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Abstract

Hemodialysis aims at removing uremic toxins thus decreasing their concentrations. The present study investigated whether
Kt/Vurea, used as marker of dialysis adequacy, is correlated with these concentrations. Predialysis blood samples were taken
before a midweek session in 71 chronic HD patients. Samples were analyzed by colorimetry, HPLC, or ELISA for a broad
range of uremic solutes. Solute concentrations were divided into four groups according to quartiles of Kt/Vurea, and also of
different other parameters with potential impact, such as age, body weight (BW), Protein equivalent of Nitrogen
Appearance (PNA), Residual Renal Function (RRF), and dialysis vintage. Dichotomic concentration comparisons were
performed for gender and Diabetes Mellitus (DM). Analysis of Variance in quartiles of Kt/Vurea did not show significant
differences for any of the solute concentrations. For PNA, however, concentrations showed significant differences for urea
(P,0.001), uric acid (UA), p-cresylsulfate (PCS), and free PCS (all P,0.01), and for creatinine (Crea) and hippuric acid (HA)
(both P,0.05). For RRF, concentrations varied for b2-microglobulin (P,0.001), HA, free HA, free indoxyl sulfate, and free
indole acetic acid (all P,0.01), and for p-cresylglucuronide (PCG), 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid
(CMPF), free PCS, and free PCG (all P,0.05). Gender and body weight only showed differences for Crea and UA, while age,
vintage, and diabetes mellitus only showed differences for one solute concentration (UA, UA, and free PCS, respectively).
Multifactor analyses indicated a predominant association of concentration with protein intake and residual renal function. In
conclusion, predialysis concentrations of uremic toxins seem to be dependent on protein equivalent of nitrogen
appearance and residual renal function, and not on dialysis adequacy as assessed by Kt/Vurea. Efforts to control intestinal
load of uremic toxin precursors by dietary or other interventions, and preserving RRF seem important approaches to
decrease uremic solute concentration and by extension their toxicity.
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Introduction

Failure of the kidneys is associated with the gradual retention of

a myriad of solutes [1], causing an endogenous intoxication and

failure of almost all organ systems [2,3]. Dialysis aims at removing

those solutes, resulting in a decrease of their concentration and

hence also their biological toxicity.

Quantification of the removal of these toxins may offer a useful

tool to evaluate the adequacy of a given approach, but might also

lead to misconceptions, e.g. by abandoning attempts to further

improve a removal strategy once a set target is reached.

Traditionally, Kt/Vurea is the marker of dialysis adequacy that is

most widely used on a regular basis. In some countries, reaching a

threshold Kt/Vurea is even a prerequisite for reimbursement of

dialysis [4].

When considering observational data, one cannot deny that the

introduction of Kt/Vurea in 1985 helped to gradually improve

survival of the dialysis population [5–8]. The parameter was

however developed in an era when dialysis was almost exclusively

performed over relatively short sessions with small pore dialyzers

[9]. Many strategic modifications have meanwhile been intro-

duced, such as large pore membranes, convection, frequent

dialysis and extended dialysis. All these alternative strategies

enhance solute removal [10–16] and have been associated with

improved outcome [15,17–23], but do not necessarily increase

Kt/Vurea [10,11,22,23]. Also the number of known uremic toxins

has extended [24,25], mostly with compounds that are difficult to

remove by standard dialysis.

In two recent studies, we demonstrated in CKD patients not yet

on dialysis that estimated GFR (eGFR), as the main currently used

marker of renal function, was barely and inconsistently associated

with concentrations of uremic toxins, although the latter are

associated with organ dysfunction [26,27]. This divergence was

attributed to a greater impact on uremic solute concentration by

factors other than GFR, such as diet, intestinal generation,

metabolism and tubular secretion [28].

Thus, the question could be raised in how far this would be true

as well for the main marker of dialysis adequacy Kt/Vurea.

Although Kt/Vurea is mathematically related to the concentration

change during dialysis, one could assume that keeping this

parameter at a higher threshold would result in a decrease of
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uremic solute concentration as a consequence of more efficient

removal, also before dialysis.

An additional asset of performing this type of study in

hemodialysis, is that in this setting, it is quite easy to assess

objectively dietary protein intake, one of the potentially impacting

factors [29]. Remarkably enough, this question has to the best of

our knowledge never been studied, although a recent review

pointed to the theoretical possibility that Kt/Vurea would not be an

accurate marker for uremic solute removal and retention [21].

Therefore, in this study we want to clarify: 1/whether Kt/Vurea

is representative for the concentration of a broad array of uremic

toxins in patients on hemodialysis; 2/whether there is a difference

in uremic toxin concentrations depending on other patient

characteristics such as age, body weight, protein equivalent of

nitrogen appearance, residual renal function, dialysis vintage,

gender, and diabetes mellitus.

Patients and Methods

Ethics Statement
The study was approved by the local Ethics Committee (Ethical

Committee, Ghent University Hospital, Ghent, Belgium) and

performed in accordance to the Declaration of Helsinki. Written

informed consent was obtained from all participants.

Patients
All chronic hemodialysis patients, older than 18 years, with a

residual renal function lower than 10 mL/min, and dialyzed in

our centre during the day, were considered for inclusion. Patients

were on maintenance hemodialysis for at least three months

during which the same hemodialyzer, dialysis duration, blood and

dialysate flows, convective strategy, and vascular access had been

applied. Dialysis dose, expressed as Kt/Vurea is calculated monthly

according to the single-pool Daugirdas formula [30] to check

accordance to the EBPG [31], and is only adapted if the value goes

below threshold. The general exclusion criteria were active

infection, pregnancy, unstable condition, and vascular access

problems.

Sampling and data collection
Predialysis blood samples were taken during a midweek session,

immediately centrifuged (3000 rpm corresponding to 1250 g),

aliquoted, and stored at 280uC until analysis. Postdialysis blood

samples, as needed for the calculation of Kt/Vurea and PNA, were

taken immediately after discontinuation of the dialysis session after

slowing the blood pump to 100 mL/min during 15 s.

Urea [molecular weight MW: 60D] and creatinine (Crea) [MW:

113D] were measured by standard laboratory methods.

Different solutes, most of them protein bound, were determined

by high performance liquid chromatography (HPLC): uric acid

(UA) [168D], hippuric acid (HA) [179D, protein binding

(PB),50%], 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid

(CMPF) [240D - PB,100%], indoxyl sulfate (IS) [213D -

PB,90%], indole acetic acid (IAA) [175D - PB,65%], p-

cresylsulfate (PCS) [187D - PB,95%], and p-cresylglucuronide

(PCG) [284D - PB,10%]. To determine the total fraction, serum

samples were first deproteinized by heat denaturation [32] and

analyses were performed by reverse-phase HPLC. IS and IAA

(excitation lex:280 nm; emission lem:340 nm) and PCS and PCG

(lex:265 nm; lem:290 nm) were determined by fluorescence

analysis, and HA and CMPF were analyzed by UV detection at

254 nm [14]. Free fractions were determined according to Fagugli

et al [14].

ELISA kits manufactured by DLD Diagnostika GmbH

(Hamburg, Germany) were used for measuring asymmetric

dimethylarginine (ADMA) [202D], symmetric dimethylarginine

(SDMA) [202D] after acylation. For beta-2-microglobulin (b2M)

[11.8 kD], ELISA kits of Orgentec Diagnostika GmbH (Mainz,

Germany) were used.

For each patient, the following additional parameters were

registered: age, gender, body weight (BW), presence of diabetes

mellitus (DM), dialysis vintage, and medication, while Kt/Vurea,

residual renal function (RRF), and protein equivalent of nitrogen

appearance (PNA) were calculated as explained below.

Calculations
Since the single treatment dose as measured during a

midweek dialysis session does not reflect the average clearance

both by exogenous hemodialysis and endogenous residual renal

clearance, we calculated weekly Kt/Vurea accounting for

ultrafiltration and residual renal function according to Daugir-

das et al [33]:
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with F the number of dialysis sessions per week, Kru the residual

renal urea clearance (mL/min), UFw the weekly fluid removal

(L), V the urea distribution volume (L) as calculated according

to Daugirdas and Smye [34], and S the standard Kt/V

according to Leypoldt:
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with t the treatment time (min), and eKt/V calculated according

to [35]:

eKt=V~spKt=V:
t

tz30:7

� �
ð3Þ

And spKt/V calculated according to Daugirdas et al [30]:
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with BUNpre and BUNpost the pre and post dialysis Blood Urea

Nitrogen concentration, UF the ultrafiltration volume, and BW

the post dialysis body weight.

Residual Renal Function (RRF) was calculated as the arithmetic

mean of the creatinine and urea clearance (ClCrea and Clurea,

respectively):

RRF~average ClCrea,Clureað Þ ð5Þ

with:

Predictors of Solute Concentration in HD Patients

PLOS ONE | www.plosone.org 2 November 2013 | Volume 8 | Issue 11 | e76838



Cl(mL=min)~
Curine

:Vurine

average Cstart,Cendð Þ:Dtinter
:60

ð6Þ

with Curine and Vurine (mL) the concentration and volume of the

urine as collected during the interdialytic period Dtinter (h), and

Cstart and Cend the blood concentrations at the start and end of the

interdialytic period. Herewith, Cstart was corrected for the post-

dialysis rebound as [36]:

Cstart~Cpre
: Cpost

Cpre

� � t
tzR

ð7Þ

With Cpre and Cpost the pre and immediate post-dialysis

concentrations, and R the rebound time, i.e. 35 min for urea

and 70 min for Crea.

Finally, the Protein equivalent of Nitrogen Appearance (PNA) at

midweek was calculated according to the K/DOQI and EBPG

[37,38]:
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Statistical analyses
For the patient characteristics age, BW, Kt/Vurea, PNA, and

dialysis vintage, the median and 25th and 75th percentile were

calculated and, per characteristic, patients were divided into

four groups according to quartiles. Since the median of RRF

was zero, the four groups for this parameter were not defined by

quartiles but consisted of one group to which all anuric patients

were selected (n = 40), whereas the remaining non-anuric

patients were distributed in tertiles (n = 10–11 each). For gender

and DM, patients were divided in two groups according to

male/female and DM/non DM. With these data, non-

parametric analysis of variance (Kruskal-Wallis) tests were

performed to check potential differences in uremic toxin

concentrations among the groups.

Furthermore, correlations (Spearman) were evaluated between

uremic toxin concentrations and the different studied character-

istics; finally, multifactor analyses per solute were performed.

The data of patients taking allopurinol were excluded from the

analysis considering uric acid.

Data are expressed as mean 6 standard deviation for normal

distributions, or as medians with the 25th and 75th percentiles for

non normal distributions.

P,0.05 was considered to be statistically significant. All

statistical analyses were performed using SPSS Statistics 19 (SPSS

Inc, Chicago, IL) for Windows (Microsoft Corp, Redmond, WA).

Results

Seventy-four chronic hemodialysis patients fulfilled the

inclusion criteria. Two of them declined written consent, and

1 patient had an interdialytic interval of 2.5 days at midweek

instead of 1.5 days. The 71 chronic hemodialysis patients

included were on thrice weekly hemodialysis for 38.0 (19.5–

61.5) months: 26/45 females/males, 28 diabetes mellitus, 31

with RRF, age 72 (63.0–80.0) years, body weight 69.0 (61.3–

78.8) kg, weekly Kt/Vurea 2.43 (2.28–2.63), and PNA 0.83

(0.74–1.01) g/kg/day (Table 1).

Our patients were routinely dialyzed for 245618 min, with a

blood flow of 321637 mL/min (QB range 220–350 mL/min) and

QD = 500 mL/min in hemodialysis mode with either an FX8

(Fresenius Medical Care, Germany) (n = 5), or Evodial (Gambro,

Sweden) (n = 1) dialyzer, or in postdilution hemodiafiltration mode

with either an FX800 (Fresenius Medical Care, Germany) (n = 41),

Phylter 17SD (Bellco, Italy) (n = 7), Xenium 210 (Baxter, USA)

(n = 6), PHF (Bellco, Italy) (n = 4), Polyflux 170H (Gambro,

Sweden) (n = 4), or Surflux 170UH (Nipro, Japan) (n = 3) dialyzer.

All patients had a permanent vascular access: i.e. 42 fistulas and 29

tunneled central venous catheters.

An overview of the measured predialysis concentrations of

uremic solutes is given in Table 2. The percentage differences

between minimum and maximum concentrations among the

patients ranged from 72.0 (UA) to 99.5% (total and free PCG)

(Table 2); normalizing concentrations to Kt/Vurea resulted in the

same percentage differences between the minimum and maximum

values (data not shown).

Table 3 shows the P-values of the Kruskal-Wallis tests for the

concentrations under study if patient characteristics were separat-

ed in quartiles or dichotomically. The main characteristics

associated with a significant difference of solute concentrations

were PNA and RRF (Table 3 and Figure 1). For Kt/Vurea no

single significant difference was found.

Table 4 shows the R and P-values of the Spearman

correlations between solute concentrations and patient charac-

teristics. Kt/Vurea showed a correlation only with the concen-

tration of Crea. PNA, on the contrary, showed significant

correlations for the majority of solutes with R = 0.894 for urea,

and a value in the range 0.4–0.6 for UA, PCS, and free PCS,

and 0.2–0.4 for Crea, HA, IS, PCG, free HA, and free PCG.

RRF showed inversed correlations with an R-value in the range

20.4 to 20.6 for b2M, HA, free HA, and free IAA, and with R

between 20.2 and 20.4 for IS, PCG, free IS, free PCS, and free

PCG.

Also in multifactor analysis, PNA and RRF were the main

factors associated with uremic solute concentration, except for

Crea, and this occurred mainly independently (Table 5).

Table 1. Patient characteristics and Kt/V values.

Median (25th–75th percentile)*

Gender (female/male) 26/45

DM (yes/no) 28/43

RRF (yes/no) 31/40

Allopurinol (yes/no) 7/64

Age (years) 72.0 (63.0–80.0)

BW (kg) 69.0 (61.3–78.8)

spKt/V 1.62 (1.45–1.89)

eKt/V 1.43 (1.28–1.66)

weekly Kt/V 2.43 (2.28–2.63)

PNA (g/kg/day) 0.83 (0.74–1.01)

Dialysis vintage (months) 38.0 (19.5–61.5)

*if applicable.
DM: diabetes mellitus, BW: body weight, RRF: residual renal function, PNA:
protein equivalent of nitrogen appearance.
doi:10.1371/journal.pone.0076838.t001
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Table 2. Uremic toxin concentrations.

median (25th–75thp) [(75th-25th)/75th]?100 min - max [(max-min)/max]?100

urea 0.90 (0.71–1.06) 33.5 0.18–1.88 90.4

Crea 7.19 (5.77–9.01) 36.0 3.35–14.9 80.4

ADMA 1.00 (0.84–1.18) 28.2 0.51–1.93 73.6

SDMA 2.08 (1.73–2.48) 30.3 0.77–3.79 79.7

UA 6.53 (5.62–7.06) 20.3 2.55–9.11 72.0

b2M 39.4 (28.5–48.1) 40.8 13.9–96.3 89.6

HA 2.94 (1.47–5.64) 74.0 0.24–14.21 98.3

IS 1.80 (1.27–2.77) 54.4 0.29–5.75 97.7

IAA 0.18 (0.13–0.23) 42.7 0.07–0.73 90.9

PCS 2.94 (1.73–4.36) 60.2 0.06–7.53 99.2

PCG 0.49 (0.18–0.89) 79.8 0.02–3.94 99.5

CMPF 0.38 (0.20–0.61) 68.0 0.06–1.37 95.8

Free HA 1.65 (0.70–3.32) 79.0 0.13–9.09 98.6

Free IS 0.11 (0.06–0.23) 72.4 0.02–0.72 97.8

Free IAA 0.06 (0.04–0.07) 48.1 0.02–0.22 91.2

Free PCS 0.18 (0.11–0.33) 66.4 0.04–0.66 94.7

Free PCG 0.48 (0.17–0.86) 80.1 0.02–3.59 99.5

mg/dL, except urea in g/L, b2M in mg/mL, and ADMA and SDMA in mmol/L.
Crea: creatinine, ADMA: asymmetric dimethylarginine, SDMA: symmetric dimethylarginine, UA: uric acid, b2M: beta-2-microglobulin, HA: hippuric acid, IS: indoxyl sulfate,
IAA: indole acetic acid, PCS: p-cresylsulfate, PCG: p-cresylglucuronide, CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.
doi:10.1371/journal.pone.0076838.t002

Table 3. P-values of comparison between concentrations for characteristics as divided in quartiles or dichotomically.

Age BW Kt/V PNA RRF vintage gender DM

urea 0.097 0.116 0.478 ,0.001 0.265 0.219 0.310 0.728

Crea 0.129 0.015 0.339 0.027 0.345 0.441 0.004 0.842

ADMA 0.616 0.458 0.396 0.848 0.337 0.683 0.492 0.814

SDMA 0.408 0.891 0.297 0.548 0.196 0.794 0.797 0.668

UA 0.002 0.026 0.097 0.004 0.240 0.026 0.025 0.171

b2M 0.898 0.666 0.585 0.607 ,0.001 0.644 0.346 0.916

HA 0.539 0.577 0.602 0.036 0.004 0.268 0.247 0.378

IS 0.850 0.462 0.340 0.261 0.159 0.664 0.839 0.259

IAA 0.678 0.251 0.583 0.203 0.089 0.959 0.437 0.402

PCS 0.283 0.698 0.809 0.001 0.815 0.739 0.452 0.312

PCG 0.230 0.786 0.391 0.067 0.041 0.766 0.273 0.291

CMPF 0.065 0.537 0.316 0.464 0.073 0.984 0.865 0.106

Free HA 0.491 0.580 0.629 0.092 0.002 0.181 0.277 0.384

Free IS 0.505 0.605 0.620 0.266 0.006 0.772 0.976 0.110

Free IAA 0.633 0.219 0.480 0.660 0.002 0.978 0.440 0.107

Free PCS 0.263 0.604 0.858 0.007 0.050 0.601 0.445 0.036

Free PCG 0.205 0.763 0.409 0.070 0.038 0.777 0.300 0.317

Crea: creatinine, ADMA: asymmetric dimethylarginine, SDMA: symmetric dimethylarginine, UA: uric acid, b2M: beta-2-microglobulin, HA: hippuric acid, IS: indoxyl sulfate,
IAA: indole acetic acid, PCS: p-cresylsulfate, PCG: p-cresylglucuronide, CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.
BW: body weight, PNA: protein equivalent of nitrogen appearance, RRF: residual renal function, DM: diabetes mellitus.
P,0.05 is indicated in bold.
doi:10.1371/journal.pone.0076838.t003
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Discussion

In a group of 71 hemodialysis patients, variances were studied

for a broad range of predialysis uremic toxin concentrations as

functions of different patients characteristics and Kt/Vurea. The

most important findings are that different quartiles of Kt/Vurea did

not show any variations in serum concentration of the studied

solutes, whereas quartiles of PNA and RRF showed significant

variations of serum levels for 6 and 8 solutes under study,

respectively. For correlation analysis, only one association was

found for Kt/Vurea, whereas there were 10 associations for PNA

and 9 for RRF, pointing into the same direction as the analysis per

quartiles.

UA, ADMA, PCS, IS, and b2M have repeatedly been

associated with vascular damage and mortality in renal and

general populations [39–49]. In our study, quartiles of weekly Kt/

Vurea did not show any significant variance in serum concentration

of these solutes as was also found for spKt/V and eKt/V (data not

shown). The weekly Kt/Vurea, per definition accounting for RRF,

was correlated to only one investigated solute concentration, while

no correlations were found when considering spKt/V or eKt/V

(data not shown). On the other hand, subdivision for quartiles of

PNA showed differences in the serum concentration of UA, PCS,

urea, Crea, HA, and free PCS, and showed, additionally,

correlations with the concentrations of IS, PCG, free HA, and

free PCG. Furthermore, quartiles of RRF showed differences for

b2M, HA, PCG, and free concentrations of HA, IS, IAA, PCS,

and PCG, and showed, additionally, correlations with the IS

concentrations. Hence, from the present study, Kt/Vurea does not

seem to be a very good predictor of uremic solute concentrations,

not even in the subpopulation of patients without any residual

renal function (data not shown).

During the last decade, it became clear that dialysis dose, as

measured by the removal of a low-molecular weight solute such as

urea as is the case with Kt/Vurea, may not entirely be a parameter

of dialysis adequacy. Kinetics of urea differ from that of other

uremic solutes, even when these are small and water soluble like

urea is [50,51]. Furthermore, increasing dialysis time from 4 up to

8 hours, without changing the quantity of processed blood and

dialysate, did not impact Kt/Vurea, whereas, b2M, a middle

molecule and phoshate, a small but difficult to remove solute,

showed an increase by 81 and 49% respectively [11]. The present

study here adds that not only solute removal but also predialysis

solute concentration is not reflected in Kt/Vurea. At first sight, this

could be an evident conclusion, since Kt/Vurea is mathematically

related to the change in urea concentration during dialysis rather

than to the absolute concentration. However, the ultimate goal of

hemodialysis is to decrease absolute toxic solute concentrations,

and with it, the biological activity of uremic toxins. Hence, keeping

the adequacy parameter Kt/Vurea above the prescribed threshold

should result in decreased concentrations.

Fairly similar deceiving results, pleading against a unique

universal marker of uremic solute removal, were obtained in two

recent studies evaluating the associations of uremic retention solute

concentrations with estimated Glomerular Filtration Rates (eGFR)

in patients of Chronic Kidney Disease (CKD) stage 2 to 5, not on

dialysis [26,27]. These data strongly suggest that other factors than

GFR are more powerful determinants of serum solute concentra-

tion [26]. These include renal tubular secretion (IS, HA) [52],

metabolic factors (ADMA) [53], intestinal secretion, absorption

Figure 1. Box plots of quartiles and correlations of different solute concentrations versus Kt/V, PNA, and RRF: urea in g/L (panels A,
B, and C), b2M in mg/mL (panels D, E, and F), HA in mg/dL (panels G, H, and I), and free PCS in mg/dL (panels J, K, and L). b2M: beta-2-
microglobulin, HA: hippuric acid, PCS: p-cresylsulfate, PNA: protein equivalent of nitrogen appearance, RRF: residual renal function.
doi:10.1371/journal.pone.0076838.g001
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and generation (UA) [54], (indoles, phenols) [29,55,56], (IS)

[57,58].[26,59,60]. Impressive differences in serum concentration

of different solutes, either adjusted or not for Kt/Vurea, were found

in our present study (ranging from 72 to close to 100%),

confirming previous data in another hemodialyzed population

(concentration differences ranging from 66 to 100%) [26], so that

the same interfering factors may also play an as important role in

dialysis patients as in non-dialyzed CKD patients.

We found that residual renal function (RRF) distinguishes well

among solute concentrations. This confirms previous findings that

RRF has a higher impact on patient outcome than a high

delivered Kt/Vurea [61], and that RRF is better associated with

optimal nutritional status than dialysis adequacy [62]. In addition,

even limited increments of RRF are substantially more important

than dialyzer clearance as a determinant of b2M concentrations in

patients on high flux hemodialysis [63] and even hemodiafiltra-

tion, in spite of enhanced b2M clearance with this strategy due to

convection [64,65]. Also for the protein bound compounds, RRF

has a major contribution to total solute removal of patients on

dialysis [66,67].

The contribution of RRF to the differences between patients in

the serum concentration of b2M is in correspondence with the

inverse associations between RRF and another middle molecule,

Fibroblast Growth Factor-23 (FGF23) as previously found in a

prospective observational cohort study in peritoneal and hemodi-

alysis patients [68].

Our findings for RRF as predictor for most uremic solute

concentrations in the dialysis population do not fully match our

previous findings for eGFR as predictor for solute concentrations

in CKD 2–5 patients not on dialysis [69–72]. This might be due to

a difference in calculation of the renal function: i.e. while RRF in

this study is assessed directly using concentrations of Crea and

urea in blood and urine, in our previous studies eGFR was

estimated only using blood concentrations of Crea and/or CystC

[69–72]. In addition, GFR in the present dialysis population is

much lower than in the earlier CKD stages, whereas dialysis is an

additional confounder affecting concentration. Thus conditions in

between studies were entirely different.

Our data with regards to residual renal function point into the

same direction as those recently reported by Marquez et al [69–

72], also showing inverse correlations between protein bound

solute concentrations and residual renal function, even if they did

not take into account a measure of protein intake such as PNA.

Regarding PNA, significant correlations were found with

predialysis urea concentrations, as could be expected from the

PNA formula (equation 8). However, PNA is also well related to

Table 4. P and R-values for Spearman correlations between
the solute concentrations and the different patient
characteristics.

Age BW Kt/V PNA RRF vintage

urea P 0.007 0.511 0.230 ,0.001 0.561 0.210

R 20.320 0.894

Crea P 0.009 0.009 0.048 0.004 0.207 0.332

R 20.311 0.312 20.237 0.336

ADMA P 0.657 0.880 0.118 0.577 0.608 0.950

SDMA P 0.552 0.962 0.160 0.211 0.427 0.470

UA P ,0.001 0.041 0.058 0.001 0.243 0.007

R 20.446 0.256 0.373 20.336

b2M P 0.913 0.837 0.742 0.506 ,0.001 0.305

R 20.415

HA P 0.962 0.490 0.668 0.005 ,0.001 0.232

R 0.330 20.431

IS P 0.967 0.196 0.801 0.046 0.022 0.282

R 0.237 20.272

IAA P 0.658 0.602 0.140 0.801 0.101 0.782

PCS P 0.456 0.941 0.712 ,0.001 0.829 0.809

R 0.529

PCG P 0.825 0.734 0.651 0.003 0.004 0.540

R 0.349 20.335

CMPF P 0.003 0.154 0.576 0.562 0.080 0.559

R 0.346

Free HA P 0.840 0.398 0.824 0.024 ,0.001 0.229

R 0.267 20.453

Free IS P 0.953 0.361 0.870 0.131 0.001 0.668

R 20.380

Free IAA P 0.964 0.451 0.084 0.525 ,0.001 0.653

R 20.410

Free PCS P 0.959 0.612 0.664 ,0.001 0.028 0.238

R 0.445 20.261

Free PCG P 0.792 0.746 0.639 0.003 0.004 0.536

R 0.346 20.337

Crea: creatinine, ADMA: asymmetric dimethylarginine, SDMA: symmetric
dimethylarginine, UA: uric acid, b2M: beta-2-microglobulin, HA: hippuric acid, IS:
indoxyl sulfate, IAA: indole acetic acid, PCS: p-cresylsulfate, PCG:
p-cresylglucuronide, CMPF: 3-carboxy-4-methyl-5-propyl-2-furanpropionic acid.
BW: body weight, PNA: protein equivalent of nitrogen appearance, RRF: residual
renal function.
P,0.05 is indicated in bold. R values only shown in case of significant P.
doi:10.1371/journal.pone.0076838.t004

Table 5. Multifactor analysis: covariates with cumulative R-
value.

Solute Covariates/R-value of full model

Urea PNA/0.894

Crea PNA/0.336 Kt/V/0.624

ADMA

SDMA

UA PNA/0.373

b2M RRF/20.415

HA RRF/20.431

IS RRF/20.272

IAA

PCS PNA/0.529

PCG PNA/0.349 RRF/0.441

CMPF age/0.346

Free HA RRF/20.453

Free IS RRF/20.380

Free IAA RRF/20.410

Free PCS PNA/0.445

Free PCG PNA/0.346 RRF/0.438

Empty cells indicate that the correlation analysis did not include other elements
that contributed significantly.
doi:10.1371/journal.pone.0076838.t005
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substantial differences in serum concentrations of many other

solutes under study. These data are consistent with growing

evidence that food protein intake and its intestinal processing, to a

large extent regulated by the gut microbiota, plays an important

role in uremic toxin generation, especially in relation with protein

bound molecules derived from amino acid metabolites such as

indole or p-cresol [29,73,74]. Of note, whereas quartiles of PNA

showed variances in concentrations of solutes that are amino acid

metabolites and thus depending on protein intake, this was not the

case for b2M which, as a component of major histocompatibility

complex class I molecules, is of endogenous origin.

Our data might seemingly be in contradiction with the current

understanding that inadequate nutrition is an important predictor

of outcome in chronic hemodialysis patients [75–77], since low

values of PNA have been associated with higher morbidity and

mortality [78,79] whereas here they are linked to lower uremic

toxin concentrations. However, for several uremic retention

solutes such as AGEs and Hcy, a low rather than high

concentration has been associated with higher mortality in dialysis

patients [69–72]; these differences have been attributed to the fact

that the toxic effect of the molecules was overridden by the

deleterious impact of malnutrition and the lower intake of solutes

or their precursors when less food is entering the intestine [69,71].

For protein bound toxins, like indoxyl sulfate or p-cresylsulfate,

however, high, not low, concentration has repeatedly been

associated with mortality, even after adjustment for protein intake

parameters [39,40,42], suggesting that toxin concentration in this

case overrides the impact of nutrition on outcome. This does not

take away that low protein intake should be avoided in

hemodialysis patients due to its negative impact on outcome per

se [77,78]. Our data do not refute high protein intakes but are only

proof of concept that the intestinal protein load is an important

source of uremic toxins, and that therapeutic means to reduce this

(probiotics, prebiotics, sorbents), if they are not jeopardizing

nutritional status, may have added value to the removal obtained

by dialysis and should be explored and assessed in controlled trials.

Furthermore, PNA is not only a nutrition term but is also

influenced by the metabolic status of the patient. Examination of

the body weights during a period starting one month before until

one month after the study reveals however that 35% of the patients

are stable in weight, while only minor changes (1.8%) were seen in

the remaining group with a comparable number of patients with

increasing and decreasing body weight, respectively [69.0 (61.3–

78.8) kg]. Hence, changes in metabolic status in our patient

population did not influence correlations between PNA and

uremic toxin concentrations.

A small number of studies suggested that PNA linearly varies

with the dialysis dose Kt/Vurea [80,81], but the HEMO study

failed to demonstrate any significant change in protein intake

attributable to hemodialysis dose [82]. The present study as well

did not find any correlation between PNA and Kt/Vurea (data not

shown).

Strengths of this study are the assessment of a population from

one single unit where the same standards of treatment are applied

overall, and the inclusion of several parameters with the potential

impact on solute concentration. A shortcoming of this study is its

transversal nature with only one set of values per patient at one

single moment. However, an analysis using average Kt/Vurea of

the same population over a period of 3 months resulted in the

same conclusions (data not shown). In addition, single values of

PNA and RRF were used which nevertheless resulted in much

higher variances. An analysis using average PNA of the same

population over a period of 3 months resulted in even more

correlations with uremic toxin concentrations (i.e. also correlated

with free IS and free IAA concentrations). Another shortcoming

might have been the use of predialysis uremic toxin concentra-

tions. However, an analysis using the time averaged concentration

(TAC) of urea, the only solute of which the post dialysis value was

available to calculate TAC, gave similar results. Finally, the study

results for PNA could have been skewed by not considering the

urea concentration after post-dialysis rebound [83] and by only

looking at a midweek dialysis session possibly overestimating the

weekly value [84] and not including intraweek variability [85].

However, since overestimations by not considering urea rebound

are only in the range of 6% [83], since we considered midweek

sessions with similar dialysis durations (245618 min) which were

constant during the preceding three months, and since intraweek

variations (estimated being 9.3% [85]) are likely to be counter-

balanced among patients, our correlation analyses between PNA

and uremic toxin concentrations can be considered representative.

Conclusion

In conclusion, serum concentrations of most uremic toxins are

correlated with residual renal function and protein equivalent of

nitrogen appearance, and not with dialysis adequacy as assessed by

Kt/Vurea. Hence, we conclude from this observational study that

efforts to control intestinal load of uremic toxin precursors by

dietary or other interventions, and preserving RRF are important

approaches to decrease uremic solute concentration and by

extension their toxicity.
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