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Germany, 6 Institute of Pathology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Germany, 7 Institute of Human Genetics, University Hospital Schleswig-

Holstein Campus Kiel/University of Kiel, Kiel, Germany, 8 Institute of Clinical Immunology, Medical Faculty, University of Leipzig, Leipzig, Germany

Abstract

Based on the assumption that molecular mechanisms involved in cancerogenesis are characterized by groups of
coordinately expressed genes, we developed and validated a novel method for analyzing transcriptional data called
Correlated Gene Set Analysis (CGSA). Using 50 extracted gene sets we identified three different profiles of tumors in a
cohort of 364 Diffuse large B-cell (DLBCL) and related mature aggressive B-cell lymphomas other than Burkitt lymphoma.
The first profile had high level of expression of genes related to proliferation whereas the second profile exhibited a stromal
and immune response phenotype. These two profiles were characterized by a large scale gene activation affecting genes
which were recently shown to be epigenetically regulated, and which were enriched in oxidative phosphorylation, energy
metabolism and nucleoside biosynthesis. The third and novel profile showed only low global gene activation similar to that
found in normal B cells but not cell lines. Our study indicates novel levels of complexity of DLBCL with low or high large
scale gene activation related to metabolism and biosynthesis and, within the group of highly activated DLBCLs, differential
behavior leading to either a proliferative or a stromal and immune response phenotype.
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Introduction

Diffuse large B-cell lymphoma (DLBCL) is a biologically and

clinically heterogeneous disease [1,2,3,4,5,6]. Patients whose

tumors share similar histopathological characteristics differ with

respect to underlying genetic changes, clinical outcome and

response to specific therapies [1,2,4,5]. Unlike in Burkitt

lymphoma where MYC translocations occur almost always [4]

and recent sequencing studies of our and other groups have

shown the presence of highly recurrent mutations [7,8,9] no such

highly prevalent genetic abnormalities have been found in

DLBCL [10,11,12,13]. Analyses of gene expression have led to

identification of molecular subtypes of DLBCLs. These include

the cell of origin signatures for activated B-cell-like diffuse large

B-cell lymphomas (ABC) and the germinal center B-cell-like

diffuse large B-cell lymphomas (GCB) [1,2], the ‘‘consensus

clusters’’ [3] referred to as ‘‘oxidative phosphorylation’’ (Ox-

Phos), ‘‘B-cell receptor/proliferation’’ (BCR) and ‘‘host response’’

(HR), and the ‘‘pathway activation patterns’’ [6] (PAPs) denoted

by PAP-1 to PAP-4, BL-PAP and ‘‘molecularly individual

lymphomas’’ (mind-L).

The heterogeneity of DLBCL as that of several other types of

cancer is believed to arise as a consequence of a number of

aberrations causing different patterns of deregulation of cell

signaling pathways [11,14]. This view suggests that groups of co-

expressed genes which are expected to be observed as a result of

deregulation of signaling pathways, may carry most of the

information about the heterogeneity of tumors. Here, we present

and apply a novel biostatistical approach designed to derive sets of

co-expressed genes. These gene sets can be used in subsequent

analyses, e.g., tests for association with other phenotypes and in

unsupervised analysis of the samples.

Until now, in most gene expression studies of DLBCLs,

transcriptional differences related to the cell of origin or to the

activation of specific pathways have been of primary biological

interest. A feature of the approach introduced here is that it

enables performing an analysis without any specific biological

hypotheses in mind. This lack of bias is important since there

might exist mechanisms of oncogenic gene deregulation, e.g.,

histone modifications which might play a role in lymphomagenesis

or cancer in general across the presently known tumor subtypes.
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We apply our method to an extensive data set of recently

published 364 DLBCL and related mature aggressive B-cell

lymphomas other than Burkitt lymphoma [15]. An unsupervised

analysis with respect to the generated gene sets reveals three

groups of samples, two of which are characterized by a massive

transcriptional activation. We find that this activation is associated

with genes which were recently shown to correlate with histone

modifications [16]. Moreover, the upregulated genes are enriched

in metabolic processes. These findings provide a basis for further

functional investigations, in particular in light of recent discoveries

related to epigenetic deregulation in lymphoid malignancies

[10,17,18].

Results

Establishment and validation of the method on two BL/
DLBCL data sets

We developed a novel method called Correlated Gene Set

Analysis (CGSA) for unbiased and hypothesis-free analysis of large

gene expression data sets. Bioinformatic details of the method and

the discussion of its relationship to other approaches are given in

Materials and Methods and in Text S1. In brief, the method

performs a dimension reduction by extracting a small number of

sets of correlated genes (CGSs). Each set contains a number of

genes which are tightly and positively co-expressed with one

‘‘central’’ gene of the set. The extracted CGSs are non-

overlapping and reflect the variety of expression patterns present

in the analyzed samples. Each CGS can be represented by the

summarized expression of its genes and subsequently tested for

association with other phenotypes or used in unsupervised

analyses.

To validate the method, we first applied CGSA to a large,

previously analyzed gene expression data set containing Burkitt

lymphomas and DLBCLs (termed ‘‘BL/DLBCL data set of

Hummel et al. (2006)’’ [4]). An unsupervised analysis with respect

to the generated CGSs was performed to investigate whether the

new method was sensitive enough to identify the already well-

established signatures. Indeed, CGSA reproduced several previ-

ously reported molecular classifications, including the molecularly

defined Burkitt lymphoma [4,5] (Figure 1A, R2 = 0.59, AUC

= 0.99), the activated B-cell-like (ABC) and the GC B-cell-like

(GCB) subtypes [1] (Figure S2A, R2 = 0.58, AUC = 0.95) and

several of the PAPs [6] (Figure S1A, R2 = 0.72, AUC = 0.82, all

adjusted P = 0.001). An independent analysis of another data set

(termed ‘‘BL/DLBCL data set of Dave et al. (2006)’’ [5])

corroborated these results (BL vs. DLBCL: Figure 1B, R2 = 0.53,

AUC = 0.98, ABC vs. GCB: Figure S1D, R2 = 0.62, AUC

= 0.96, PAPs: Figure S1D, R2 = 0.75, AUC = 0.83, all adjusted

P = 0.001; see Text S1 Section 6a,b for details).

Moreover, we proved the robustness of the approach by

splitting the BL/DLBCL data set of Hummel et al. (2006), after

which unsupervised orderings of samples showed high correlation

(Spearman’s r = 0.94, r = 0.99, P,1e-5, Text S1 Section 6c). In an

analysis across data sets and platforms, using the BL/DLBCL data

sets of Hummel et al. (2006) and of Dave et al. (2006), we also

observed good reproducibility of the orderings of samples as

measured by their association with previously defined molecular

subclasses (Figures S1 and S2, Text S1 Section 6d).

Definition and characterization of the CGSs in diffuse
large B-cell lymphoma

Having established the validity of the CGSA on the two BL/

DLBCL data sets [4,5], we applied it to a data set of 364 DLBCL

and related mature aggressive B-cell lymphomas other than

Burkitt lymphoma (termed ‘‘extended DLBCL data set’’) [15].

This cohort included 150 cases from the BL/DLBCL data set of

Hummel et al. (2006) and 214 additional cases. We focused on

DLBCL because our aim was to unravel its high heterogeneity.

Since expression patterns within the DLBCLs might be difficult to

discern in the presence of the strong contrast with Burkitt

lymphoma we decided to exclude this entity.

In the first step of the analysis, we generated 50 new sets of

correlated genes (CGSs) in the extended DLBCL data set using

exactly the same procedure as applied before to the BL/DLBCL

data sets of Hummel et al. (2006) and Dave et al. (2006) (File S1).

The CGSs were named according to their ‘‘central’’ gene. Then,

we searched for significant relationships between each gene set and

a number of available phenotypic and genetic variables. Signif-

icant associations were found between some of the gene sets and

sex (sex correlated with a set of Y chromosome genes), age, tumor

cell content, proliferation (Ki67 index), genetic aberrations

(deletions in 6q21, 17p13, presence of t (14;18)), immunopheno-

type (MUM1, CD10 expression) and the cell of origin (ABC/

GCB), respectively (File S2). Several gene sets were characterized

by striking enrichment of genes related by their function or cellular

and genomic location. For example, CGS 1 (with central gene

POSTN) contained mostly genes encoding proteins of the

extracellular matrix, CGS 7 (with central gene HIST1H2BK)

consisted of the histone cluster 1 genes on 6p21, CGS 8 (HLA-

DQA1), CGS 11 (HLA-DQB1) and CGS 16 (HLA-DRB4) were

composed of major histocompatibility complex (MHC) class II

genes located on 6p21 while CGS 40 (HLA-F) contained MHC

class I genes from this chromosome arm. Interestingly, CGS 29

(NUSAP1) was enriched in genes located on chromosome 15q

(File S3) although no recurrent genomic aberrations in this region

were detected. In summary, several CGSs picked up signals related

to chromosomal assignments and functional similarities.

In order to investigate how the 50 CGSs were related to each

other, we explored two- and three-dimensional principal compo-

nent biplots [19] (Figure S4, File S4). Biplot is a plot which

represents the samples (here: the tumor samples) and the variables

(here: the CGSs) of a data matrix on the same plot. These analyses

showed that several of the CGSs could be grouped into three

major components. Remarkably, these components were biolog-

ically interpretable by the characteristics of their constituent

CGSs. In the first component, CGS 6 (MAD2L1), CGS 12

(NME1), CGS 29 (NUSAP1) and CGS 48 (CDC6) were

significantly associated with the Ki67 index indicating a link to

proliferation (File S2). In the second component, CGS 2 (C1QB),

CGS 19 (GZMB), CGS 31 (CD8A) and CGS 34 (CD3E)

correlated (R2.0.25, File S2) with the tumor cell content or its

counterpart, i.e., the amount and function of bystander cells. CGS

2 (C1QB) for which this correlation was strongest was highly

enriched in the GO-term ‘‘immune response’’ (P,1e-10, File S3).

In the third component, CGS 1 (POSTN) which exhibited

significant overlap with the GO-term ‘‘extracellular matrix’’

(P,1e-10) was tightly correlated with CGS 15 (GJA1) (r = 0.88)

and CGS 33 (PCOLCE) (r = 0.9). These observations indicated

that the three groups of CGSs strongly determining the

heterogeneity of the DLBCLs were characterized by a prolifera-

tion signature, immune response and stromal signature, respec-

tively. This was additionally supported by an analysis of the

overlap between several literature based signatures and the CGSs

(File S1). Therefore, our observations were consistent with those

from earlier reports [2,20]. The characteristics of all CGSs are

summarized in File S5 and correlations among the CGSs are

shown in File S6.
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Unsupervised analysis reveals three subgroups of DLBCL
tumors

Next, we asked whether we could find discrete subgroups of

DLBCL tumors which would show different expression profiles of

the 50 CGSs. Indeed, unsupervised analysis of the samples with

respect to the CGSs identified three profiles which we refer to as

HiGA-PRO (high gene activation with proliferative phenotype),

HiGA-SIR (high gene activation with stromal and immune

response) and LoGA (low gene activity) profiles and term

collectively as CAPs (CGS activation profiles) (Figure 2A, Mate-

rials and Methods).

HiGA-PRO was characterized by high expression of the CGSs

which were significantly associated with proliferation (Ki67 index),

and low expression of the CGSs related to stroma and immune

response (Figure 2A). HiGA-SIR exhibited intermediate prolifer-

ation and high immune response while the expression of the

stromal CGSs was relatively high but differed between the ABC

and the GCB DLBCLs. Interestingly, expression of most CGSs in

LoGA was lower than in the tumors of the other two CAPs (CGS

activation profiles).

To assess reproducibility of the CAPs we mapped the CGSs to

an independent data set of 414 DLBCLs (termed ‘‘data set of Lenz

et al. (2008)’’) [20]. Generating three clusters in this data set

clearly recapitulated the patterns of expression of the 50 CGSs

seen in the CAPs (Figure 2B,C, Text S1).

Several gene expression signatures published in the context of

DLBCL showed patterns of expression across the CAPs which

were unrelated to their patterns between the ABC and the GCB

DLBCLs (Figure 3). For example, the immune response signature

1 [21] and the cell cycle/proliferation signature [22,23] were

equally expressed in the ABC and GCB DLBCLs (P = 0.975,

P = 0.849, respectively) but exhibited strong differences between

HiGA-PRO, HiGA-SIR and LoGA (P = 1.63e-32, P = 2.93e-34,

respectively). In contrast, the levels of the GC signature [20]

differed clearly between the ABC and GCB DLBCLs (P = 2.33e-

50) but much less so among the CAPs (P = 2.98e-05). Interestingly,

the levels of the stromal signature 1 [20] varied with respect to

both characteristics, i.e., the cell of origin and the CAPs (GCB/

ABC: P = 2.84e-09, CAPs: P = 8.71e-16, Materials and Methods).

These observations demonstrated that the CAPs captured

additional transcriptional variation not accounted for by the

classification into the ABC and GCB lymphomas although we

could observe an overrepresentation of the ABC DLBCLs in

HiGA-PRO and of GCB DLBCLs in HiGA-SIR and in LoGA.

Samples previously classified [3,6] as belonging to the ‘‘host

response’’ (HR) cluster were enriched in HiGA-SIR while HiGA-

PRO bore similarity to the ‘‘BCR/proliferation’’ [3] cluster.

Interestingly, LoGA did not resemble any of the previously

identified consensus clusters [3,6]. In particular, the ‘‘OxPhos’’

cluster and LoGA were non-overlapping.

We observed differences in survival among the CAPs, with the

HiGA-SIR being more favorable (5-year survival rates: HiGA-

PRO 35% (95% CI: 26%–49%), HiGA-SIR 61% (54%–70%),

LoGA 40% (28%–57%), Figure S5). However, we were unable to

Figure 1. Sets of co-expressed genes reproduce the distinction between Burkitt lymphomas and other types of mature aggressive
B-cell lymphomas. Heat maps of 50 CGSs generated in two independent BL/DLBCL data sets: (A) Hummel et al. (2006), n = 220 (GSE4475) and (B)
Dave et al. (2006), n = 303 (GSE4732). Each row shows a profile of a gene and genes are grouped into gene sets as indicated by white and black
intervals on the vertical bar left. Red represents high expression and blue represents low expression relative to the mean over all samples. Each
column corresponds to one sample. Samples are annotated by horizontal color bars above the heat maps. The samples and the gene sets are ordered
by the values of their 1st principal component. Annotations from Hummel et al. (2006): ‘‘MOLDIAG’’: classification into molecularly defined Burkitt
lymphoma (mBL), intermediate cases and non-mBL cases, ‘‘GCB/ABC’’: cell of origin (molecular classification), ‘‘MYC PARTNER’’: information about the
absence (‘‘Negative’’) or presence of MYC breakpoints and about the translocation partner of MYC (IG or non-IG). ‘‘CC’’: ‘‘consensus clusters’’ [3,6].
Annotations from Dave et al. (2006): ‘‘BL’’ diagnosis of Burkitt lymphoma or DLBCL based on gene expression, ‘‘PATHO’’: pathological diagnosis or
molecular diagnosis in case of samples analysed prior to Dave et al. (2006). ‘‘PAP’’: ‘‘pathway activation patterns’’ [6] (available for both data sets [4,5]).
doi:10.1371/journal.pone.0076287.g001
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confirm this result in the corresponding clusters which we found

the data set of Lenz et al. (2008) [20]. Nevertheless, some trends

could be seen across the data sets. In particular, LoGA and the

corresponding blue cluster in the data set of Lenz et al. (2008) [20]

demonstrated within the ABC DLBCLs the most unfavorable

outcome of all three subtypes in our cohort, in the CHOP-treated

and in the R-CHOP-treated cohort of Lenz et al. (2008) [20]

(Figure S5).

Further information on the incidence of a number of biological

features in the CAPs is provided in Table S1.

HiGA-PRO and HiGA-SIR but not LoGA show large scale
transcriptional activation

The surprisingly low activity of most CGSs in LoGA prompted

us to examine its expression profile more closely. An analysis of

differential expression between the CAPs with respect to all genes

Figure 2. Unsupervised analysis with respect to the CGSs reveals three profiles across previously described molecular subtypes of
DLBCL tumors. The three profiles are also detectable in an independent data set. A) Heat map of 50 CGSs generated in the extended
DLBCL cohort (n = 364). Each row is a summary value of a CGS and each column corresponds to a sample. Red (blue) indicates a high (low) relative
expression. Samples are grouped into HiGA-PRO (red), HiGA-SIR (green) and LoGA (blue). CGSs are hierarchically clustered using average linkage and
one minus correlation as the distance measure. The color bars on the right indicate three groups of CGSs associated with proliferation, stroma and
immune response, respectively. White spaces in the color bar ‘‘CC’’ are due to the fact that the classification into ‘‘consensus clusters’’ was available
only for the 150 cases which overlapped with the BL/DLBCL data set of Hummel et al. (2006). B) Clustering (indicated by the color bar ‘‘CLUSTER’’) of
an independent data set of Lenz et al. (2008) (n = 414) with respect to the CGSs mapped from the extended DLBCL data set. The vertical order of the
CGSs is the same as in Panel A. Within the clusters, the samples are sorted by their ABC/GCB/Unclassified subtype and by their treatment (CHOP, R-
CHOP). C) Correlation matrix of the centroids of the CAPs and of the clusters generated in the data set of Lenz et al. (2008).
doi:10.1371/journal.pone.0076287.g002
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revealed that, consistent with the behavior of the CGSs, there were

more upregulated than downregulated genes (5730 and 3325,

respectively) in the comparison of HiGA-PRO with LoGA. A

similar observation applied to the comparison of HiGA-SIR with

LoGA (6433 upregulated and 2835 downregulated genes, false

discovery rate (FDR) = 0.05). Moreover, absolute log fold changes

of the genes which were overexpressed in HiGA-PRO relative to

LoGA or in HiGA-SIR relative to LoGA were larger than those of

the genes downregulated in these comparisons (Figure 4A). In

addition to this striking asymmetry, histograms of the fold changes

(Figure 4A) suggested existence of two large groups of genes, one of

which was upregulated in HiGA-PRO and HiGA-SIR and the

other which remained essentially constant across the CAPs.

In the next step of our analysis, we examined the overall

distribution of expression values of all genes and samples split into

the CAPs. We could see a marked difference between LoGA and

the other two profiles (Figure S6A). Importantly, no difference in

the overall distribution of expression values could be observed

between HiGA-PRO and HiGA-SIR, even though there was a

large number of differentially expressed genes between these

entities (2916 upregulated and 3090 down regulated genes in

HiGA-PRO compared to HiGA-SIR, FDR = 0.05). To look at a

wider context, we made use of data from various types of non-

malignant B cells, from mBL tumors [4] and from B-cell

lymphoma cell lines. Global distribution of expression in these

samples suggested similarity between LoGA and the non-

malignant B cells while HiGA-PRO and HiGA-SIR seemed to

be more similar to the lymphoma cell lines (Figures S6B–D). Thus,

these analyses indicated that HiGA-PRO and HiGA-SIR show

large scale transcriptional differences compared to LoGA.

Moreover the global expression profile of LoGA tends to resemble

that of mature non-malignant B cells.

Genes shown to carry activating histone marks are
associated with the transcriptional activation in HiGA-
PRO and HiGA-SIR.

To investigate the possible mechanisms responsible for the

observed massive difference in expression between LoGA and the

remaining DBLCLs, we examined two recently described [16]

major classes of genes, termed ‘‘lowly expressed’’ (LE) and ‘‘highly

expressed’’ (HE) genes. The two classes had been shown to differ

with respect to their mRNA abundance in a broad range of

metazoan cells including those of human, mouse and Drosophila.

First, we verified that in our data the two classes of genes exhibited

clearly different expression levels in a similar way as observed in

the original study [16] (Figure S7). Next, we examined differential

expression of these groups of genes among the CAPs. The division

into the LE and the HE genes explained the shape of the

distributions of the estimated log fold changes strikingly well

(Figure 4B–D). This analysis also clearly demonstrated that the

large scale transcriptional activation in HiGA-PRO and HiGA-

SIR could be attributed to the HE genes but not to the LE genes.

The LE genes exhibited only a quantitatively small shift towards

Figure 3. Expression patterns of published signatures indicate that the CAPs provide additional information to the ABC/GCB
classification. Shown are box plots of the several published signatures. Genes within each signature are summarized by their first principal
component. Samples from our DLBCL cohort are split into the CAPs (‘‘P’’: HiGA-PRO, ‘‘S’’: HiGA-SIR, ‘‘L’’: LoGA) and the ABC/GCB subtypes. Other
sample groups are shown for comparison. They include mBLs from the BL/DLBCL data set of Hummel et al. (2006), normal naı̈ve B cells, germinal
center (‘‘GC’’) B cells, post GC B cells, normal cells from tonsils and malignant cell lines (‘‘t. cell line’’) (Materials and Methods).
doi:10.1371/journal.pone.0076287.g003
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higher expression in LoGA (median estimated fold change, LoGA

vs. HiGA-PRO: 1.08, LoGA vs. HiGA-SIR: 1.05).

To gain an overview of the differences in expression of the LE

and HE genes between the CAPs, normal cells, tumor cell lines

and mBLs we plotted the estimated log fold changes of all

subgroups relative to the normal GC B cells (Figure 5, Figure S8).

The LE genes showed virtually no differential expression,

consistent with the hypothesis of Hebenstreit et al. [16] that the

LE genes are expressed at a very low level and are putatively non-

functional. The HE genes exhibited more diverse patterns. First, in

the naı̈ve and post GC B cells a number of transcripts were

expressed at a lower level as compared to the GC B cells. Second,

the HE genes in HiGA-PRO and HiGA-SIR were shifted towards

higher expression. And third, in the mBLs and in the B-cell

lymphoma cell lines there seemed to be an additional upregulation

of a substantial fraction of the HE genes as compared to normal

GC B cells. Most strikingly, the log fold changes for LoGA were

small and centered at zero, suggesting a lack of a deregulation of a

global-scale transcriptional program which is present in the other

types of mature aggressive B-cell lymphomas.

In the original work [16] describing the HE and LE genes, the

HE genes were shown to be associated with the presence of

activating histone marks (H3K9/14ac). In order to explore

whether altered histone modification could be associated with

the identified CAPs, we used immunohistochemical staining for

H3K4me2, H3K27me3 and H3K18ac in 220 cases of the cohort

for screening. No significant association was observed at the

immunhistochemical level. In contrast, EZH2 Y641 mutation was

more frequent in our dataset in LoGA than in the other DLBCLs

(P = 0.032, Table S1). EZH2 (Y641F/N) promotes trimethylation

of H3K27 which is a posttranslational histone modification

associated with repression of transcription.

Metabolic processes are commonly upregulated in HiGA-
PRO and HiGA-SIR

Finally, we asked which known cellular processes were active in

the different CAPs. To this end, we computed the overexpressed

HE genes in each CAP relative to the normal GC B cells. The

intersections of the three resulting lists of overexpressed genes are

shown in form of a venn diagram in Figure 6A. We observed that

only few genes were exclusively upregulated in LoGA. In contrast,

a large number of genes were specifically overexpressed in HiGA-

PRO and HiGA-SIR, respectively. Analysis [24] of the biological

functions of the genes in each region of the venn diagram

(Figure 6B, File S7) revealed a strong enrichment in oxidative

phosphorylation (P = 4.7e-12) among the genes upregulated in

HiGA-PRO and HiGA-SIR but not upregulated in LoGA

(Figure 6B, Figure S9, File S7, Text S1). These genes were also

enriched in secretory pathway (P = 4.1e-07), ribosome biosynthesis

(P = 2.95e-04) and protein catabolic process (P = 1.4e-03). Several

Figure 4. HiGA-PRO and HiGA-SIR show a massive transcriptional activation compared to LoGA. This activation can be attributed to the
HE genes but not to the LE genes. No such massive differences in expression can be seen between HiGA-PRO and HiGA-SIR. Shown are densities
(kernel density estimates of the distributions) of gene-wise generalized log-ratios (estimated log fold changes) between the CAPs. A) The three
densities correspond the contrasts: HiGA-PRO minus HiGA-SIR (black line), HiGA-PRO minus LoGA (red line) and HiGA-SIR minus LoGA (green line).
Each density includes all probe sets with unique Entrez IDs (n = 12679). B,C,D) Densities of the estimated log fold changes of the HE and LE genes in
the three contrasts from A. The densities are scaled such that the sum of the density of the LE genes (yellow line) and the HE genes (violet line) equals
the density of LE and HE genes together (black line). In B, C and D only probe sets with unique Entrez IDs which could be classified to the LE
(n = 3585) or HE (n = 7325) groups are included.
doi:10.1371/journal.pone.0076287.g004

Massive Transcriptional Perturbation in Lymphoma

PLOS ONE | www.plosone.org 6 November 2013 | Volume 8 | Issue 11 | e76287



GO terms were overrepresented in other regions of the venn

diagram including response to oxidative stress (P = 1.1e-06) among

the genes which were upregulated in all CAPs, DNA replication

(P = 2.7e-06) and RNA splicing (P = 3.4e-04) among the genes

specifically upregulated in HiGA-PRO, lymphocyte activation

(P = 1.4e-04) among the genes unique to HiGA-SIR, and

regulation of cell migration (P = 2.6e-04) among the genes

overexpressed in HiGA-SIR and LoGA but not overexpressed in

HiGA-PRO. Interestingly, chromatin assembly was depleted

among the HE genes which were overexpressed in any of the

CAPs (P = 6.85-07), and in particular among the genes commonly

upregulated in HiGA-PRO and HiGA-SIR (P = 8.0–04). Taken

together, these data suggest that a high level of metabolic

activation is a common feature of HiGA-PRO and HiGA-SIR

but not of LoGA.

Discussion

In our investigation, we developed and used a biostatistical

method (CGSA) for identifying sets of highly correlated genes [25].

The method permitted an unsupervised search for dominant and

independent metagenes useful for tumor profiling. Each gene set

comprised genes which were coordinately expressed across all

specimens. Genes from different gene sets were mutually exclusive.

We could show that 50 such gene sets (containing 501 genes,

File S1) carry important information regarding previously de-

scribed tumor signatures. The method clearly detected in an

unsupervised way the signature of the molecular Burkitt lympho-

ma which was described by us and others using more indirect

strategies [4,5]. Furthermore, we also found the previously

reported classification into the ABC and GCB lymphomas [1,2]

and several of the ‘‘pathway activation patterns’’ [6]. Having

shown that our unsupervised method was sensitive enough to

Figure 5. Distributions of the estimated log fold changes of expression levels of the HE genes relative to the normal GC B cells.
Shown are densities (kernel density estimates of the distributions) of gene-wise generalized log-ratios of the HE genes between the mean expression
of several groups of samples and that of the normal GC B cells. A) Densities corresponding to LoGA and the normal cells. B) Densities corresponding
to LoGA and other tumor samples.
doi:10.1371/journal.pone.0076287.g005

Figure 6. Overexpressed HE genes in the CAPs relative to normal GC B cells. A) Venn diagram showing the intersections of the
overexpressed HE genes (FDR ,0.05) in each CAP relative to normal GC B cells. B) Enriched GO-terms from the category Biological Process according
to an analysis with PAGE. The columns in the heatmap refer to the subsets of the venn diagram, e.g., column ‘‘L’’ refers to the genes which were
uniquely overexpressed in LoGA (N = 44), ‘‘LS’’ to the genes which were overexpressed in LoGA and HiGA-SIR (N = 45), ‘‘SP’’ to the genes which were
overexpressed in HiGA-SIR and HiGA-PRO and ‘‘All’’ to the genes commonly overexpressed in all the CAPs. The first column corresponds to the non-
overexpressed genes (FDR .0.05). Rows correspond to GO terms. Red entries in the heatmap indicate overrepresentation of the GO-terms (measured
by negative log10 p-values) while blue entries indicate underrepresentation (measured by log10 p-values).
doi:10.1371/journal.pone.0076287.g006
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discriminate these known subtypes, we applied it to unravel novel

layers of transcriptional profiles in a large data set of DLBCLs

from which molecular Burkitt lymphomas had been excluded. In

this analysis we also used data from tumor cell lines, from normal

B cells and from normal tonsil tissues. By using the CGSA-method

we were able to group these lymphomas into three profiles.

Our method has a series of special features (Materials and

Methods, Text S1). The guiding principle of the method is that

every aspect of the construction and filtering of the CGSs depends

solely on permutation-invariant statistics such as the overall

variance and covariance of the genes. As a consequence, the

probability that we find any false positive association of the CGSs

with other characteristics of the patients is kept at a prespecified

low level [26]. The CGSs are not necessarily orthogonal to each

other as, e.g., in principal component analysis. Therefore, they

adapt in a more flexible way to the correlation structure of the

genes. Furthermore, the method facilitates biological interpreta-

tion by reducing the high dimensional space containing several

thousands of genes to a small number of gene sets. Hence, the gene

sets capture differential regulation of major gene hubs and, as our

analysis indicated, the inferences based on them are robust across

data sets and platforms. Importantly, the dimension reduction is

not guided by any external criteria and therefore allows for an

unbiased view of the data. Finally, our recent research suggests

that the CGSs can be used as a basis to construct pathway

activation indices. This extension is beyond the scope of this study

but it has already been successfully applied elsewhere [27].

The three profiles which we found with our method in the

extended DLBCL cohort (n = 364) were distinct from the

classification into the ABC and GCB lymphomas. Figure 7

contains a schematic summary of our findings.

One profile, which we referred to as HiGA-PRO was

characterized by high tumor cell content and CGSs related to

cell cycle, DNA replication and RNA splicing, suggesting intensive

proliferation. On the large scale level several hundred genes of the

mitochondrial respiratory chain, nucleoside biosynthesis and

metabolic pathways were activated. This is compatible with the

needs of high cell turnover. In this profile, both ABC and GCB

cells of origin could be found with almost equal frequency. The

HiGA-PRO profile was similar to the ‘‘BCR/proliferation’’

consensus cluster [3] and was characteristic of about 29% of our

DLBCL cases.

The second profile, HiGA-SIR was characterized by lower

tumor cell content and a marked stromal and immune response

phenotype. On the large scale level this profile was also linked with

high metabolic activation of genes involved in the mitochondrial

respiratory chain, nucleoside biosynthesis and other metabolic

processes. In this profile both the GCB and ABC subtypes could

be found with a clear preponderance of GCB (2 to 1). This profile

was similar to the ‘‘host response’’ consensus cluster [3] and was

present in about 52% of our cohort. The depletion of MYC

translocations (Table S1) in HiGA-SIR and its favorable patient

outcome in our extended DLBCL cohort (Figure S5) indicated

that the lower tumor cell content in HiGA-SIR was likely due to

the underlying biology of the tumor cells and not to the way in

which the tumor samples were collected. It is also noteworthy that

Monti et al. (2005) [3] observed younger patients in their ‘‘host

response’’ cluster compared to their ‘‘BCR/proliferation’’ cluster.

We could make a similar observation (P= 0.007, Mann-Whitney

U test) by comparing HiGA-SIR with HiGA-PRO.

The third and novel profile was markedly different and found in

about 19% of the cases. It exhibited lower gene activation

compared to the two other profiles. Hence we called it LoGA (i.e.,

low gene activity). There were few indications of mitochondrial

metabolic or biosynthetic activation in LoGA beyond the level also

encountered in normal B cells. Intriguingly, these tumors were

characterized by high tumor cell content, high genetic complexity

and active proliferation seen in the Ki67-indices (Figure S10A–C).

This suggests that these tumors obtain sufficient supply of energy

to proliferate at least partly through other means than mitochon-

drial activation.

As shown in the enrichment analysis (Figure 6B) all tumors

exhibit signals of strong oxidative stress when compared with

normal B cells. This may be indicative of a stress climate

facilitating mutations in all tumors consistent with the finding of

high genetic complexity. Based on these data we speculate about

an evolutionary model of DLBCL diversification. It is well

established that partly distinct genetic lesions occur in the B cells

of origin leading to a GCB-phenotype or to the ABC-phenotype

[2,13]. These events may be the initiating steps. It is tempting to

speculate that lymphomagenesis progresses by accumulating and

selecting further mutations affecting the cellular differentiation

program by rendering cells dependent (HiGA-SIR) or indepen-

dent (HiGA-PRO) from immune response and stromal interac-

tions. Further genetic and epigenetic mutations may promote and

stabilize these patterns by activating the necessary energy and

biosynthesis machinery resulting in activation of hundreds of genes

in the two HiGA-phenotypes. This hypothesis of a prominent role

of energy metabolism for a subset of DLBCLs is supported by

recent experimental evidence [28]. However, the newly found

LoGA pattern would be indicative of alternative pathways of

tumor evolution not leading to high metabolic and oxygen

dependent activation.

In two very recent studies Myc has been shown to act as a

universal amplifier of expressed genes in a variety of cells including

lymphocytes [29,30]. One could ask whether this effect of Myc

could explain the massive shift in transcriptional activity observed

in our data between LoGA and the two other profiles. We do not

have indications that this might be the case. In particular, MYC

Figure 7. Conceptual scheme of the gene expression hetero-
geneity in the DLBCLs. In our data set of 364 DLBCL and related
mature aggressive B-cell lymphomas other than Burkitt lymphoma we
observed about 19% of the tumors with the LoGA profile (blue center),
about 52% with the HiGA-SIR profile and about 29% with the HiGA-PRO
profile (green and red shell). Every profile contained samples classified
as ABC and GCB DLBCLs. The horizontal direction corresponds to the
contrast between these subgroups, the vertical direction discriminates
the DLBCLs into those with either a proliferative or immune response
phenotype. The radial direction from the center of the circle outward
represents the global transcriptional activation.
doi:10.1371/journal.pone.0076287.g007
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translocations do not occur less frequently in LoGA (16%) than in

HiGA-PRO (13%) and HiGA-SIR (5%).

Our observations have methodological, clinical and biological

implications. The biostatistical strategy presented in this study is

general and can be applied to gene expression profiling data in

different experimental settings. From a clinical perspective it might

be interesting to investigate whether the LoGA-tumors are

associated with different fludeoxyglucose- (FDG) or amino acid

positron emission tomography (PET) profiles than the HiGA-

tumors, a question which can be investigated if PET and

expression profiling data are available. From the biological

perspective, our work shows the need for further research to

clarify the underlying causes responsible for the observed massive

transcriptional changes in subgroups of diffuse large B-cell

lymphoma. This question might be addressed by ongoing or

future genome wide sequencing studies.

Materials and Methods

Generation of correlated gene sets (CGSs)
To create the CGSs, each gene was treated as a center of a gene

set and all genes which were strongly and positively correlated with

this central gene were included in this set (including negatively

correlated genes would be possible, but in our experience, such

genes were rare). Thus, as many candidate gene sets as there were

genes in the data set were generated. Next, the gene sets were

ranked by a score which reflected their size, the variances of their

central genes and how tightly correlated were their member genes

with their respective central genes. Then, gene sets which

overlapped with any of the higher-ranking gene sets were removed

and the top 50 of the remaining gene sets were selected. Finally, a

summary of the gene expression values within each gene set was

computed. Thus, the dimension of each analyzed data set was

reduced from the initial several thousands of features to 50 CGSs.

We found in pretests (Figure S3, Text S1) that this number was

enough to be able to capture the main factors present in the data

set providing at the same time sufficient statistical stability. The

method presented here and subsequently called Correlated Gene

Set Analysis (CGSA) is an extension of our previously described

strategy [25,26]. Further details of the method are given in

Text S1.

Study population and microarray data
For validating the CGSA method, we used two previously

published data sets of mature aggressive B-cell lymphomas [4,5]

(‘‘BL/DLBCL data sets of Hummel et al. (2006) and of Dave et al.

(2006)’’) as available at Gene Expression Omnibus (http://www.

ncbi.nlm.nih.gov/geo/, GEO accession numbers GSE4475,

GSE4732, respectively). In the subsequent, main part of our

study, we analyzed a cohort consisting of 364 DLBCL and related

mature aggressive B-cell lymphomas other than Burkitt lymphoma

(‘‘extended DLBCL cohort’’) [15]. This cohort included 150 cases

from one of the data sets which we used for validating our method

(BL/DLBCL data set of Hummel et al. (2006)) and 214 additional

cases originally published in two further studies [31,32] (GEO

accession numbers GSE10172 and GSE22470, respectively). We

annotated the samples with values of gene expression signatures

according to previous publications. These signatures were: the cell-

of-origin signature (ABC, GCB) [2], the molecular Burkitt

signature [4], the PAP signature [6] and, for the samples from

the BL/DLBCL data set of Hummel et al. (2006), the consensus

clusters (CC) [3,6].

Array-based comparative hybridization data (CGH) was avail-

able [15] for 273 cases out of the 364 cases of the extended

DLBCL data set. The selection of recurrent copy number

aberrations was described previously [15,33].

All cases of the extended DLBCL cohort (n = 364) were

collected within the network project Molecular Mechanisms in

Malignant Lymphoma (MMML). For validation of the CAPs, we

used an independent data set of 414 DLBCL samples [20]. We

obtained raw expression data from the GEO (accession number

GSE10846) and normalized and summarized them using a similar

procedure to that applied to our data from the MMML-project.

Gene expression of normal cells and lymphoma cell lines
New gene expression data from normal cells and lymphoma cell

lines included: 8 samples of naı̈ve B cells, 13 samples of germinal

center (GC) B cells, 9 samples of post GC B cells, 10 tissue samples

of tonsils and 32 samples of 28 different lymphoma cell lines [34].

Whereas the 10 tonsillar tissue samples were used as whole tissue

RNA extracts, the B cell subsets (naı̈ve B cells and post GC

(memory) B cells) were isolated from peripheral blood samples of

healthy individuals. GC B cells were isolated from suspended

tonsillar cells. For isolation of the B cell subsets, FACS sorting

employing antibodies against CD19 and IgD (naı̈ve B cells), CD20

and CD38 (tonsillar GC B cells), and CD19 and CD27 (post GC

memory B cells) was used.

Affymetrix hybridization to U133A GeneChips was performed

according to manufacturer’s recommendations as already de-

scribed [4]. All raw expression data from the MMML-project

including the data of the normal B cells and lymphoma cell lines

were normalized using the VSN method [35] and the probe-level

data were summarized using median polish [36]. The parameters

for VSN and median polish were estimated on the samples

included in the BL/DLBCL data set of Hummel et al. (2006) and

applied to the remaining samples [37]. The new data were

deposited at Gene Expression Omnibus (GEO, http://www.ncbi.

nlm.nih.gov/geo/), accession number GSE43677.

Tissue microarrays for histone modifications
Tissue microarrays (TMAs) containing 220 cases from the

MMML cohort constructed by the Institute of Pathology, Section

Hematopathology and Lymph Node Registry, University Hospital

Schleswig-Holstein, Kiel, Germany, were studied herein. The

sections were deparaffinized in xylene and rehydrated in graded

alcohols. Endogenous peroxidase was quenched with 1% hydro-

gen peroxide in methanol for 10 minutes. The antigen was

retrieved in 0.01 M sodium citrate buffer (pH 6.0). The sections

were incubated for 1 hour at room temperature with H3K27me3

mouse mAb (Abcam [ab6002] at 1:25), H3K4me2 rabbit mAb

(Abcam [ab32356] at 1:50) and H3K18ac rabbit mAb (Abcam

[ab40888] at 1:25). The sections were then treated with N-

HistofineH (Nichirei Biosciences, Japan) polymer detection system,

chromogen detection with diaminobenzidine (DAB) and counter-

staining with Mayer’s hematoxylin. Negative control staining was

performed without primary antibody. Two pathologists assessed

the percentage of tumor cells with positive nuclear staining

independently based on the following scoring criteria: 0 (negative),

1 (1–25%), 2 (26–50%), 3 (51–75%), and 4 (76–100%).

Other genetic and phenotypic data
Recently published phenotypic data was available [15]. These

included data from immunohistochemical staining against CD10,

CD5, BCL2, BCL6, MUM1, Ki67, data from interphase

fluorescence in situ hybridization (FISH) for breakpoints in

MYC, BCL6 and immunoglobulin (IG) partners, IGH/BCL2

fusion, overall survival for 282 cases, morphology (centroblastic,

immunoblastic, other), tumor cell content, age and gender.
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Lymphomas with MYC breaks were divided into two categories

depending on whether MYC was fused to one of the IG-loci (‘‘IG-

MYC’’) or not (‘‘non-IG-MYC’’). Detailed information on the

immunohistochemical staining, FISH and on the incidence of the

biological features in the study population was provided previously

[15]. The content of tumor cells (percentage of all cells) was

estimated in all lymphoma specimens by means of immunohisto-

chemistry for the detection of CD20, CD3 and CD68 on frozen

sections. Tumor cell content ranged from 50% to 95% (in 134 of

136 specimens it exceeded 60%), with a median of 85%.

Unsupervised analysis with respect to the CGSs
For validating the CGSA method on the BL/DLBCL data sets

of Hummel et al. (2006) and Dave et al. (2006), a previously

published method for unsupervised ordering of samples was used

[25]. Briefly, the method projected all samples onto a two

dimensional plane spanned by their first two principal axes. Then,

the samples were ordered by their angular distance from an

arbitrary vector in this plane. A slightly modified version of this

method was used to arrange samples of normal B cells and

lymphoma cell lines among the tumor samples (Text S1).

To generate the CAPs (CGS activation profiles) in the extended

DLBCL data set (n = 364), partitioning around medoids (PAM)

[38] algorithm was applied to the 50 CGSs. Euclidean distances

with respect to standardized CGSs were used and the number of

clusters which maximized the average silhouette width [39] was

chosen. The result of the clustering is given in File S8.

Statistical analyses
The available phenotypic features of the samples were

categorized as previously described [15]. The procedure of testing

their associations with the CGSs is given in Text S1. Overall

survival was defined as time from first day of therapy to death from

any cause. Patients without an event in OS were censored at the

last day with valid information. Overall survival was estimated by

the Kaplan-Meier method and compared using the log-rank test.

Tests for association of the ABC and GCB subtypes and the CAPs

with several published signatures (Figure 3) were performed using

two-way ANOVA with the first principal component of a

signature as a dependent variable. Unless otherwise indicated,

the computations were carried out using the statistical software R

[40] and Bioconductor [41].

Supporting Information

Figure S1 CGSs discriminate BL/DLBCLs according to
several previously reported molecular classifications.
This result is reproducible across different BL/DLBCL data sets.

Heat maps (A) and (D) show expression of the 50 CGSs generated

in the BL/DLBCL data set of Hummel et al (2006) and Dave et al

(2006), respectively. Heat maps (B) and (C) show the CGSs from

the heat maps (A) and (D), respectively, mapped to the other data

set. Samples (columns) and gene sets (rows) are arranged in the

angular order of their projections onto the plane spanned by the

first and the second principal axes (Text S1). This plane is

determined in the data set where the CGSs were created and is

used to order the samples in the original data set and in the other

data set.

(TIF)

Figure S2 The CGSs generated in the BL/DLBCL data
set of Hummel et al (2006) discriminate the ABC and the
GCB lymphomas. This classification can be reproduced in the

data set of Dave et al (2006). (A) An ordering of the samples from

Hummel et al (2006) by the 1st and 5th principal component (PC1

and PC5, respectively) of the CGSs generated in this data set. (B)

An ordering of the samples from Dave at al (2006) using the CGSs

and the principal component loadings from (A).

(TIF)

Figure S3 The results of unsupervised ordering the
tumors are robust with respect to the number of gene
sets. Shown are the orderings of tumors in the BL/DLBCL data

sets from Hummel et al (2006) and from Dave et al (2006) by the

1st and 2nd PCs of their respective CGSs. In the top, middle and

bottom row only the first 40, 30, and 20 CGSs, respectively, were

used for computing the PCs.

(TIF)

Figure S4 Several of the CGSs of the extended DLBCL
data set (n= 364) can be grouped into three major
components. Shown is the principal component biplot of the

CGSs (grey arrows) and the samples (color circles) based on the

PC2 and PC4 of the CGSs. Colors of the circles correspond to the

‘‘pathway activation patterns’’ (PAPs) [6]. The principal compo-

nents were computed based on the matrix which contains the

values of the 50 CGSs for each of the 364 samples. Before this

computation, the CGS were scaled to unit variance. The lengths of

the arrows represent the standard deviations of the CGSs (all equal

to 1), Euclidean distances between the circles represent (up to a

scaling factor) the Mahalanobis distances between the samples,

and the inner products between the vectors shown as arrows

represent the correlations between the CGSs.

(TIF)

Figure S5 Overall survival in the CAPs and in the
corresponding clusters found in the data set of Lenz
et al. (2008a). The three columns show the survival in our

extended DLBCL data set, in the CHOP-treated and in the R-

CHOP-treated cohort of Lenz et al. (2008a), The three rows

represent the results seen in all patients, in the GCB DLBCLs and

in the ABC DLBCLs of each cohort. Survival information in our

extended DLBCL data set was available for 282 of 364 patients.

(TIF)

Figure S6 Global distribution of gene expression values
of the tumors showing the LoGA profile differs from that
of the other lymphomas and is similar to the distribu-
tion displayed by the non-malignant GC B cells. Shown

are densities (kernel density estimators) of the VSN-normalized

intensities of all genes and of the samples from a given subgroup.

(TIF)

Figure S7 Distributions of the global expression levels
of the LE and of the HE genes in our DLBCL cohort
(n= 364) differ from each other in a similar way as in
Hebenstreit et al (2011). Kernel density estimates of the LE

and HE genes in all samples from our DLBCL data set. The black

curve denotes the sum of the densities corresponding to the LE

and the HE genes.

(TIF)

Figure S8 Distributions of the estimated log fold
changes of the LE genes between several groups of
samples and the normal GC B cells. Shown are densities

(kernel density estimates) of the distribution of gene-wise

generalized log-ratios of the LE genes. Each density corresponds

to a comparison between a group of samples and the normal GC B

cells. A) Densities corresponding to LoGA and the normal cells. B)

Densities corresponding to LoGA and other tumor samples (cf.

Figure 5).

(TIF)
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Figure S9 The only difference between this figure and
Figure 6B is that in Figure 6B the redundantly informa-
tive GO terms were left out from the results of the
analysis with PAGE while here all significant GO terms
are shown.
(TIF)

Figure S10 Box plots of genomic complexity, tumor cell
content and the Ki67 proliferation index in the CAPs.
(TIF)

File S1 Annotation of the probe sets in the 50 CGSs
generated in the data set of 364 DLBCL and related
mature aggressive B-cell lymphomas other than Burkitt
lymphoma.
(XLSX)

File S2 Associations between the 50 CGSs and a number
of phenotypic characteristics and recurrent genomic
aberrations. Each row corresponds to one CGS. Each column

corresponds to one characteristic. A) Values of R-squared (beta

statistic) characterizig the association between a CGS and a

phenotypic variable. B) Adjusted P-values for the association

between a CGS and a phenotypic characteristic. The significant

associations are colored.

(XLSX)

File S3 GO-, KEGG-terms and chromosomal bands
enriched in the CGSs. A GO-term with P-value ,0.001

(hypergeometric test) is considered to be significantly enriched.

The corresponding significance threshold for a KEGG-term is

0.01 and for a chromosomal band it is 0.001. Listed are

significantly enriched terms which consist of more than 10 Entrez

IDs. The P-values are not adjusted for multiple testing. In case of

no significances empty space is left.

(HTML)

File S4 Several of the CGSs of the extended DLBCL data
set (n= 364) can be grouped into three major compo-
nents. Shown is the principal component biplot of the CGSs

(black segments) and the samples (color balls) based on the PC1,

PC2 and PC4 of the CGSs. Orange balls correspond to the GCB

lymphomas and green balls correspond to the ABC lymphomas.

Three CGSs: CGS 29 (NUSAP1), CGS 2 (C1QB) and CGS 1

(POSTN) are shown as red segments to visualize the directions of

the proliferation, immune response and stromal signatures,

respectively.

(MPG)

File S5 Summary of the characteristics of the 50 CGSs.

(XLSX)

File S6 Correlation matrix of the 50 CGSs (Pearson’s
correlations).

(XLSX)

File S7 P-values for enrichment (red) or depletion (blue)
of GO BP categories in the subsets of the Venn diagram
in Figure 6A based on the analysis with PAGE. The shown

p-values are the basis of Figure 6B. Columns denote the subsets of

the Venn diagram and rows denote the GO BP (Biological

Process) categories. Significant enrichment (depletion) (P,0.005,

default threshold of PAGE) is shown in red (blue).

(XLSX)

File S8 Clustering of the 364 patients into the CAPs.

(XLSX)

Table S1 Incidence of biologic features in the CAPs.

(PDF)

Text S1 Supporting material.

(PDF)
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