the mutation

rate decreases, with 71% precision at the 0% mutation rate (see

Table S7 in Materials S1). In principle, this drop in precision can

Table 7. Summary of S1 and S2 scores for the human reference genome.

Aligner
PA (percentage of aligned
reads (non-junctions)) (%)

PAj (percentage of aligned
reads (junctions)) (%) �AA non-junctions (%) �AAj (junctions) S1 S2

GSNAP 97.08 95.64 95.85 86.91 96.46 91.17

BLAT 82.35 84.58 94.77 83.92 88.35 84.25

BFAST 99.68 98.11 99.27 63.76 99.47 79.09

BWAMEM 97.19 93.00 95.70 66.78 96.44 78.80

Bowtie2 92.62 87.86 97.93 68.72 95.24 77.70

SHRiMP2 99.66 75.97 98.62 76.09 99.14 76.03

BWASW 93.96 83.50 94.87 68.09 94.42 75.40

STAR 97.85 54.68 97.74 88.73 97.80 69.65

Novoalign 99.13 37.43 98.79 86.06 98.96 56.75

BWA 35.01 1.37 98.81 93.41 58.82 11.30

The summary of alignment results for the human reference sequence (chr1) sorted by S2. The average alignment accuracy for reads crossing splice junctions (�AAj ) and

those not crossing splice junctions (�AA) is defined in the Materials and Methods section.
doi:10.1371/journal.pone.0076935.t007

Table 8. Precision, sensitivity and the FS score for reads simulated from the human reference sequence.

Aligner Precision (%)
Sensitivity
(recall) (%)

Sensitivity with splice
junction library (%)

FS(b = 2,k = 0.43)
(without splice
junction library)

FS(b = 2, k = 0) (with
splice junction
library)

Odds ratio of change
between FS with and without
splice junction library

GSNAP 98.94 97.88 98.27 96.19 97.53 1.59

BLAT 96.07 98.20 98.24 92.01 93.01 1.16

BFAST 97.07 99.73 93.30 94.85 96.69 1.59

Bowtie2 99.58 92.60 93.76 90.75 95.06 1.96

SHRiMP2 99.98 93.08 99.99 91.76 99.56 20.38

Novoalign 100.00 81.37 100.0 82.65 99.48 40.07

BWA 100.00 25.11 34.06 33.67 48.04 1.82

BWAMEM 99.92 97.17 98.24 93.18 97.50 2.86

BWASW 99.92 91.97 93.92 89.78 94.74 2.05

STAR 99.99 85.63 94.31 86.92 96.59 4.26

Summary of alignment results with and without a splice junction library for each aligner, in terms of their precision, sensitivity, and the FS score for reads simulated
from the human reference sequence (chr1) using RiSERJs simulation framework. All reads were aligned to the chr1 reference using parameter value settings described
in section 5 of the Materials S1.
doi:10.1371/journal.pone.0076935.t008
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be corrected by ranking genomes based on their coverage, and by

considering only those with the highest coverage. On the other

hand, for viral genomes with high mutation rates, SHRiMP2,

BWA-SW, GSNAP and BLAT achieve high precision (for

SHRiMP2 (see Table S7 in Materials S1), for BWA-SW, GSNAP

and BLAT see Table S13 in Materials S1) at the expense of lower

coverage (for SHRiMP2 see Table 5, for BWA-SW, GSNAP and

BLAT see Table S12 in Materials S1), and our results indicate that

for these four aligners the best performance in terms of the FS

score and coverage will be obtained for viral genomes in the 0%–

15% mutation range.

We used our results to identify the best set of aligners (among

the eleven considered in this study) for characterizing viruses using

digital subtraction. To do this we evaluated the ability of

individual aligners to subtract human sequences from the human

host using RiSER by simulating a realistic human transcriptome

dataset containing 2 million short reads. Using this dataset we

applied the RiSER’s evaluation framework to ten aligners (BLAT,

BWA, BWA-SW, BWA-MEM, BFAST, SHRiMP2, Bowtie2,

GSNAP, Novoalign and STAR), since BLAST is not the best

suitable aligner for aligning a large number of short NGS reads

against a single human reference genome[12,32].

When information about splice junctions was not available, our

results showed that GSNAP has the best performance and scores

highest according to the FS measure (see Table 8) when aligning

RNA-Seq human reads back to the human reference and across

splice junctions, followed by BFAST and BWA-MEM. If we

compare results from Table 7 to results obtained with a different

RNA-Seq simulator (BEER [19]) designed for benchmarking

aligners using simulated human RNA-Seq data, we find good

agreement in the ranking of aligners in terms of the base level

accuracy and the number of reads aligned across splice junctions.

Table 9. Human reads simulated from host genomic regions not represented in the human (hg19) reference genome.

Aligner

Number of reads not
mapping to hg19 (aligners’
moderate sensitivity
parameter values)

Number of reads mapping
to viral genomes (aligners’
default parameter values)

Number of reads mapping to
viral genomes (aligners’
moderate sensitivity
parameter values)

Number of reads mapping to
viral genomes (aligners’ high
sensitivity parameter values)

GSNAP 26759 2 12 12

BLAT 44266 2035 2035 2211

BFAST 1331 113 113 113

Bowtie2 7943 0 2 2

SHRiMP2 4491 0 0 0

Novoalign 10376 37 0 0

BWA 48584 0 0 0

BWAMEM 7621 0 0 0

BWASW 14635 1 1 2

STAR 15088 0 0 1

Summary of alignment results for 61076 reads simulated from host genomic regions not represented in the human (hg19) reference genome. The columns 2–5 indicate
the number of reads mapping to 4195 viral genomes and not mapping to the hg19 reference genome (see the first column). The 61076 reads simulated from host
genomic regions not represented in the human (hg19) were aligned to the hg19 reference genome as described in section 5 of the Materials S1.
doi:10.1371/journal.pone.0076935.t009

Table 10. Runtime measurements.

Aligner
Human reference
runtime (hrs)

Max mem
used (GB)

Number of AMD 64 bit
core processors

Viral reference
runtime (hrs)

Max mem
used (GB)

Number of AMD 64 core
processors

BWAMEM 0.29 13 17 0.83 3 7

Bowtie2 0.62 9 17 0.06 2 7

BWA 0.66 9 17 0.03 2 7

STAR 0.79 40 17 1.0 5 7

Novoalign 2.1 13 17 0.9 2 7

BWASW 2.68 12 17 0.65 3 7

GSNAP 9.1 12 17 1.3 3 7

BLAST 9.4 12 17 4.4 2 7

SHRiMP2 10.5 46 17 0.4 4 7

BFAST 18.0 32 17 3.0 4 7

BLAT 74.0 5 1 3.0 4 1

The elapsed (wallclock) time needed to align 20 million Illumina reads from a human transcriptome sample against a human (hg19) genome and cDNA reference
sequences and 4195 viral reference sequences, sorted according to the first column. For the detailed description of parameter value settings used for each aligner see
sections 3 in the Materials S1.
doi:10.1371/journal.pone.0076935.t010
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To compare results between these two studies we first transformed

data from Table 7 to calculate the base level accuracy using all of

our aligned reads (i.e., reads crossing splice junction and those that

do not). Among aligners that are common to both studies (i.e.,

GSNAP, BFAST, BLAT, BWA and Novoalign) we find that

GSNAP achieves the highest base level accuracy followed in the

decreasing order by BFAST, BLAT, Novoalign and BWA. This is

the same ranking reported in the BEER paper [19], although the

base level accuracy values reported for each aligner in the BEER

paper are slightly higher than in our study. We also found that

GSNAP had the highest number of reads aligned across splice

junction regions followed by BLAT (see Table 7) which is also in

agreement with results reported in the BEER paper. Together,

these results lend support to the validity of our simulation

approach.

If the human splice junction library is available then the two

aligners that benefit the most from this information (in terms of the

number of human reads subtracted, alignment accuracy and FS
score) are Novoalign and SHRiMP2.

If we assume that the great majority of reads from a human

transcriptome sample have a high sequence similarity to the

human reference sequence, then our results indicate that:

N if the splice junction library is not available, GSNAP (see

Tables 7–8) gives the best overall performance (in terms of the

high proportion of reads aligned, high alignment accuracy,

ability to align reads across splice junctions and high FS score)

N if the splice junction library with sequences overlapping exon-

exon boundaries is available, Novoalign and SHRiMP2

(though with longer runtime) (see Tables 7–8) show the best

performance (in terms of the high proportion of reads aligned,

FS score, high alignment accuracy and fastest runtime)

The candidate non-human sequences that are left can then be

aligned against the database of viral reference sequences using, in

decreasing order of sensitivity and FS score, BLAST (HS

parameter value settings), BFAST (MS parameter value settings),

SHRiMP2 (MS parameter value settings), BWA-SW (HS param-

eter value settings), GSNAP (HS parameter value settings) and

BLAT (HS parameter value settings). More importantly, the

results in Tables 4 and 5 suggest that combining two algorithms in

succession should improve the overall sensitivity and precision of

alignments results obtained with any single aligner. We thus

suggest a two step approach for aligning candidate non-human

sequences. Candidate non-human sequences should first be

aligned using a more conservative and faster aligner (such as

BWA-MEM, Bowtie2 or Novoalign), the remaining un-aligned

reads can then be aligned with a more tolerant aligner such as

BLAST, BFAST or SHRiMP2. We also evaluate the potential

impact that sequences originating from human host genomic

regions, but not represented in the human hg19 reference genome,

could have on viral detection (in terms of potential false positive)

and found the effect to be small for most of the aligners.

Our results indicate that a clear advantage for detecting

mutated viral sequences is conferred by the ability of algorithms

to perform local alignments. In our study these included BLAST,

BLAT, BFAST, SHRiMP2, GSNAP, BWA-SW, BWA-MEM,

Bowtie2 and STAR. BFAST (MS parameter value settings) and

SHRiMP2 (MS parameter value settings) show similar results and

high sensitivity when compared to other local aligners mentioned

above (with the exception of BLAST) due to their ability to align

highly polymorphic reads (see Figure 3) with high accuracy (see

Figure 4). Though BFAST is more sensitive than SHRiMP2 for

more polymorphic reads it is also less accurate. BFAST is also less

precise than SHRiMP2 for reads that present fewer mismatches as

shown in Tables S7 and S8 in Materials S1. As shown in Figure 4

of all the above local aligners Bowtie2 has the steepest drop in

sensitivity as a function of the mutation rate. This result can be

explained by the restricted number of mismatches that Bowtie2

allows in a seed alignment during multiseed alignment, while the

same restriction is not present in the other local alignment tools

mentioned above. Similar results to Bowtie2 were obtained with

the recently developed BWA-MEM algorithm though with slightly

higher sensitivity and lower accuracy (see Figures 3 and 4) for

more polymorphic reads. We also found BWA-MEM to be less

sensitive and slightly less accurate (see Tables 3 and 4) than the

BWA-SW algorithm.

As expected local aligners that use a Burrows-Wheeler

Transform (BWA, BWA-SW, BWA-MEM and Bowtie2) are at

least an order of magnitude faster than the rest of the aligners, with

the exception of the STAR algorithm which uses sequential

Table 11. Alignment results across the HPV16 and the E6/E7 gene regions.

Aligner

Total number of reads
aligned across the HPV16
genome

HPV16 genome
coverage (%)

Total coverage across HPV16
E6/E7 gene regions (%)

Average depth of coverage
across HPV16 E6/E7 gene
regions

GSNAP 52518 33.64 100.00 3730

BFAST 53481 17.31 98.58 5230

BLAT 17068 15.50 94.57 1186

Bowtie2 53521 11.46 93.80 3720

SHRiMP2 9548 9.98 93.02 751

Novoalign 123 8.81 84.76 10

BWA 1 1.2 1 0.12

BWAMEM 17456 10.23 93.80 1226

BWASW 17077 9.83 93.80 1207

STAR 918 9.92 91.47 83

The alignment results obtained for each aligner across the HPV16 reference genome (RefSeq:NC_001526.2) including the E6 and E7 gene regions using 80 million reads
sequenced from the transfected human pancreatic duct epithelial cells. All reads were aligned to 4195 viral reference genomes using aligners’ moderate sensitivity
parameter values (see section 4 in the Materials S1).
doi:10.1371/journal.pone.0076935.t011
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maximum mappable seed search in uncompressed suffix arrays,

but also has a much larger memory footprint (see Table 10).

Finally, our results suggest that methods that rely on a particular

choice of alignment algorithms for viral characterization (such as

RINS or PATHSEQ) will be limited in their performance by the

alignment algorithm used, and that this choice needs to be made

based on a quantitative evaluation method that systematically

compares alignment tools in the appropriate context. We believe

that future efforts to detect viral sequences in transcriptome

samples will benefit from this study’s guidance on the choice of the

aligner algorithm used. We also hope that our simulation and

evaluation framework will be used in the benchmarking of other

alignment tools. We note that novel viruses with no sequence

similarity to any known reference sequences will be missed with

the approach used in our study. In connection with this, a useful

complementary approach may be to use a de novo assembly of

unaligned reads to generate longer contigs that could be more

easily characterized than individual short reads [7]. We also

believe that it will be useful to compare results for pathogen

detection using NGS technologies to those obtained with the DNA

microarrays [35] since they occupy a middle ground between

narrowly focused assays such as multiplex PCR and much more

broad high-throughput sequencing approaches such as those

presented in this study.

Materials and Methods

The RiSER simulation and evaluation framework is imple-

mented in Python, and is composed of two main parts, an RNA-

Seq simulation that wraps around the ART simulator to produce

the ‘‘true’’ alignment dataset and the evaluation part used to

evaluate the performance of each individual aligner by comparing

their alignment results to the true alignment dataset (RiSER can

be accessed from github at https://github.com/oicr-ibc/riser).

We chose the eleven alignment algorithms based on the

following criteria:

N Basic local alignment tools such as BLAST (used by

PATHSEQ) and BLAT (used by RINS) for viral sequence

characterization.

N A range of popular short read aligners that are representative

of the two main alignment techniques used, namely hash tables

(Novoalign, SHRiMP2, GSNAP and BFAST), and suffix

arrays, compressed (using Burrows-Wheeler Transform

(BWT), including BWT extended FM-indices (BWA, BWA-

SW, BWA-MEM and Bowtie2)), and uncompressed (STAR).

N Capacity of the aligner to perform gapped alignments (true for

all of the above aligners).

N Capacity of the aligner to align reads across splice junctions

(GSNAP, BLAT, BLAST and BFAST and STAR).

In the following sections we describe how RNA-Seq data is

simulated from mutated and non-mutated viral reference

sequences and the human reference genome, and the evaluation

approach we use to assess aligners’ performance.

Simulation
For each known viral genome the RNA-Seq simulation starts by

extracting the reference sequence and sequence information such

as ‘gene’ or ‘CDS’ from the FEATURES field contained in the

GenBank flat file [36] (see Figure S1 in Materials S1).

Alternatively, as in the case of the human reference genome,

RiSER can also process any custom-provided reference sequence

(in FASTA format) and a transcript information file. This

information is then used to generate two files, one containing

individual DNA transcript sequences in FASTA format and the

second containing information about junctions, including junction

number, junction coordinates and individual transcripts’ start and

stop coordinates. The junction information file is used to

determine the accuracy with which aligners align reads across

known splice junctions.

The transcript sequence file is then fed to the ART [18]

simulator (parameters: art_illumina [Illumina platform] -l [read

Figure 5. Coverage plot of the HPV16 E6/E7 gene regions. The coverage plot of HPV16 E6/E7 gene regions (NC_001526.2) for each aligner
using RNA-Seq data sequenced from the transfected (HPV16-E6/E7) human pancreatic duct epithelial cells.
doi:10.1371/journal.pone.0076935.g005

Table 12. Alignment results across the HBV and its gene regions.

Aligner

Total number of reads
aligned across the HBV
genome HBV genome coverage (%)

Total coverage across HBV
gene regions (%)

Average depth of coverage
across HBV gene regions

GSNAP 53935 99.84 100 1430

BFAST 50163 99.97 100 1372

BLAT 47888 99.32 100 1369

Bowtie2 45195 99.34 100 1270

SHRiMP2 38297 100 100 1036

Novoalign 36273 100 100 1017

BWA 43454 99.72 100 1297

BWAMEM 45043 97.92 100 1282

BWASW 42632 98.41 100 1205

STAR 49019 100 100 1357

The alignment results obtained for each aligner across the HBV reference genome (RefSeq:NC_003977.1) and its gene regions using 106 million reads sequenced from
the HCC cancer obtained from a patient with serologic evidence of HBV infection and available from The Cancer Genome Atlas (TCGA). All reads were aligned to 4195
viral reference genomes using aligners’ moderate sensitivity parameter values (see section 4 in the Materials S1).
doi:10.1371/journal.pone.0076935.t012
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length = 100 bp] -f [the fold of read coverage to be simulated = 10]

-sam [generate SAM alignment file], with default values for indels

and substitution rates) which generates single-end (or pair-end)

reads and base quality values. For the Illumina type of sequencing

ART simulates realistic reads where base quality score is position

dependent (the mean quality score decreases as function of

increasing base position) and where base substitution is simulated

according to the empirical position-dependent distribution of base

quality score, measured in large training datasets. The base quality

score does not directly provide information for INDEL errors, and

ART simulates insertion and deletion errors directly from

empirical distributions based on training data [18].

As output ART generates a file with cDNA reads in the FASTQ

format and an alignment file in the SAM format. The alignment

file generated by ART serves as the true alignment to which the

output of all the other aligners is compared (see Figure S1 in

Materials S1).

In order to test aligners’ performances as a function of viral

mutation rates our simulation approach also enables generation of

reads from mutated viral genomes at different rates. Each viral

reference sequence is first mutated using a random substitution

model at the pre-specified rate; the mutated reference sequence is

then used to generate transcript sequences using ART in the same

way as a non-mutated viral reference sequence (see Figure S1 in

Materials S1).

Evaluation
To evaluate the performance of different aligners the FASTQ

files generated by RiSER’s RNA-Seq simulation (see the previous

section) were first aligned against a (non-spliced) viral reference

genome (or human reference genome) and the aligner’s output file

was then compared to the true alignment file generated by ART

(see Figure S2 in Materials S1).

Definition of the alignment accuracy and other

metrics. In order to determine the accuracy with which an

aligner aligns a simulated read to a reference genome, we require

that each base position of the read aligns to the right location

(obtained from the true alignment file), and that the CIGAR (for

more information about the CIGAR format see [37]) operation

(i.e., one of the I, D, N, S, H, P, = and X) given by the aligner for

that base is identical to the one in the true alignment file (note that

for the BLAST algorithm we convert its output alignment format

to the SAM format in order to obtain the corresponding CIGAR

codes). The per-read alignment accuracy A is thus measured and

expressed as the percentage of correctly aligned bases out of the

total number of bases contained by the read. The alignment

accuracy of any given set of reads is defined as the average

alignment accuracy (�AA) of that read set.

When reads were being aligned to a single viral genome (such as

shown in Figure 1) and in the case of multiple read alignments we

chose the alignment with the best alignment score and counted it

as a success. In the case where alignment scores were indistin-

guishable (i.e., a read aligning to multiple locations with the same

alignment scores on a single viral genome) one alignment was

chosen at random and counted as a success.

As noted above, for reads that cross a splice junction we used

the information from the splice junction information file (see

Figure S2 in Materials S1) to determine the accuracy of alignment

across that junction. We also allowed a single read to span more

than one splice junction.

Each aligner was run with three different sets of parameter

value settings; default, moderate sensitivity and high sensitivity

(detailed command lines used for all aligners, version numbers and

all parameters are shown in the Materials S1) except for Novoalign

which was run with default parameters only and BFAST run with

moderate sensitivity and high sensitivity parameter value settings

since for BFAST the default and moderate sensitivity parameter

value settings are identical. The reasons for using only default

parameter values for Novoalign are two fold: first, Novoalign

adjusts some of its parameter values based on the input (for

example the genome size is used for determining the k-mer length

necessary for indexing the genome) and second, there is no simple

way of changing the number of mismatches permitted without

changing the values for the gap open and gap extended penalty

which we were reluctant to do with respect to the parameter

settings used by other aligners.

The metrics we used to assess the performance of each aligner

were as follows:

1. PA (percentage of aligned reads not crossing splice junctions) =

(number of reads aligned by the aligner across non{junction regions)

(total number of reads simulated in non{junction regions)
:100

2. PAj (percentage of aligned reads crossing splice junctions) =

(number of reads aligned by the aligner across junction regions)

(total number of reads simulated across junction regions)
:100

3. A (percentage alignment accuracy per read) =

Number of correctly aligned bases

Total number of bases contained by the read
:100

4. Average alignment accuracy �AA for reads aligned outside splice

junction regions

5. Average alignment accuracy �AAj for reads aligned across splice

junctions

In addition to the five metrics stated above, we calculated

precision (i.e., TP=(TPzFP)) which measured the aligner’s ability

to align reads to the right reference sequence and sensitivity (or

recall) (i.e., TP=(TPzFN)) which measured the aligner’s ability to

align reads to the right reference sequences weighted by the total

number of reads that fail to align. TP (true positives), FP (false

positives) and FN (false negatives) are defined as follows:

N TP = number of reads aligning to the right reference sequence

N FP = number of reads aligning to a different reference

sequence from the one they were derived from

N FN = number of reads that do not align to any reference

sequence

To estimate the FP rate we aligned simulated reads derived

from each of the four viral sequences shown in Table 1 and the

human reference genome (see Table 6) to a complete set of 4195

known viral reference sequences downloaded from NCBI. Note

that in this case all aligners were run by allowing multiple

alignments for each read to be reported. In this case if any of these

alignments is the correct alignment we counted it as a success (or a

TP). Low precision (i.e., high false positive rate) indicates aligner’s

propensity to align short reads to other reference sequences in

addition to the one they were generated from, making the

detection of the target genome more difficult due to an increase in

noise (i.e., in the number of additional falsely reported reference
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sequences). Low sensitivity (i.e., high false negative rate) indicates

that an aligner fails to align a significant number of reads back to

the reference sequence they were generated from.

To assess the variability of our simulated data and our

assessment metrics we repeated each simulation (for each given

viral genome) ten times, producing ten different FASTQ files. We

note that in our simulation framework we did not attempt to

accurately quantify and simulate expression levels of viral

transcripts (which for most viruses are not known) or human

transcripts, instead we generated reads with uniform coverage

across transcripts and junctions, in order to test the mapping

ability of each aligner. However even with our simpler approach

we expected to find more reads crossing splice junctions for viruses

that exhibit splicing, than those that do not.

Supporting Information

Materials S1 Supporting text, figures and tables. Figure
S1. Shows the diagram of steps used for RNA-Seq data
simulation in the RiSER’s framework. Figure S2. Shows
RiSER’s evaluation procedure (for each aligner) and
metrics used (see Materials and Methods section) in the
RiSER’s framework. Figure S3. Histogram plot of the
number of aligned reads as a function of the viral
mutation rate (default parameter value settings). Histo-

gram plot of the number of aligned reads obtained using default

parameter value settings as a function of the mutation rate for each

aligner averaged over the four viral genomes (see Table 1). Figure
S4. Histogram plot of the number of aligned reads as a
function of the viral mutation rate (high sensitivity
parameter value settings). Histogram plot of the number of

aligned reads obtained using high sensitivity parameter value

settings as a function of the mutation rate for each aligner

averaged over the four viral genomes (see Table 1). Figure S5.
Histogram plot of the average accuracy as a function of
the viral mutation rate (default parameter value set-
tings). Histogram plot of the average accuracy obtained using

default parameter value settings as a function of the mutation rate

for each aligner averaged over the four viral genomes (see

Table 1.). Figure S6. Histogram plot of the average
accuracy as a function of the viral mutation rate (high
sensitivity parameter value settings). Histogram plot of the

average accuracy obtained using high sensitivity parameter value

settings as a function of the mutation rate for each aligner

averaged over the four viral genomes (see Table 1.). Table S1.
Summary of S1 and S2 scores for viral reference
sequences (default parameter value settings). Shows the

summary of alignment results aggregated over four viral genomes

for non-mutated viral reference sequences and sorted by S1 score.

The average alignment accuracy for reads crossing splice junctions

(�AAj ) and those not crossing splice junctions (�AA) is defined in the

Materials and Methods section. Table S2. Summary of values
for the FS measure (default parameter value settings).
Shows values of the FS(b~1,k~0:13) measure averaged over

four viral genomes (see Table 2) as a function of viral mutation

rates, sorted according to the average FS(b~1,k~0:13) values

for mutation rates w~2%. Table S3. Genome Coverage
(default parameter value settings). The summary of values

of genomes’ coverage in terms of their minimum and maximum

values (i.e., min-max) obtained by each individual aligner,

averaged over four viral genomes (see Table 2) as a function of

viral mutation rates and sorted according to the average coverage

for mutation rates w5%. Table S4. Precision (default

parameter value settings). Shows values for precision (see

Materials and Methods section for the definition of precision) for

each aligner as a function of the viral sequence mutation rate.

Table S5. Sensitivity (default parameter value settings).
Shows values for sensitivity (or recall) (see Materials and Methods

section for the definition of sensitivity) for each aligner as a

function of the viral sequence mutation rate. Table S6. FS
measure for k~0 and k~1 (default parameter value
settings). Shows the change in values of the FS measure for each

individual aligner when aligning reads generated from viral

sequences without (k~0) and with splicing (k~1) (see also

Table 2 and Table S1 in Materials S1). Table S7. Precision
(moderate sensitivity parameter value settings). Shows

values for precision (see Materials and Methods section for the

definition of precision) for each aligner as a function of the viral

sequence mutation rate. Table S8. Sensitivity (moderate
sensitivity parameter value settings). Shows values for

sensitivity (or recall) (see Materials and Methods section for the

definition of sensitivity) for each aligner as a function of the viral

sequence mutation rate. Table S9 FS measure for k~0 and
k~1 (moderate sensitivity parameter value settings).
Shows the change in values of the FS measure for each individual

aligner when aligning reads generated from viral sequences

without (k~0) and with splicing (k~1) (see also Tables 2 and

3). Table S10. Summary of S1 and S2 scores for viral
reference sequences (high sensitivity parameter value
settings). Shows the summary of alignment results aggregated

over four viral genomes for non-mutated viral reference sequences

and sorted by S1 score. The average alignment accuracy for reads

crossing splice junctions (�AAj ) and those not crossing splice junctions

(�AA) is defined in the Materials and Methods section. Table S11.
Summary of values for the FS measure (high sensitivity
parameter value settings). Shows values of the

FS(b~1,k~0:13) measure averaged over four viral genomes

(see Table 2) as a function of viral mutation rates, sorted according

to the average FS(b~1,k~0:13) values for mutation rates

w~2%. Table S12. Genome Coverage (high sensitivity
parameter value settings). The summary of values of

genomes’ coverage in terms of their minimum and maximum

values (i.e., min-max) obtained by each individual aligner,

averaged over four viral genomes (see Table 2) as a function of

viral mutation rates and sorted according to the average coverage

for mutation rates w5%. Table S13. Precision (high
sensitivity parameter value settings). Shows values for

precision (see Materials and Methods section for the definition of

precision) for each aligner as a function of the viral sequence

mutation rate. Table S14. Sensitivity (high sensitivity
parameter value settings). Shows values for sensitivity (or

recall) (see Materials and Methods section for the definition of

sensitivity) for each aligner as a function of the viral sequence

mutation rate. Table S15 FS measure for k~0 and k~1
(high sensitivity parameter value settings). Shows the

change in values of the FS measure for each individual aligner

when aligning reads generated from viral sequences without (k~0)

and with splicing (k~1) (see also Table 2 and Table S10).
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