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Abstract

Background: Previous studies using hierarchical clustering approach to analyze resting-state fMRI data were limited to a few
slices or regions-of-interest (ROIs) after substantial data reduction.

Purpose: To develop a framework that can perform voxel-wise hierarchical clustering of whole-brain resting-state fMRI data
from a group of subjects.

Materials and Methods: Resting-state fMRI measurements were conducted for 86 adult subjects using a single-shot echo-
planar imaging (EPI) technique. After pre-processing and co-registration to a standard template, pair-wise cross-correlation
coefficients (CC) were calculated for all voxels inside the brain and translated into absolute Pearson’s distances after
imposing a threshold CC$0.3. The group averages of the Pearson’s distances were then used to perform hierarchical
clustering with the developed framework, which entails gray matter masking and an iterative scheme to analyze the
dendrogram.

Results: With the hierarchical clustering framework, we identified most of the functional connectivity networks reported
previously in the literature, such as the motor, sensory, visual, memory, and the default-mode functional networks (DMN).
Furthermore, the DMN and visual system were split into their corresponding hierarchical sub-networks.

Conclusion: It is feasible to use the proposed hierarchical clustering scheme for voxel-wise analysis of whole-brain resting-
state fMRI data. The hierarchical clustering result not only confirmed generally the finding in functional connectivity
networks identified previously using other data processing techniques, such as ICA, but also revealed directly the
hierarchical structure within the functional connectivity networks.
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Introduction

Taking advantage of the rapidly expanding computational

power in the past decade, several studies showed the feasibility to

analyze whole-brain resting-state fMRI data with clustering

algorithms. For example, Benjaminsson et al. used a dimensional

scaling and vector quantization clustering technique to analyze

resting-state fMRI data [1]. Van den Heuvel et al. used a graph-

theory approach to determine several functional connectivity

networks [2].

Hierarchical clustering has not been used as fluently as other

clustering methods in the analysis of resting-state fMRI data due to

its poor scaling, high complexity and sensitivity to outliers. On the

other hand, hierarchical clustering is completely deterministic and

can stratify data into a hierarchical structure [3,4,5,6]. Previous

studies on hierarchical clustering of resting-state fMRI data have

been limited to a few slices or region-of-interests (ROIs) after

substantial data reduction. Cordes et al. used a hierarchical

clustering algorithm and analyzed 4 slices of resting-state fMRI

data [7]. In another hierarchical clustering study of human brain,

Salvador et al. grouped the resting-state fMRI data into regions-of-

interests (ROIs) according to their anatomical locations prior to

the clustering [8] of the ROIs. More recently, voxel-wise

hierarchical clustering was also attempted on resting-state fMRI

data acquired from rodents [9].

Due to limited computational capacity, data reduction is usually

needed in hierarchical clustering of resting-state fMRI data. In the

earlier works this was achieved either by limiting the number of

slices [7] or substantially reducing the data into anatomical ROIs

[8]. In order to perform voxel-wise hierarchical clustering of

whole-brain resting-state fMRI data, in this study we used a brain

mask to achieve data reduction without compromising spatial

resolution and coverage. This masking operation also improves the

robustness of the framework by eliminating irrelevant voxels

containing noise and artifact outliers which destabilize the

algorithm [10]. To further improve stability of the algorithm,
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the distance matrix for individual subject was thresholded and

averaged prior to the clustering. This allows also efficient group

analysis of whole-brain resting-state fMRI data.

We developed an iterative scheme with termination criteria

based on cluster size to analyze the dendrogram. With the

developed framework, we were able to independently identify most

of the functional connectivity networks reported previously in the

literature using ICA and other analysis methods. Furthermore, we

illustrated that the dendrogram can directly reveal the inherent

hierarchical structure within the functional connectivity networks.

To the best of our knowledge, there has been no previous study

succeeded in hierarchical clustering of whole-brain human resting-

state fMRI data at voxel-level.

Materials and Methods

Ethical statement
This study was approved by the Central Ethical Review Board

in Sweden, who also approved the consent form used to provide

information and obtain consent. All participants provided

informed consent by signature.

Data acquisition
Resting-state fMRI measurements were conducted for 86

normal adult subjects (male/female = 40/46, aged 21–84 years

old). All resting-state fMRI measurements were performed on a

Siemens whole-body 3T clinical MRI scanner (Magnetom Trio,

Erlangen, Germany) using a dedicated 32-channel phased array

detector. For each subject, at least one set of resting-state fMRI

data was acquired using a single-shot 2D gradient-recalled echo

(GRE) echo-planar imaging (EPI) technique. The essential

acquisition parameters for the resting-state fMRI scan included

the following: 32 transverse slices of 3.6 mm thick, TR/

TE = 2000/35 ms, FOV = 220 mm, matrix size = 64664, parallel

imaging acquisition with an acceleration factor (IPAT) of 2, flip

angle = 90u, and 300 dynamic timeframes.

Data preprocessing
Data preprocessing were performed using AFNI (http://afni.

nimh.nih.gov/afni/) and FSL (http://www.fmrib.ox.ac.uk/fsl)

programs wrapped around a bash shell script. The first 10

timeframes in each data set were removed to ensure the signal

reaches steady state. Head motion correction was performed based

on 6-parameter rigid body images registration. The average

volume for each motion corrected time series were used to remove

the skull from the images and to create whole-brain mask. Spatial

normalization to the MNI template was performed using 12

parameter affine transformation and mutual information as the

cost function. The data was then resampled to isotropic resolution

using a Gaussian kernel with FWHM = 4 mm. Low-pass filtering

at 0.1 Hz was done followed by baseline de-trending up to the

third order.

Cross-correlation evaluation
To minimize processing load without promising the spatial

resolution and whole-brain coverage, individual datasets were

masked with a standard gray matter template derived from FSL

tissue priors (http://www.fmrib.ox.ac.uk/fsl) to exclude white

matter and cerebral spinal-fluid (CSF) regions. After the masking,

the pair-wise Pearson’s cross correlation coefficients (CC) were

calculated for all datasets. The correlation coefficients were then

thresholded at 0.3 [7] The correlation values below the threshold

was truncated to zero while values above this threshold were not

changed. After thresholding, approximately 1.1% of the correla-

tion coefficients remained for further analysis (Fig. 1). The cross

correlation matrices for all subjects were then averaged together

Figure 1. Average CC matrix histogram. Histogram of the average CC matrix of all datasets. The majority of CC values are below 0.2 with a
relatively small number of values above 0.4. Negative values exist but are relatively few and only take on small values.
doi:10.1371/journal.pone.0076315.g001
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voxel-wise. The averaged correlation data were then converted

into absolute Pearson’s distances according to the definition (1-

|CC|), which were used to perform hierarchical clustering.

Hierarchical clustering
An agglomerative hierarchical clustering algorithm was used as

the basis for the framework. A brief description of the algorithm is

summarized as follows: Given a set of N voxels to be clustered, and

a corresponding N6N distance matrix:

1. Assign each voxel to a cluster, resulting in N clusters, with each

cluster containing just one voxel. The distances between the

clusters are the distances among the voxels.

2. Find the closest pair of clusters.

3. Merge the closest pair of clusters, resulting in one cluster less in

total.

4. Repeat 2–3 until only a single cluster remains.

Step 3 can be performed in a variety of ways, referred to as

linkage methods. The type of linkage in a hierarchical clustering

algorithm refers to how the algorithm determines distance between

newly formed clusters to all other voxels and clusters. Single-

linkage takes the shortest distance between new clusters against the

rest of the data, maximum-linkage takes the longest distance, and

average-linkage takes the average. In our application, voxels

within a cluster corresponding to a functional connectivity network

should be highly correlated to each other. Hence, single-linkage is

not desirable in this application. Maximum-linkage forces the

algorithm to solely determine clusters with all voxels having high

correlations to each other without exceptions. Average-linkage

relaxes somewhat the intra-cluster connectivity requirements

compared to maximum-linkage by taking the average distance.

Hence, average-linkage was opted to take into account of the

potential noise residues. Pseudo-code for the algorithm is shown in

Appendix A in Supporting Information S1.

The algorithm produces a binary hierarchy tree (dendrogram)

from which k clusters can be retrieved by cutting the k-1 longest

links.

Since the number of meaningful clusters is unknown a priori and

is affected by the noise level of the resting-state fMRI data, it is

difficult to specify the number of resulting clusters directly. We

tested different criterion for the selection of clusters, e.g. the

inconsistency coefficient (see Appendix B in Supporting Informa-

tion S1 and Figure S1 for details). It was found that the cluster size

could be used as an effective approach. By referring to the group

ICA result from the same dataset, a cluster larger than 5000 voxels

in size (S$5000) is considered too large to be a single functional

connectivity network, whereas a cluster less than 50 voxels in size

(S#50) is considered too small to be a meaningful cluster. The

selection of these parameters is determined semi-empirically and is

discussed in further details below.

Testing the algorithm with different number of clusters indicates

that increasing the number of clusters in the first iteration simply

increases the number of spurious small clusters but does not

efficiently reduce the size of the largest cluster, once the cluster

count is sufficiently large. Therefore, the cluster count, for the first

iteration (whole-brain clustering), was set to 64. Cluster count for

the hierarchies further down was reduced by a factor of 2 than that

for the previous iteration (k2 = 32, k3 = 16, k4 = 8 etc.). The cluster

number for subsequent iterations is decreased according to the size

Figure 2. Schematics of the iterative clustering pipeline. Schematics for iterative hierarchical clustering framework based on resulting cluster
size. Small clusters are excluded and large clusters are clustered further iteratively using a smaller cluster count.
doi:10.1371/journal.pone.0076315.g002

Table 1. Cluster count for hierarchical clustering.

Iteration Big cluster count Small cluster count Potential RSN cluster count Total cluster count

1 1 47 16 64

2 0 18 14 32

Total 1 65 30 96

doi:10.1371/journal.pone.0076315.t001
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of the large cluster to be further divided to avoid spurious amounts

of small clusters being generated. An overview of the hierarchical

clustering pipeline is schematically shown in Figure 2.

In order to identify potential resting-state functional networks

(RFNs), Clusters with adequate voxel size (50#S#5000) were

carefully examined by comparing their spatial distribution patterns

with previously published RFNs in the literatures.

ICA analysis
In order to verify the RFN results from the hierarchical

clustering, independent component analysis (ICA) of the same

resting-state fMRI data sets were also performed using the GIFT

toolbox, v1.3h (http://www.nitrc.org/projects/gift) implemented

in MATLAB (MathWorks, Massachusetts, U.S.A). Individual data

set was first concatenated and then followed by computation of the

individual ICA components and corresponding time courses.

Principle Component Analysis (PCA) was used prior to ICA for

data reduction. The InfoMax group-ICA algorithm was then

applied on the reduced data. Lastly, back-reconstruction of time

series data for each individual subject was performed. The number

of predefined ICA components was set to 36, as done in

accordance to a previous study [11]. Independent components

(ICs) that are common for the entire subject group and resemble

RFNs were identified through a threshold of voxel-wise t-maps

and visual examination of the spatial distribution patterns.

Table 2. Hierarchical clustering results.

Label
Size
(Voxels) Min CC Max CC Average CC

B 312 0.17 0.29 0.24

C 330 0.17 0.30 0.24

D 66 0.19 0.30 0.25

E (left/right) 168/176 0.17/0.19 0.25/0.26 0.22/0.22

F 270 0.18 0.29 0.24

G 66 0.19 0.28 0.24

H 1311 0.16 0.27 0.22

I 672 0.17 0.27 0.22

J 6828 0.15 0.29 0.22

K, blue region 240 0.20 0.31 0.27

L (left/right) 189/114 0.21/0.24 0.32/0.34 0.31/0.30

M 888 0.20 0.33 0.27

N (left/right) 67/91 0.25/0.22 0.36/0.34 0.31/0.30

O 999 0.19 0.36 0.29

P 463 0.19 0.30 0.26

Q 1540 0.19 0.35 0.27

R 1619 0.18 0.36 0.29

doi:10.1371/journal.pone.0076315.t002

Figure 3. Hierarchical clustering result. Clustering results from the selected cut levels. Bilaterally symmetric clusters are displayed in the same
figures using two different colors (blue and red). The large cluster went through further iteration is marked with a green box.
doi:10.1371/journal.pone.0076315.g003
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Figure 4. Comparison between the hierarchical clustering and ICA results. Set of hierarchical clusters (left column) and ICA components
(middle column) with good matching. The right column displays their corresponding overlays with overlapping areas showing in orange. The group
ICA t-maps were binarized with a threshold at p,0.001 for ease of comparison with clustering results.
doi:10.1371/journal.pone.0076315.g004

Table 3. Comparison between the ICA and clustering results.

Label Cluster size Component size Intersect Exclusive cluster Exclusive component

A 1540 1100 636 904 464

B 1619 494 469 1125 25

C 463 841 399 64 442

D 672 843 537 135 306

E 1311 1099 558 753 541

F 999 765 517 482 248

G 270 481 247 23 234

H 888 1550 594 294 956

doi:10.1371/journal.pone.0076315.t003
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Comparison between hierarchical clustering and ICA
results

For quantitative comparison between the hierarchical clustering

results and RFNs identified by ICA, each cluster that fulfilled the

cluster size criteria (50#S#5000) was matched with a RFN

identified using ICA based on its maximum overlap and the

similarity of the spatial distribution. The cluster size, intersection

area, and complementary non-overlapping areas were evaluated

for each matched pair.

Assessment of statistical significance
Because the CC matrices were thresholded at 0.3, which

corresponds to a t-score threshold of 2.88 (df = 84), the statistical

significance at voxel-level is p,0.001 without correcting for

multiple comparisons. For comparison the group ICA spatial t-

maps were then binarized at voxel-level with the same voxel-level

statistical significance.

The final statistical significance was evaluated by enforcing also

a minimum voxel cluster size of 6 contiguous voxels. After

specifying the original and final voxel sizes as well as the

uncorrected threshold value the AFNI program, AlphaSim, was

used to compute a list of probabilities corresponding to different

cluster sizes produced by random field of noise. The final voxel

size after pre-processing was 46464 mm3. The used interpolation

kernel along the slice direction was bicubic. The in-plane blurring

kernel was Gaussian function. By enforcing a minimum cluster size

of 6 contiguous voxels, probability simulations based on AlphaSim,

using 105 iterations indicate that the probability of random field of

noise producing a cluster of size $6 is at p,0.05 after the noise

was thresholded at pixel level with p,0.001.

Results

There were 37 out of a total of 112 clusters that fulfilled the

cluster size criteria (Table 1). As summarized in Figure 3, a total of

20 out of the 37 clusters were identified as potential RFNs by

careful inspection of the spatial patterns. The characteristics of

these identified RFNs were summarized in Table 2. The

remaining 17 clusters were classified as likely artifacts after

studying their spatial distribution patterns. Small clusters with less

than 50 voxels usually have single or too few voxels to be

considered as meaningful RFNs.

As shown in Figs. 2 and 3, the first iteration hierarchical

clustering produced 8 RFNs (Figs. 3B–I) including two frontal

networks (Figs. 3D and F), dorsolateral frontal network (Fig. 3C),

premotor network (Fig. 3G) and 3 RFNs involving the temporal

cortex. Two of the RFNs detected in the temporal lobes were split

into right- and left-sided clusters along the hemisphere middle line,

as indicated with two different colors (Figs. 3E, L, and N). This

iteration produced also a large cluster with 6828 voxels (Fig. 3J) for

further clustering in the second round.

The second iteration of the hierarchical clustering on the large

cluster (Fig. 3J) produced 6 commonly observed RFNs including

the default mode network (DMN) (Figs. 3M and O), visual network

(Fig. 3R), sensorimotor network (Fig. 3K), and 2 temporal

networks (Figs. 3N and P). The sensory motor network (Fig. 3K)

includes the motor, somatic sensory, parts of the auditory cortex

and parietal region. The visual network (Fig. 3R) covers the

primary and secondary visual cortices and posterior hippocampus.

The second iteration results in more highly intra-connected

clusters. As shown in Table 2, the mean of the averaged intra-

cluster CC for the second iteration is 0.29 while it is 0.23 for the

first iteration.

Analysis of the same dataset with ICA, 13 independent

components out of 36 were identified as relevant RFNs based

on t-score threshold and visual inspection of the t-maps and

corresponding time courses, whereas the remaining 23 compo-

nents were classified as artifacts due to contamination from CSF,

motion, and large veins.

Among the extracted 20 potential RFN clusters by using the

proposed hierarchical clustering scheme, there are 8 clusters

having relatively good match with RFNs identified by ICA. The

details are summarized in Figure 4 and Table 3. As shown, the 8

RFN clusters cover about 58% of the total grey matter volume.

For these 8 clusters, on average, there is a 61% spatial overlap

between the hierarchical clustering and ICA results.

Discussion

Choices of parameters for the hierarchical clustering
framework

An analysis of the resulted clusters shows that many of them are

small clusters with less than 50 voxels (Fig. 5) and are spatially too

Figure 5. Histogram of cluster size. Cluster size from all clusters
produced by applying the proposed framework to the acquired resting-
state fMRI datasets. It is clear that many clusters have less than 50
voxels.
doi:10.1371/journal.pone.0076315.g005
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compact to portray RFNs. We investigated also the intra-cluster

connectivity and measured the number of connections a voxel

have with other voxels in a cluster. As shown in Fig. 6, for clusters

with less than 50 voxels, the normalized number of connections

decreases with the cluster size, while the larger clusters have the

opposite trend. Therefore, we choose 50 as the lower limit for

clusters to be considered as potential RFNs.

The whole-brain grey matter mask has 13312 voxels and

analysis of the ICA results showed that clusters with more than

5000 voxels are too large to be considered as a single coherent

RFN and should be refined further. Therefore, we choose 5000 as

the ultimate upper limit for a cluster to be considered as an

independent RFN. However, it should be pointed out that most of

the extracted RFNs were much smaller (see Table 2). By lowering

the upper limit, large clusters can be further analyzed with

additional iterations to study the hierarchical structures within.

This point is further demonstrated by Figure S2 and Appendix C

in Supporting Information S1.

Cordes et al. used previously a CC threshold of 0.3 for voxel-

based hierarchical clustering [7] and the same threshold was opted

here for the individual dataset. Systematically changing the CC

threshold showed that increasing the threshold above 0.3 resulted

in the loss of robustness of the algorithm. A threshold of CC$0.4

resulted in only about 0.1% of the values remained.

Regression removal of the global signal was deliberately omitted

in the preprocessing of the data, as it is known to introduce

substantial negative correlations into the data [12] and lead to

controversial interpretation of the resulted RFNs [13]. Without

Figure 6. Intra-cluster connections of the clusters. Scatter plot of the normalized intra-cluster connections (the ratio between the number of
connections with CC$0.3 and the number of possible connections) as a function of the cluster size. Locally weighted scatterplot smoothing (LOESS)
regression analysis (dashed curve) shows a distinct change in trends in the data. To emphasize this change, linear regression (shown in blue) was
used to extrapolate the initial distinct trend of the LOESS curve. Linear regression occupied 63 of the smallest clusters (shown in blue crosses) and
intersects the x-axis at 50.02. This observation was used to determine the minimum cluster size threshold.
doi:10.1371/journal.pone.0076315.g006

Figure 7. Unilateral networks from ICA analysis. Symmetrical one-sided networks found amongst ICA results. Both in their entirety cannot be
obtained through hierarchical clustering due to the spatial overlap between them.
doi:10.1371/journal.pone.0076315.g007
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global signal removal, in the averaged CC matrix there are only

0.3% negative values with mean {0:03+0:01. Hence, without

the removal of the global signal the vast majority of the negative

CC values are too small to be considered statistically significant.

Comparison between hierarchical clustering and ICA-
based methods

The implemented hierarchical clustering is a deterministic

algorithm and the final result is independent of the initial seed

point. Its non-fuzziness implies that each voxel is exclusively

assigned to a single cluster. Therefore, there is no spatial overlap

among the clusters identified by the proposed framework. For

example, the two unilateral frontal-parietal networks found with

ICA [14] (Fig. 7) are not detectable in their entireties with the

proposed hierarchical clustering method, because these two

unilateral frontal-parietal networks have an overlapping component

in the medial frontal cortex. With hierarchical clustering, detecting

one will exclude the other from being detected in its entirety.

The computation involved in hierarchical clustering does not

scale up well with the number of observations. Optimal

agglomerative algorithms exist for single (SLINK [15]) and

complete-linkage (CLINK [16]) scale at O(n2). Average-linkage

algorithms such as the one used here scales cubically. Average-

linkage tends to join clusters with small variances and is slightly

biased toward producing clusters with the same variance because it

considers all members in the cluster rather than just a single point.

Hence, average-linkage tends to be less influenced by extreme

values than other methods, despite of the fact that hierarchical

clustering is overall very sensitive to outliers.

The used scheme may have not extracted all meaningful clusters

from the data, because only a few numbers of cuts are applied to

the dendrograms. For example, the DMN was not found in its

entirety at the specified cut-levels discussed above. Through

exhaustive searching, the whole DMN (Fig. 8) was found amongst

clusters at the cut level from the dendrogram of the second

iteration.

The DMN result illustrates once again that the hierarchical

clustering approach has its inherent strength to reveal the

hierarchy structure within a functional connectivity network. As

shown in Fig. 3, the DMN in its entirety at cut level k = 18 (Fig. 8)

was split into the frontal- (Fig. 3M) and parietal sub-networks

(Fig. 3O) down in the dendrogram at cut level k = 32 from the

large cluster. It is known that the DMN is composed of the

prefrontal and parietal sub-units [17]. The medial prefrontal sub-

network is responsible for executive functions and the parietal sub-

network is responsible for sensory-related responses.

Conclusion

With the developed framework we successfully have extracted

gray matter clusters with striking similarities to RFNs that are well

documented in the literature using different analysis methods. The

obtained results further confirm the notion that brain at resting-

state is highly engaged in spontaneous synchronous activity within

the various intrinsic functional networks. The present study

demonstrates also that hierarchical clustering might be a very

useful tool for analysis of whole-brain resting-state fMRI data at a

voxel-level. This approach is model free and does not require any

prior assumption about the number and location of the clusters.

Furthermore, it can be used to reveal directly the hierarchical

structures within the functional connectivity networks.

Supporting Information

Figure S1 Inconsistency coefficients of dendrogram.
Plot of inconsistency coefficients of the full dendrogram. The

nodes are sorted from lowest to highest distance in the

dendrogram. The coefficients fluctuate sporadically and no

general pattern can be detected for determining dendrogram cut

level.

(TIF)

Figure S2 Sub-networks of visual system. Clustering

results from an additional iteration with 8-cluster split of the

visual network (Fig. 3R) extracted from the 2nd iteration. The

results illustrate the potential for using the proposed framework to

study the hierarchical structures within functional connectivity

networks. As shown, the visual network was split into a sub-

network containing the primary and secondary visual systems (A),

the lingual gyrus (B) and inferior temporal gyrus (C). It should be

possible to extract the full hierarchical structure tree of the visual

system by further analysis of the larger sub-network (A).

(TIF)

Supporting Information S1 Appendices A, B, and C.
(DOC)

Figure 8. The default mode network. The default mode network in its entirety found at cut number k = 18 from the first iteration. This cluster was
found through exhaustive search over all cut numbers.
doi:10.1371/journal.pone.0076315.g008
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Regions, systems, and the brain: hierarchical measures of functional integration

in fMRI. Medical image analysis 12: 484–496.

7. Cordes D, Haughton V, Carew JD, Arfanakis K, Maravilla K (2002)
Hierarchical clustering to measure connectivity in fMRI resting-state data.

Magnetic resonance imaging 20: 305–317.
8. Salvador R, Suckling J, Coleman MR, Pickard JD, Menon D, et al. (2005)

Neurophysiological architecture of functional magnetic resonance images of

human brain. Cerebral Cortex 15: 1332.
9. Liu X, Zhu X-H, Qiu P, Chen W (2012) A correlation-matrix-based hierarchical

clustering method for functional connectivity analysis. Journal of Neuroscience
Methods 211(1): 94–102.

10. Narasimhan M, Jojic N, Bilmes JA (2005) Q-clustering. Available: http://

melodi.ee.washington.edu/,bilmes/mypubs/narasimhan2005-q.pdf. Accessed

2013 Sep 30.

11. Johanna Ooberg TJ, Tie-Qiang Li (2011) Aging related changes in functional

connectivity networks investigated by resting-state BOLD functional MRI: a

study of independent component analysis and image preprocessing procedures.

Stockholm.

12. Murphy K, Birn RM, Handwerker DA, Jones TB, Bandettini PA (2009) The

impact of global signal regression on resting state correlations: are anti-

correlated networks introduced? Neuroimage 44: 893–905.

13. Marrelec G, Fransson P (2011) Assessing the influence of different ROI selection

strategies on functional connectivity analyses of fMRI data acquired during

steady-state conditions. PLoS One 6: e14788.

14. Allen EA, Erhardt EB, Damaraju E, Gruner W, Segall JM, et al. (2011) A

Baseline for the Multivariate Comparison of Resting-State Networks. Frontiers

in systems neuroscience 5.

15. Sibson R (1973) SLINK: an optimally efficient algorithm for the single-link

cluster method. The Computer Journal 16: 30–34.

16. Defays D (1977) An efficient algorithm for a complete link method. The

Computer Journal 20: 364–366.

17. Pamilo S, Malinen S, Hlushchuk Y, Seppä M, Tikka P, et al. (2012) Functional
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