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Abstract

Phenotypic misclassification (between cases) has been shown to reduce the power to detect association in genetic studies.
However, it is conceivable that complex traits are heterogeneous with respect to individual genetic susceptibility and
disease pathophysiology, and that the effect of heterogeneity has a larger magnitude than the effect of phenotyping errors.
Although an intuitively clear concept, the effect of heterogeneity on genetic studies of common diseases has received little
attention. Here we investigate the impact of phenotypic and genetic heterogeneity on the statistical power of genome wide
association studies (GWAS). We first performed a study of simulated genotypic and phenotypic data. Next, we analyzed the
Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes mellitus (DM) type 1 (T1D) and type 2 (T2D), using
varying proportions of each type of diabetes in order to examine the impact of heterogeneity on the strength and statistical
significance of association previously found in the WTCCC data. In both simulated and real data, heterogeneity (presence of
‘‘non-cases’’) reduced the statistical power to detect genetic association and greatly decreased the estimates of risk
attributed to genetic variation. This finding was also supported by the analysis of loci validated in subsequent large-scale
meta-analyses. For example, heterogeneity of 50% increases the required sample size by approximately three times. These
results suggest that accurate phenotype delineation may be more important for detecting true genetic associations than
increase in sample size.
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Introduction

Phenotypic misclassification reduces substantially the power to

detect association, particularly in case-control studies [1–6].

Typically these analyses were restricted to rates of misclassification

on the order of 1–5%. However, it is conceivable that complex

traits may be heterogeneous with respect to genetic susceptibility

and disease pathophysiology, and that the effect of phenotypic or

genetic heterogeneity (henceforth referred to as ‘‘heterogeneity’’) is

of a larger magnitude than that of phenotypic misclassification.

This is particularly relevant for psychiatric disorders [7]. The

diagnosis of mental illness is based primarily on descriptive clinical

criteria and is typically made in absence of laboratory diagnostic

tests or other clinically relevant knowledge of individual patho-

physiology. It is possible that depression, psychosis, bipolar

disorder (BD), or substance abuse each represent a common

phenotypic manifestation of an underlying polygenic diathesis. But

it is also conceivable that these syndromes encompass diverse

conditions, each with a distinct genetic basis and little overlap with

the others [8]. Several such subgroups of major psychiatric

disorders, including lithium responsive BD [9] and mood

incongruent psychosis [10] have been proposed based on clinical,

familial and biological criteria.

It is also possible that heterogeneity contributes to the

discrepancy between the heritability estimates of complex diseases

and the proportion of phenotypic variance explained by the

identified loci in genome-wide association studies (GWAS).

Indeed, the estimated effect sizes of genetic associations in GWAS

of complex traits are significantly reduced by imprecise phenotyp-

ing [11,12]. This discrepancy appears to be of larger magnitude in

psychiatric disorders than in other complex traits [13]. For

instance, the heritability of BD has been estimated to be as high as

85% [14,15]. But only a smaller fraction of BD heritability is

accounted for by loci identified through GWAS, even when

considering all GWAS polymorphisms simultaneously [16–19].

Little attention has been given so far to the extent of the effect of

heterogeneity on genetic association findings in common complex

diseases. Testing the impact of heterogeneity on GWAS findings

requires extensive knowledge of the pathophysiology and genetic

architecture of the common trait under study. This assumption

makes psychiatric disorders unsuitable for such analysis. On the

other hand, another common disease such as diabetes mellitus

(DM) is suitable for testing the impact of heterogeneity. The two
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types of DM were distinguished only in the late 1930s [20], each

characterized by distinct pathophysiology [21] and genetic

architecture. If a diagnosis of DM was based on high blood

glucose alone, DM type 1 (T1D) cases could not be differentiated

from DM type 2 (T2D) cases. The state of DM classification prior

to 1930 may well approximate the state of knowledge about

psychiatric disorders in the beginning of the 21st century.

Here we investigate the impact of heterogeneity on the statistical

power of GWAS. To do so, we first performed a computer

simulation study. Next, we analyzed the Wellcome Trust Case-

Control Consortium (WTCCC) data for DM T1D and T2D. We

combined varying proportions of individual data from each of the

diabetes subtypes to examine the impact of heterogeneity on the

strength and statistical significance of association and compared

these results with those previously found in the WTCCC study.

Heterogeneity reduced the statistical power to detect genetic

association and greatly decreased the estimates of risk attributed to

genetic variation.

Materials and Methods

Simulation of Case-Control Association Analysis Under
Heterogeneity

To study the impact of heterogeneity on GWAS findings, we

simulated case-control data assuming increasing (from 10% to

90% in 10% steps) phenotypic admixture. Admixture (indicated as

b) was the proportion of ‘‘non-cases’’ (i.e. controls) in the case

group. Specific genetic models of disease prevalence were used in

order to simulate genotypes for case and control populations. We

used two basic single-locus genetic models: dominant [22] and

multiplicative (or log additive) [23]. The model parameters were

the following: population prevalence for the disorder (0.001, 0.01,

0.05, 0.1), minor allele frequency (MAF) (0.01, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5), and the relative risk of the disorder for the minor allele

(1.1, 1.2, 1.3, 1.5, 2, 5, 10). We used a Monte Carlo procedure to

simulate cases and controls under all combinations of the

parameters listed above. Genotypes were assigned using one of

two probability distributions, according to the group (case or

control) that each individual came from. Using a script in R

software (version 2.13.2), we performed two sets of simulations.

First, we determined the minimum sample size needed to detect an

association in 90% of trials at a significance level set at p,561028.

The sample size obtained at each iteration of the simulation was

specified according to a binary search that terminated once 90%

power (over 10,000 replicates) was achieved, or when the sample

size limit of 1,000,000 was reached. In the second set of

simulations, we studied the impact of b on the statistical power

to detect association at p,561028. To this end we generated

10,000 cases and controls, replicated 1,000 times, for each

combination of parameters. For each genetic model (dominant

and multiplicative) we obtained case-control frequency tables.

Using x2 and the Cochran-Armitage-Trend-Test (CATT) module

implemented in R we calculated p-values and odds ratios (ORs) for

increasing levels of b.

Analysis of WTCCC Type 1 and Type 2 Diabetes Data
Under Heterogeneity

We accessed and downloaded all of the genotypic data available

for the two control populations (the 1958 Birth Cohort (58C) and

the UK National Study (NBS)) and for the T1D and T2D cohorts

from the WTCCC website.

A number of quality control (QC) steps were performed on this

data in the original WTCCC GWAS study [24]. Individuals and

SNPs that were retained had passed each of the following

exclusion criteria: 1) missing data rate.3% per sample across all

SNPs; 2) heterozygosity.30% or ,23%; 3) discrepancies in ID

information; 4) ancestry control (outliers after multi-dimensional

scaling); 5) duplicated samples (identity.99%); 6) relatedness

(86%–96% identity); 7) missing data rate.5% per SNP; 8) missing

data rate.1% when MAF,5%; 9) Hardy-Weinberg exact p-

value,5.761027 (in 2,938 controls) [24].

Since the QC analysis in the original study was performed

across ,14,000 subjects (compared to the ,7,000 available for the

present study), we also applied exclusion lists supplied in the

WTCCC data in addition to in-house QC. The scripts used for

QC are available online.

Two recoded phenotype files were created each containing

2,938 control individuals (the combination of all the filtered 58C

and NBS individuals) and the 1,963 T1D or the 1,924 T2D cases,

respectively. Next, we performed the WTCCC standard case-

control association analysis (x2) to confirm the validity of the QC

steps using PLINK [25]. Results of this analysis are outlined in

Table 1.

To investigate the effect of heterogeneity, we examined the 20

SNPs most significantly associated with T1D or T2D, respectively.

These SNPs are independent and in linkage equilibrium to each

other, with the exception of rs9939609 and rs7193144 within the

FTO gene which are in strong linkage disequilibrium (R2 = 0.97,

D’ = 1) and are both associated with T2D. Further, we studied 21

and 16 polymorphisms found associated in subsequent large-scale

meta-analyses for T1D [26–29] and T2D [30], respectively. The

selected SNPs were genotyped in the WTCCC study and were

required to have p,1026 in at least one meta-analysis study. We

created alternate phenotype files in order to simulate heterogene-

ity. Let N1 and N2 denote the respective totals of T1D and T2D

cases. At each 10% increment of b, we removed N1*b subjects

randomly selected from the T1D population and replaced them

with N1*b subjects randomly chosen from the T2D population.

Similarly, we analyzed T2D data, replacing N2*b T2D with T1D

cases. For each of T1D and T2D, 100 alternate samples were

created at each 10% increment of b. Association analyses were

then run using the x2 test in PLINK [25] on each alternate

phenotype file. We took the 2log (p-value) from each of the 100

association analyses at each b level, and then calculated the

arithmetic mean of the 2log (p-value). The scripts developed for

the analyses presented in the study are available at the following

URL: http://web.cs.dal.ca/,cullis/heterogeneity/.

Results

Simulated Case-Control Association Analysis Under
Heterogeneity

We simulated case-control data assuming increasing b. We

present the results for a disease prevalence of 0.01. This value is

relevant to complex traits such as BD or schizophrenia. Results for

other prevalence values can be found in the Table S1 and S2. In

all analyses, the admixture level significantly affected the sample

size required to reach 90% power at the significance level of

p,561028. Specifically, there was a substantial loss of statistical

power that was disproportionately larger than the degree of

heterogeneity. An increase in the proportion of ‘‘non-cases’’

resulted in a non-linear increase of the sample size needed to

achieve 90% of statistical power. As shown in Figure 1, this effect

was evident both in the dominant and multiplicative models and

for different relative risks (RR = 1.2, 1.5 and 2). For instance, with

b at 50%, the sample size needed to achieve the same statistical

power without admixture was three times larger, particularly with

genetic effect sizes equal to or larger than 1.5.

The Impact of Heterogeneity on GWAS Results
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Heterogeneity also resulted in a marked reduction of the

estimated effect size which is reflected here as a decrease in the

estimated ORs. This reduction in effect size was found to be non-

linear in relation to the degree of b and was more pronounced for

larger relative risk values (Figure 2).

Application to WTCCC Type 1 and Type 2 Diabetes Data
To further test the validity of the results identified in the

computer simulation we analyzed the WTCCC T1D and T2D

data [24]. In both datasets we examined the 20 most significantly

associated SNPs. Of these, 7 loci for T1D and 3 for T2D reached

genome-wide significance and an additional 13 and 17 loci,

respectively, showed moderate association. The results of this

analysis are outlined in Figure 3. The strength of the association

for T1D decreased substantially as the proportion of T2D cases in

the sample was increased. Most of the significantly associated

SNPs became equivocal at a relatively low degree of b (between

20% and 30%). Only the association of HLA-DRB1 with T1D [31]

Figure 1. The impact of heterogeneity on the sample size (cases and controls) required for 90% of statistical power. The minimum
sample size to achieve to detect association was calculated in simulated case-control data with increasing proportion of ‘‘non-cases’’ considering a
disease prevalence of 0.01. Data are reported for minor allele frequencies (MAF) of 0.01 (black), 0.05 (grey), 0.2 (red) and 0.5 (blue). The results are
reported for dominant (panels A, C, and E) and multiplicative (panels B, D, and F) genetic models. RR = relative risk.
doi:10.1371/journal.pone.0076295.g001

The Impact of Heterogeneity on GWAS Results
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was robust to the effects of heterogeneity, with a significant effect

present with up to 90% of the sample made up of T2D cases.

Similarly, the strength of the association signals for T2D

progressively diminished as T1D cases gradually replaced the

‘‘true’’ cases of T2D. Further support came from the analysis of

loci found associated in subsequent meta-analyses of T1D and

T2D (Figures S1 and S2). Again, with increasing degree of b the

magnitude of association of the SNPs declined substantially.

Discussion

The purpose of this study was to quantify the impact of

heterogeneity in the analysis and interpretation of GWAS findings.

We showed that the presence of heterogeneity (presence of ‘‘non-

cases’’) reduced both the statistical power as well as the observed

risks attributed to susceptibility alleles or genotypes. These findings

were supported by the analysis of both simulated case-control and

Figure 2. The impact of heterogeneity on the estimation of the genetic effect size. Odds ratios from simulated case-control data were
calculated for each step of admixture. Data are reported for minor allele frequencies (MAF) of 0.01 (black), 0.05 (grey), 0.2 (red) and 0.5 (blue). The
results are reported for dominant (panels A, C, and E) and multiplicative (panels B, D, and F) genetic models. RR = relative risk; OR = odds ratio.
doi:10.1371/journal.pone.0076295.g002
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GWAS data from WTCCC T1D and T2D cohorts [24]. We also

tested our hypothesis by analyzing loci replicated and validated in

large-scale meta-analyses irrespective of their association strength

in the WTCCC study, as these are more likely to represent true

associations. The same pattern was observed for these loci: the

magnitude of association declined substantially with increasing

heterogeneity.

Several findings deserve comment. First, irrespective of the

various parameters and genetic models tested, the absence of

heterogeneity in samples allows for a power to detect association

that would require a far larger sample size if a medium or high

level of heterogeneity were present. A recent study examining the

impact of diagnostic misclassification in genetic studies by Wray

et al. [32] has reached similar results with a different method. In

the Supplementary Information to their paper, Wray et al. [32]

provide an analytical solution that allows the calculation of

statistical power under misclassification without computer simu-

lation. These observations are consistent with the findings of

Figure 3. Genome-wide analysis of the Wellcome Trust Case-Control Consortium (WTCCC) data for diabetes type 1 (T1D) and type 2
(T2D) under heterogeneity: twenty most significant associations [2log(p-values)]. SNP = single nucleotide polymorphism; b= admixture.
doi:10.1371/journal.pone.0076295.g003
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pharmacogenomic GWAS. Indeed, the robustness of the pheno-

typic measure of treatment response given by specific biomarkers

(for example identifiable in serum) allowed the identification of

significant association signals even with relatively small sample

sizes [33]. In addition, pharmacogenetic traits have not been

subject to selection and so larger effect sizes may exist compared to

complex traits.

In the absence of more reliable measures (for instance diagnostic

tests) in more heterogeneous complex traits – including many

psychiatric and neurological diseases – researchers have obtained

promising results by selecting more homogeneous subgroups of

patients such as responders to lithium treatment in BD [34], or

early illness onset in Alzheimer’s disease [35]. This strategy can

significantly decrease the number of cases to collect for adequately

powered genetic studies.

We have also shown that the presence of heterogeneity strongly

influences the estimates of the effect sizes. This result suggests that

the effect sizes of marginally significant variants identified in

GWAS might be larger if they were instead examined in more

homogeneous samples. This is in agreement with previous studies

pointing to the importance of accurate and stringent phenotypic

definition in GWAS data [11,12]. Interestingly, van der Sluis et al.

[12] employed simulation studies to show that accurate modelling

of phenotypic information improved the estimation of the genetic

variants effect size. Further, Evangelou et al. [11] found empirical

support for importance of phenotypic definition in the analysis of

GWAS data in HIV-1 infected subjects. They showed that the

observed genetic effects in HIV-1 seroconverters (a more stringent

phenotype) were larger than in seroprevalent subjects. Using

simulation and real data both studies consistently showed how

accurate phenotyping increased the power to detect association

signals and to estimate correctly their effect size.

Here we observed that as the degree of heterogeneity increased,

so did the minimum sample size required to achieve sufficient

statistical power. This effect was particularly evident for genotypic

relative risk values on the order of 1.2 and 1.5 and for common

variants (MAF.0.05). Interestingly, for a complex trait such as

BD, most of the reported genetic risk variants have an associated

effect size of approximately 1.5 or below [24,36–42]. At least in

clinically heterogeneous disorders, it is conceivable that even

collecting large sample sizes could only partially compensate for

the loss of statistical power in GWAS. In this context it appears

crucial to focus on the steps preceding the GWAS. Careful clinical

history from all available sources, consensus diagnosis, validity of

the phenotypic measures used, evaluation of the inter-rater

agreement and reliability and use of prospective design could all

help in overcoming the issue of phenotypic heterogeneity.

In conclusion, we demonstrated that heterogeneity can have a

major impact on GWAS findings. The extent of its effect is of large

magnitude and, unexpectedly, affects significantly even loci

robustly associated with the trait under study. We showed that

even a relatively low proportion of ‘‘non cases’’ (20%) can dilute

the observed genetic effect size for common variants (with

MAF.0.05) targeted in the current GWAS analyses. The partial

failure of GWAS to detect a substantial proportion of the

heritability of genetic complex diseases could be a consequence

of the presence of a high degree of heterogeneity.

Supporting Information

Figure S1 Impact of the admixture of diabetes type 1 (T1D) and

type 2 (T2D) on Wellcome Trust Case-Control Consortium

(WTCCC) T1D findings confirmed in large scale meta-analyses

[2log(p-values)]. SNP = single nucleotide polymorphism; b= ad-

mixture; nr = not reported.

(TIF)

Figure S2 Impact of the admixture of diabetes type 1 (T1D) and

type 2 (T2D) on Wellcome Trust Case-Control Consortium

(WTCCC) T2D findings confirmed in large scale meta-analysis

[2log(p-values)]. SNP = single nucleotide polymorphism; b= ad-

mixture; nr = not reported. *p-value reported in the Zeggini et al.

[1] study. Reference: 1. Zeggini E, Weedon MN, Lindgren CM,

Frayling TM, Elliott KS, et al. (2007) Replication of genome-wide

association signals in UK samples reveals risk loci for type 2

diabetes. Science 316: 1336–1341.

(TIF)

Table S1 Results of case-control simulation to determine the

minimum sample size needed to detect an association in 90% of

trials at a significance level set at p,561028 with increasing levels

of admixture (b). Results are presented for dominant and

multiplicative genetic models with the following parameters:

population prevalence for the disorder (0.001, 0.01, 0.05, 0.1),

minor allele frequency (MAF) (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5),

and the relative risk of the disorder for the minor allele (1.1, 1.2,

1.3, 1.5, 2, 5, 10).

(XLS)

Table S2 Case-control simulation results of the impact of

increasing level of admixture (b) on the statistical power to detect

association at p,561028. Results are presented for dominant and

multiplicative genetic models with the following parameters:

population prevalence for the disorder (0.001, 0.01, 0.05, 0.1),

minor allele frequency (MAF) (0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5),

and the relative risk of the disorder for the minor allele (1.1, 1.2,

1.3, 1.5, 2, 5, 10).

(XLS)
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