

Oral Community Interactions of *Filifactor alocis* In Vitro

Qian Wang^{1,3}, Christopher J. Wright¹, Huang Dingming³, Silvia M. Uriarte², Richard J. Lamont^{1*}

1 Center for Oral Health and Systemic Disease, School of Dentistry, University of Louisville, Louisville, Kentucky, United States of America, **2** Department of Medicine, University of Louisville, Louisville, Kentucky, United States of America, **3** State Key Laboratory of Oral Diseases, Sichuan University, Chengdu, China

Abstract

Filifactor alocis is a gram positive anaerobe that is emerging as an important periodontal pathogen. In the oral cavity *F. alocis* colonizes polymicrobial biofilm communities; however, little is known regarding the nature of the interactions between *F. alocis* and other oral biofilm bacteria. Here we investigate the community interactions of two strains of *F. alocis* with *Streptococcus gordonii*, *Fusobacterium nucleatum*, *Porphyromonas gingivalis* and *Aggregatibacter actinomycetemcomitans*, organisms with differing pathogenic potential in the oral cavity. In an *in vitro* community development model, *S. gordonii* was antagonistic to the accumulation of *F. alocis* into a dual species community. In contrast, *F. nucleatum* and the type strain of *F. alocis* formed a synergistic partnership. Accumulation of a low passage isolate of *F. alocis* was also enhanced by *F. nucleatum*. In three species communities of *S. gordonii*, *F. nucleatum* and *F. alocis*, the antagonistic effects of *S. gordonii* superseded the synergistic effects of *F. nucleatum* toward *F. alocis*. The interaction between *A. actinomycetemcomitans* and *F. alocis* was strain specific and *A. actinomycetemcomitans* could either stimulate *F. alocis* accumulation or have no effect depending on the strain. *P. gingivalis* and *F. alocis* formed heterotypic communities with the amount of *P. gingivalis* greater than in the absence of *F. alocis*. However, while *P. gingivalis* benefited from the relationship, levels of *F. alocis* in the dual species community were lower compared to *F. alocis* alone. The inhibitory effect of *P. gingivalis* toward *F. alocis* was dependent, at least partially, on the presence of the Mfa1 fimbrial subunit. In addition, AI-2 production by *P. gingivalis* helped maintain levels of *F. alocis*. Collectively, these results show that the pattern of *F. alocis* colonization will be dictated by the spatial composition of microbial microenvironments, and that the organism may preferentially accumulate at sites rich in *F. nucleatum*.

Citation: Wang Q, Wright CJ, Dingming H, Uriarte SM, Lamont RJ (2013) Oral Community Interactions of *Filifactor alocis* In Vitro. PLoS ONE 8(10): e76271. doi:10.1371/journal.pone.0076271

Editor: Justin Merritt, University of Oklahoma Health Sciences Center, United States of America

Received July 15, 2013; **Accepted** August 23, 2013; **Published** October 3, 2013

Copyright: © 2013 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Funding provided by National Institutes of Health DE22867, DE12505. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rich.lamont@louisville.edu

Introduction

The dental plaque biofilm is comprised of complex communities of microorganisms embedded on tooth surfaces, and is a direct precursor of periodontal disease [1–3]. Until fairly recently, a limited number of organisms in the subgingival biofilm, the so called 'red complex', were considered the predominant pathogens in chronic and severe cases of adult periodontitis [4,5]. However, microbiome studies over the last several years have changed our understanding of the multispecies microbial communities that inhabit the oral cavity. The microbial composition of periodontal disease lesions is much more varied than previously recognized and contains high levels of fastidious and as yet-to-be-cultivated taxons [6]. Organisms such as *Selenomonas*, *Synergistes*, *Desulfobulbus*, TM7 and *Filifactor alocis* have been identified as potential pathogens in a number of independent studies [6–10].

F. alocis is a Gram-positive, slow-growing, obligate anaerobic rod that is found at increased frequency and in higher numbers in periodontal disease sites compared with healthy sites [6,8,9,11–13]. In addition, *F. alocis* is emerging as an important organism in aggressive periodontitis in children [14], endodontic lesions [15] and pericoronitis [16]. Study of the pathogenic properties of *F. alocis* is now important to impute a causal association between *F. alocis* and periodontal disease. In that regard, *F. alocis* has a number of characteristics consistent with that of a periodontal pathogen.

The organism is resistant to oxidative stress and generally proinflammatory and proapoptotic [17,18]. Furthermore, *F. alocis* produces several proteases and neutrophil-activating protein A which are upregulated during internalization within epithelial cells [19].

An important early step in the colonization process of periodontal pathogens is the ability to adhere to oral surfaces and accumulate in physiologically compatible heterotypic communities. Schlafer et al. [20] examined the topology of *F. alocis* within *in vivo* grown subgingival biofilms from periodontitis patients. *F. alocis* was frequently present in densely packed groups as a part of concentric bacterial aggregates, and in mushroom-like protuberances on the surface of the biofilm. *F. alocis* also formed structures resembling test-tube brushes (often observed in dental biofilms [21]). It is likely, therefore, that *F. alocis* can interact with a variety of oral bacteria and participate in community development. In this study we utilize *in vitro* models to examine the community forming interactions of *F. alocis* with common oral organisms of varying degrees of pathogenicity.

Materials and Methods

Ethics Statement

Saliva collection was approved by the University of Louisville IRB, Protocol # 12.0345 and designated as non-human subjects

research as saliva was collected from study principal investigator only.

Bacteria and Culture Conditions

Filifactor alocis strain ATCC 38596 and low passage clinical isolate D-62D were cultured in *F. alocis* broth (FAB) comprised of Brain Heart Infusion broth (BHI) supplemented with yeast extract (0.5 mg/ml), L-cysteine (50 µg/ml), and 20% arginine [17]. *P. gingivalis* ATCC 33277, isogenic mutants $\Delta luxS$ and $\Delta mfa1$ and complemented $mfa1$ mutant, C $\Delta mfa1$ [22] were cultured in trypticase soy broth (TSB) supplemented with yeast extract (1 mg/ml), hemin (5 µg/ml) and menadione (1 µg/ml). *Fusobacterium nucleatum* ATCC 25586 was cultured in BHI supplemented with hemin (5 µg/ml) and menadione (1 µg/ml). *Aggregatibacter actinomycetemcomitans* strain 652 was grown in BHI, and *Streptococcus gordonii* strain DL1 was grown in Todd-Hewitt broth. *F. alocis*, *P. gingivalis*, *F. nucleatum* and *S. gordonii* were cultured anaerobically. *A. actinomycetemcomitans* was cultured under microaerophilic conditions. All organisms were grown at 37°C.

Saliva Collection

Whole saliva was collected from a healthy volunteer, and dithiothreitol was added to a final concentration of 2.5 mM. Particulate matter was removed by centrifugation at 10 000 g for 10 min. Clarified saliva was diluted to 10% with distilled water, filtered through 0.2 µm pore size nitrocellulose and stored at

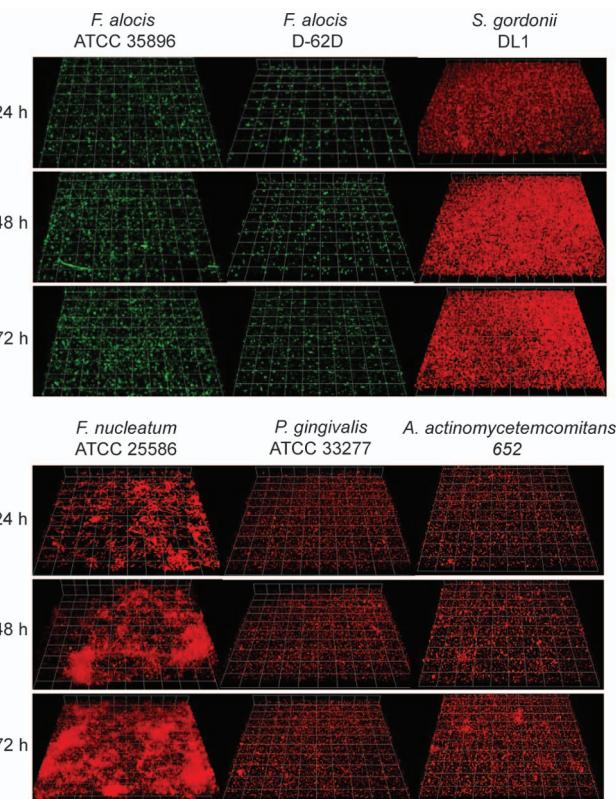
–80°C. Glass coverslips were reacted with 0.5 ml of 10% saliva (4°C for 16 h) and rinsed with PBS prior to use.

Community Analysis by Confocal Laser Scanning Microscopy (CLSM)

Quantitative and structural analysis of homotypic and heterotypic communities was accomplished by CLSM and subsequent image analysis essentially as previously described [23]. A) Single species. *S. gordonii*, *F. nucleatum*, *A. actinomycetemcomitans* or *P. gingivalis* cells (2×10^8) were stained with hexidium iodide (15 µg/ml; Invitrogen, Carlsbad, CA), and *F. alocis* cells (2×10^8) were stained with fluorescein isothiocyanate (FITC, 4 µg/ml, Invitrogen). Bacteria were cultured in individual chambers of a Culture Well chambered coverglass system (Grace Bio Laboratories, Bend, OR) in FAB (unless otherwise stated) anaerobically with rocking at 37°C. B) Dual species. *S. gordonii*, *F. nucleatum*, *A. actinomycetemcomitans* or *P. gingivalis* cells (2×10^8 unless otherwise stated) were stained with hexidium iodide were cultured anaerobically in FAB on coverslips overnight with rocking at 37°C. *F. alocis* cells (5×10^7) were stained with FITC and reacted with the partner species anaerobically with rocking in FAB at 37°C. C) Three species. *S. gordonii* stained with hexidium iodide, and *F. nucleatum* stained with 4',6-diamino-2-phenylindole (DAPI, 1 µg/ml; Invitrogen) were co-cultured on coverslips overnight in FAB anaerobically with rocking at 37°C. After washing, FITC-labelled *F. alocis* were reacted with the dual species substratum anaerobically with rocking in FAB at 37°C. Coverslips with assembled communities were washed, and quantitative and structural analysis was performed on an Olympus confocal laser scanning microscope (FV1000) with a $\times 60$ objective. A series of 0.5-µm-deep optical fluorescent x - y sections (120×120 µm) were collected to create digitally reconstructed 3D images with Volocity software (Perkin Elmer, Waltham, MA).

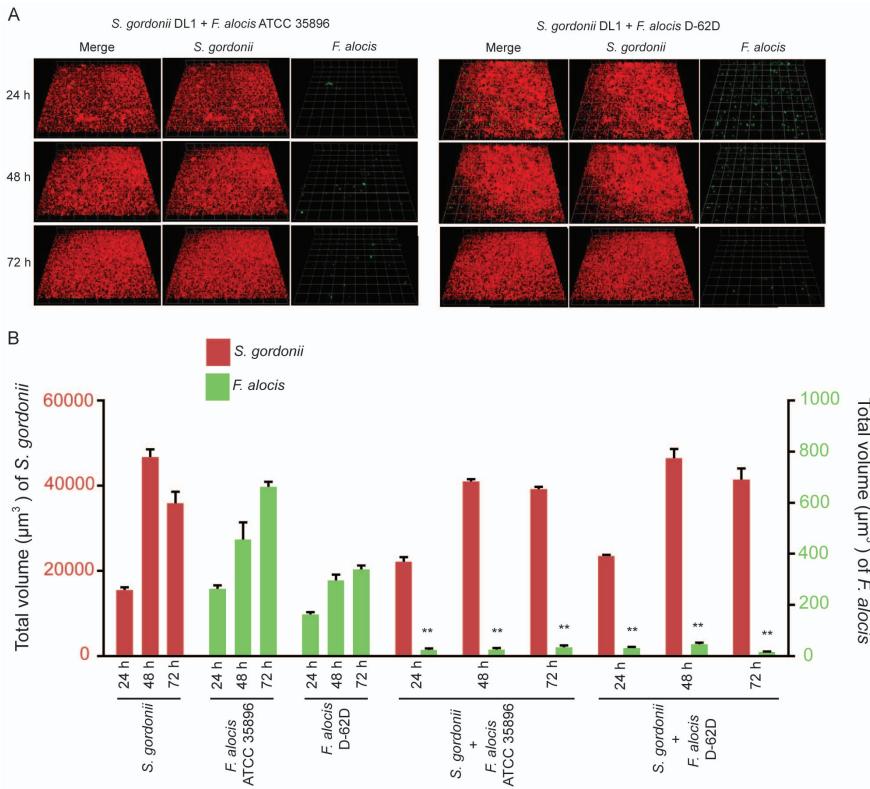
Statistical Analysis

Community assays were repeated independently four times in triplicate and analysed with a Student's unpaired two-tailed t-test. Pearson's correlation coefficient (PCC) in Volocity was used to ascertain the degree of inter-species colocalization [24,25].


Results

Monospecies Communities

Initially, the structural and quantitative properties of single species communities were determined at 24, 48 and 72 h (Fig. 1). In monospecies accumulations, *F. alocis*, *A. actinomycetemcomitans* and *P. gingivalis* sporadically formed small microcolonies. Community formation by the *F. alocis* low passage clinical isolate D-62D was sparser compared to the type strain at all time points. *F. nucleatum* communities developed in unevenly distributed dense clusters. *In vivo* *S. gordonii* attaches to the salivary pellicle on enamel surfaces [3], and hence a saliva-coated glass surface was used for *S. gordonii* community formation. While processing of saliva by centrifugation and filtering can remove mucins and anti-microbial compounds which could influence bacterial growth, *S. gordonii* developed a markedly thick biofilm, up to 10 µm deep. The biomass of all of the species tested increased over time.


Dual Species Communities

A) *F. alocis*-*S. gordonii*. The ability of *F. alocis* to accumulate on substrata of *S. gordonii* attached to saliva-coated glass coverslips was investigated. Both *F. alocis* ATCC 35896 and D-62D strains

Figure 1. CLSM projections of monospecies communities of *F. alocis* strains ATCC 35896 and D-62D (green, stained with FITC), *S. gordonii* DL-1, *F. nucleatum* ATCC25586, *A. actinomycetemcomitans* 652, or *P. gingivalis* ATCC33277 (red, stained with hexidium iodide) after 24 h, 48 h, and 72 h.

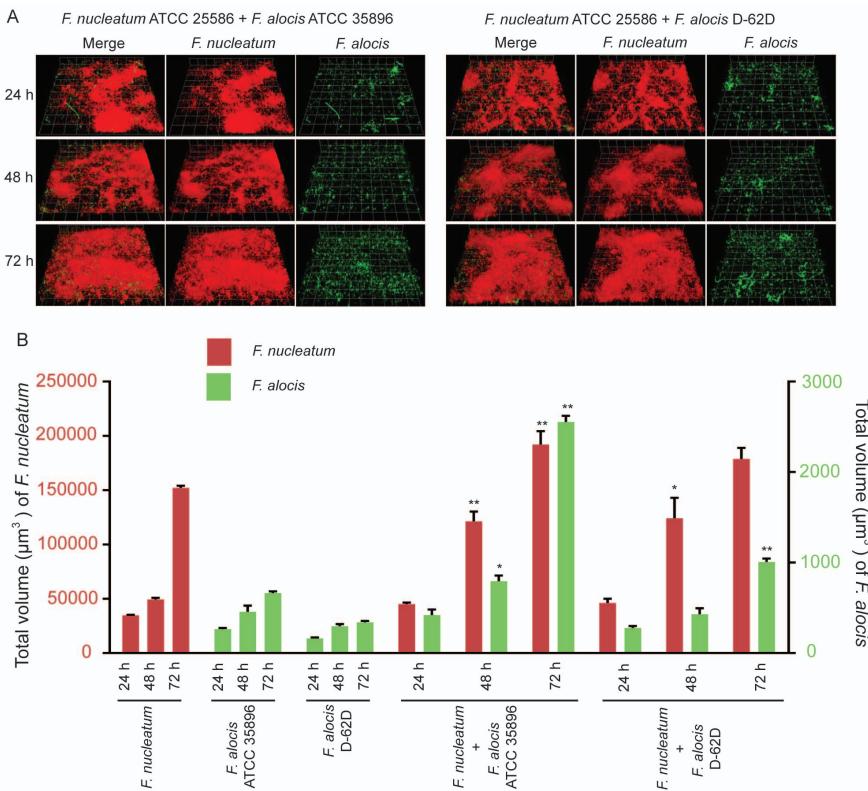
doi:10.1371/journal.pone.0076271.g001

Figure 2. Dual-species community formation between F. alocis and S. gordonii analyzed by CLSM. A. S. gordonii DL-1 (red, stained with hexidium iodide) was cultured on a saliva-coated coverglass. F. alocis strains ATCC 35896 (upper left panel) and D-62D (upper right panel) were stained with FITC (green) and reacted with S. gordonii for 24 h, 48 h and 72 h. B. Time-resolved changes in the biovolume of S. gordonii DL-1, F. alocis ATCC 35896 and D-62D in dual species communities. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are at $p < 0.001$ (**).

doi:10.1371/journal.pone.0076271.g002

exhibited sparse accumulation with S. gordonii DL1 (Fig. 2A). Quantitative measurement of the dual-species communities (Fig. 2B) demonstrated that S. gordonii did not show a significant difference compared to accumulation in single species communities. However, the accumulation of F. alocis strains with S. gordonii showed a dramatic decrease compared to F. alocis alone. At 72 h, the biovolume of strain ATCC 35896 accumulation was reduced 19-fold ($p < 0.001$) by S. gordonii whereas D-62D accumulation was reduced 21-fold ($p < 0.001$). This result suggests that the presence of S. gordonii is strongly inhibitory to F. alocis in F. alocis-S. gordonii heterotypic communities.

B) F. alocis-F. nucleatum. Fig. 3A shows that both F. alocis strains accumulated around regions of F. nucleatum abundance. Time-resolved inspection of dual-species biofilm development (Fig. 3B) revealed that F. alocis strains exhibited an increase in total biovolume: after 48 h in the case of strain ATCC 35896, and after 72 h with strain D-62D. This was accompanied by mutualistic growth of F. nucleatum after 48 h, although synergism was lost at 72 h with strain D-62D. Collectively, these results indicate that F. nucleatum and F. alocis can exhibit a synergistic relationship in the accumulation of dual-species biofilms.


C) F. alocis-A. actinomycetemcomitans. Large aggregations of A. actinomycetemcomitans formed between 48 and 72 h of co-culture (Fig. 4A). The biovolume of both F. alocis ATCC 35896

and A. actinomycetemcomitans in heterotypic communities increased following 48 h incubation indicating mutualistic growth. In contrast, co-culture of F. alocis strain D-62D with A. actinomycetemcomitans did not stimulate the accumulation of either species, indicating strain-specific F. alocis interactions with A. actinomycetemcomitans (Fig. 4B).

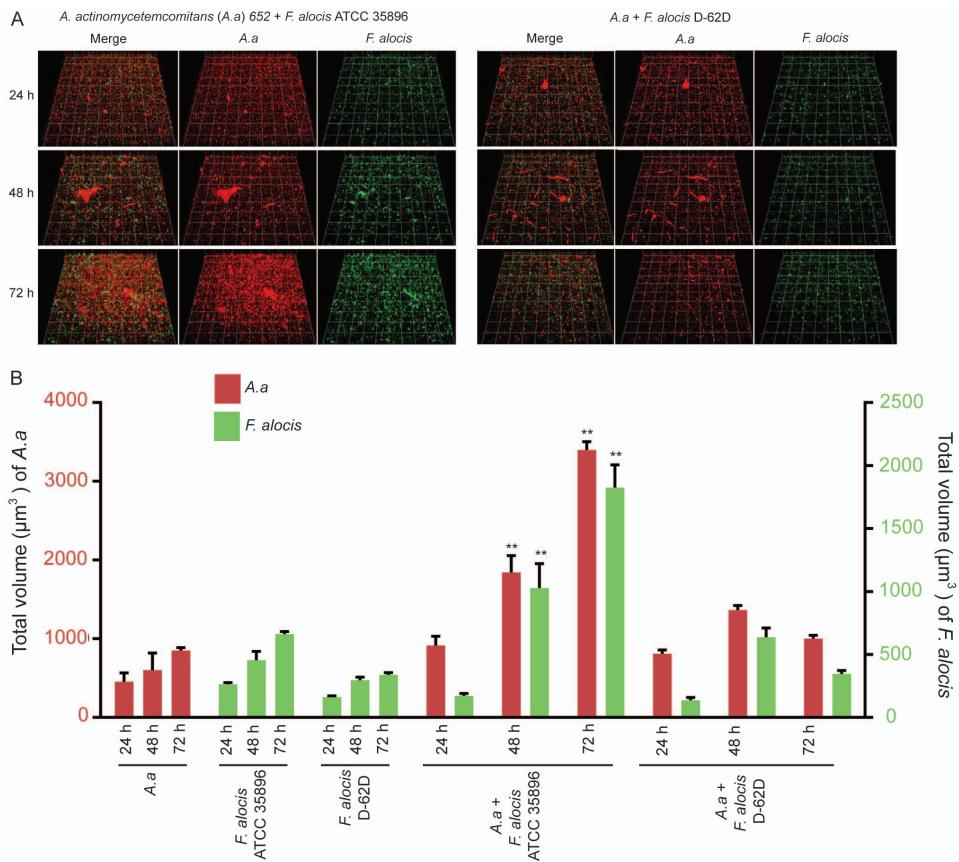
D) F. alocis-P. gingivalis. Heterotypic F. alocis-P. gingivalis communities are shown in Fig. 5A. On substrata of P. gingivalis, both F. alocis strains showed accumulation over a 72 h period; however, the biovolume of F. alocis was reduced with P. gingivalis as compared with F. alocis alone (Fig. 5B). In contrast, P. gingivalis was capable of growth in the presence of F. alocis, reaching greater biovolume at 72 h compared to P. gingivalis alone (Fig. 5B). These results reveal that F. alocis and P. gingivalis can assemble into heterotypic communities; however, while P. gingivalis benefits from this interaction, accumulation of F. alocis is inhibited.

Colocalization Within Communities

To investigate initial physical interactions between bacteria in dual species communities, colocalization analysis with Volocity software was performed, employing Pearson's Correlation Coefficient (PCC) (Fig. 6). F. alocis-S. gordonii heterotypic communities showed a low level of colocalization, reflective of the antagonistic relationship of S. gordonii toward F. alocis. In contrast, F. alocis and

Figure 3. Dual-species community formation between *F. alocis* and *F. nucleatum* analyzed by CLSM. A. *F. nucleatum* ATCC 25586 (red, stained with hexidium iodide) was cultured on glass coverslips. *F. alocis* strains ATCC 35896 (upper left panel) and D-62D (upper right panel) were stained with FITC (green) and reacted with *F. nucleatum* for 24 h, 48 h and 72 h. B. Time-resolved changes in the biovolume of *F. nucleatum* ATCC 25586, *F. alocis* ATCC 35896 and D-62D in dual species communities. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are at $p < 0.05$ (*) or $p < 0.01$ (**).

doi:10.1371/journal.pone.0076271.g003


F. nucleatum, which exhibit synergy, displayed a higher degree of colocalization in communities. Colocalization between *A. actinomycetemcomitans* and both strains of *F. alocis* was low, and hence the mutualistic growth between *A. actinomycetemcomitans* and *F. alocis* ATCC 35896 may depend on soluble secreted factors. *F. alocis* colocalization with *P. gingivalis* was relatively high, indicating that the two species physically interact before the inhibitory effect of *P. gingivalis* is manifest.

Interaction Between *P. gingivalis* and *F. alocis*

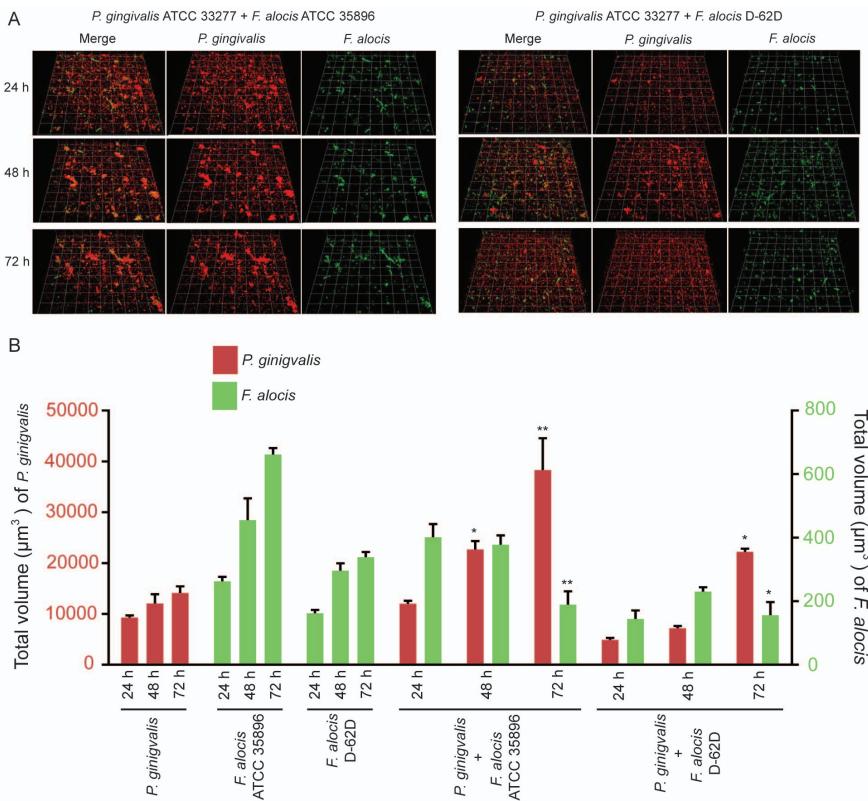
Our data indicated that *F. alocis* and *P. gingivalis* physically interact and hence we utilized a panel of *P. gingivalis* mutants deficient in expression of major surface adhesins to begin to investigate the molecular basis of the interaction. Loss of the major (FimA) fimbriae or the internalin family protein InlJ had no effect on community formation with *F. alocis* (not shown). In contrast, loss of the minor fimbriae (Mfa1) increased the accumulation of *F. alocis* with *P. gingivalis* (Fig. 7A and B). This effect was more pronounced with strain ATCC 35896 than with D-62D. Complementation of the $\Delta mfa1$ mutation with the wild type allele in trans reduced heterotypic community, in many instances to levels below those of the wild type (Fig. 7B), presumably the result of elevated expression of Mfa1 from the multicopy plasmid. These

results indicate that Mfa1 may have a suppressive role in the development of *P. gingivalis*-*F. alocis* communities.

To test for possible chemical communication between *P. gingivalis* and *F. alocis* we examined heterotypic community development between *F. alocis* and a mutant of *P. gingivalis* with a deletion in *luxS*, the gene encoding the enzyme responsible for the synthesis of the AI-2 family of signaling molecules. Community biovolume of both *F. alocis* strains was significantly reduced with *P. gingivalis* $\Delta luxS$ compared to the parental strain (Fig. 8A and B), suggestive of a role for AI-2 in the initial interaction between *P. gingivalis* and *F. alocis*. Interestingly, levels of *P. gingivalis* $\Delta luxS$ were also reduced in the dual species communities in comparison to the parental strain. Thus, LuxS appears to be required for maximal accumulation of *P. gingivalis* with *F. alocis*, similar to the situation with *P. gingivalis* and *S. gordonii* [26]. To further explore a role for AI-2, we compared *P. gingivalis* $\Delta luxS$ -*F. alocis* community development in conditioned medium from *P. gingivalis* parental and $\Delta luxS$ strains. Conditioned medium from the parental, but not the LuxS mutant, strain significantly increased the biovolume of *F. alocis* ATCC 35896 in a community with *P. gingivalis* (Fig. 8C and D). Similar results were obtained with strain D-62D (not shown). Moreover, supplementation of the conditioned medium from the LuxS mutant with DPD, a chemical precursor of AI-2, restored community development to wild type levels for up to 48 h. The

Figure 4. Dual-species community formation between *F. alocis* and *A. actinomycetemcomitans* analyzed by CLSM. A. *A. actinomycetemcomitans* 652 (red, stained with hexidium iodide) was cultured on glass coverslips. *F. alocis* strains ATCC 35896 (upper left panel) and D-62D (upper right panel) were stained with FITC (green) and reacted with *A. actinomycetemcomitans* for 24 h, 48 h and 72 h. B. Time-resolved changes in the biovolume of *A. actinomycetemcomitans* 652, *F. alocis* ATCC 35896 and D-62D in dual species communities. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are at $p < 0.01$ (**).

effect was lost at 72 h, presumably as a result DPD exhaustion. Quantitative colocalization analysis of *P. gingivalis* *AluS* and *F. alocis* heterotypic communities showed a decrease in colocalization compared to parental levels (Fig. 6). Collectively, these results show a requirement for interspecies AI-2-dependent signaling for initial association between *F. alocis* and *P. gingivalis*.


Comparative Effects of *S. gordonii* or *F. nucleatum* on Community Development with *F. alocis*

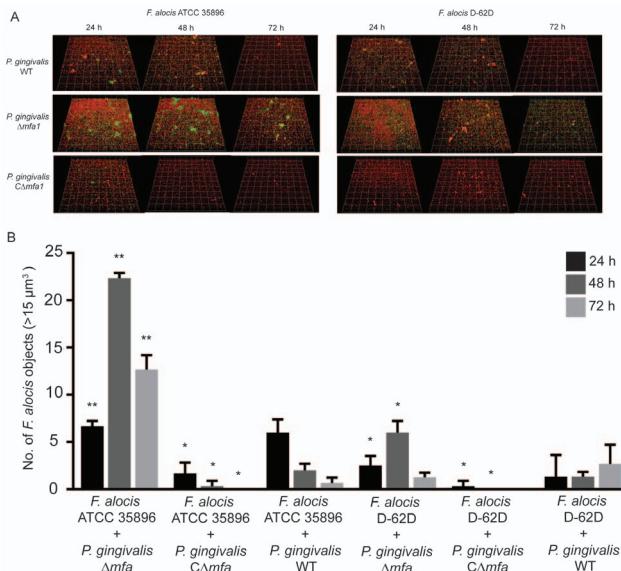
In the mixed species biofilms of the oral cavity *F. alocis* will likely contemporaneously encounter organisms that are synergistic (such as *F. nucleatum*) or are antagonistic (such as *S. gordonii*). To assess the relative contributions of *S. gordonii* and *F. nucleatum*, we generated a three species community comprised of *S. gordonii*, *F. nucleatum* and *F. alocis* (Fig. 9). Accumulation of *F. alocis* in this three-species community was minimal, suggesting that the antagonistic effect of *S. gordonii* supersedes the synergistic effect of *F. nucleatum*. The nature of the synergistic effect is unknown; however, it may not depend on a reduction in pH by *S. gordonii*, as *F. alocis* was capable of monospecies biofilm formation over a pH range of 5–7 (not shown).

Discussion

Dental plaque is a complex multispecies community that develops temporally and spatially through interbacterial binding and communication systems [27,28]. Mitis group streptococci such as *S. gordonii* rapidly and avidly attached to saliva-coated tooth surfaces, and these organisms then provide an attachment substratum for later colonizers [3]. Moreover, mitis group streptococci influence the pathogenic potential of later colonizers, a property that has led them to be designated as accessory pathogens in the oral cavity [29]. *F. nucleatum* is abundant in dental plaque and can provide physiological support for other bacteria including *P. gingivalis*, as well as stabilize interbacterial coadhesion networks [30,31]. Organisms such as *P. gingivalis* and *A. actinomycetemcomitans* are associated with periodontal disease, albeit in the context of raising the pathogenic potential of the microbial community as a whole [1,32]. Recent research has implicated *F. alocis* as an oral pathogen [17,19]; however, the colonization mechanisms of *F. alocis* have yet to be studied in detail.

In the present study, the community interactions of *F. alocis* were investigated. *S. gordonii* had a strongly antagonistic effect on *F.*

Figure 5. Dual-species community formation between F. alocis and P. gingivalis analyzed by CLSM. A. *P. gingivalis* ATCC 33277 (red, stained with hexidium iodide) was cultured on glass coverslips. *F. alocis* strains ATCC 35896 (upper left panel) and D-62D (upper right panel) were stained with FITC (green) and reacted with *P. gingivalis* for 24 h, 48 h and 72 h. B. Time-resolved changes in the biovolume of *P. gingivalis* ATCC 33277, *F. alocis* ATCC 35896 and D-62D in dual species communities. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are at $p < 0.05$ (*) or $p < 0.01$ (**).


alocis, and colocalization and accretion of *F. alocis* were low in a community with *S. gordonii*. These results suggest that streptococcal rich regions of plaque will be resistant to colonization by *F. alocis*. This is in marked contrast to the interaction between *S. gordonii* and *P. gingivalis*, in which *S. gordonii* provides adhesive and

metabolic support for *P. gingivalis* [23,29], and communities of *S. gordonii* and *P. gingivalis* are more virulent in mouse alveolar bone loss models than either organism alone [33]. Conversely, arginine deiminase produced by *S. cristatus* suppresses fimbrial production by *P. gingivalis* and impedes colonization of the oral cavity [34,35]. Interbacterial interactions in the oral microbial communities would thus appear to exhibit a high degree of species specificity. Furthermore, while *F. nucleatum* and *F. alocis* were synergistic in accumulation into dual species communities, the antagonistic influence of *S. gordonii* predominated in a three species community. The antagonistic effect of *S. gordonii* would appear, therefore, to extend beyond failure of *S. gordonii* to provide coadhesive support to *F. alocis*. Similarly, host responses to *S. gordonii*-*P. gingivalis* heterotypic communities can show a bias toward *S. gordonii* specific responses. Infection of gingival epithelial cells with *S. gordonii* and *P. gingivalis* together resulted in *S. gordonii* modulating the expression of host genes with a broad diversity of physiological functions, and antagonizing the effect of *P. gingivalis* at the cellular level [36]. Given that oral streptococci can interact with a wide range of bacteria and yeast [29,37], it is likely that their accessory pathogen role has a major influence on community development and oral health status.

The Mfa1 protein is the structural subunit of the minor fimbriae of *P. gingivalis*. Mfa1 itself can mediate attachment to

Figure 6. Colocalization of F. alocis with partner species in heterotypic communities. Pearson's correlation was determined using Velocity software. Data are representative of four independent replicates.

doi:10.1371/journal.pone.0076271.g006

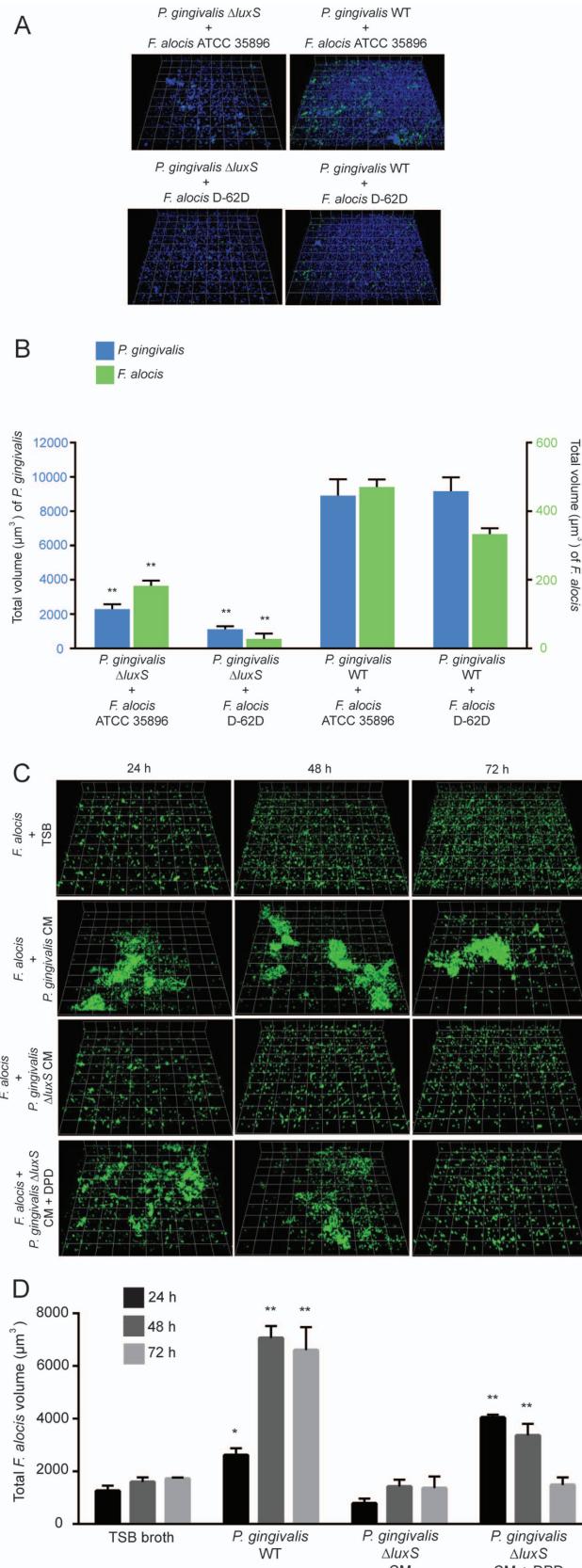
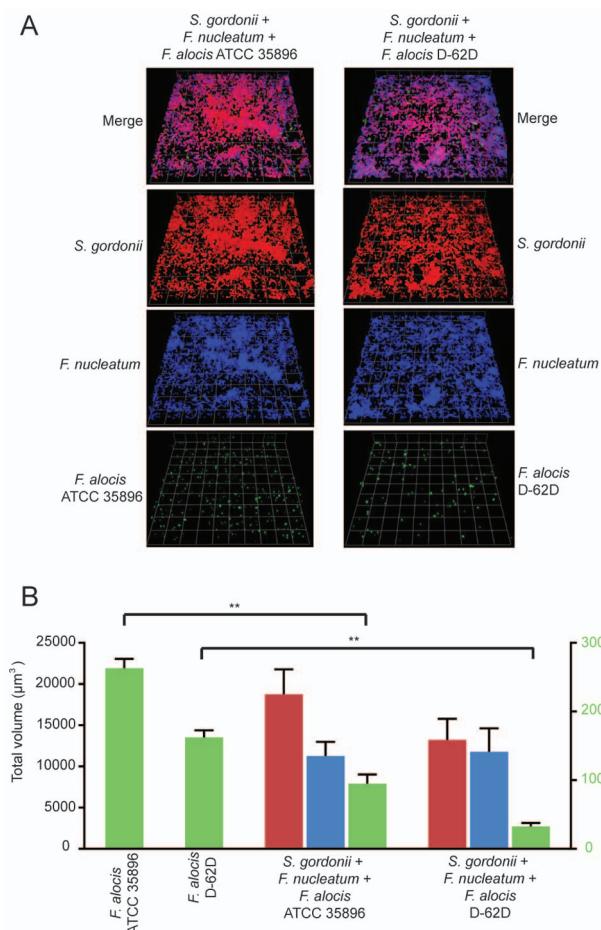


Figure 7. Dual-species community formation between *F. alocis* and *P. gingivalis* mfa1 mutants analyzed by CLSM. A. *P. gingivalis* ATCC 33277 (WT), $\Delta mfa1$ and $c\Delta mfa1$ (1×10^8 , red, stained with hexidium iodide) were cultured on glass coverslips. *F. alocis* strains ATCC 35896 (upper left panel) and D-62D (upper right panel) were stained with FITC (green) and reacted with the *P. gingivalis* strains for 24 h, 48 h and 72 h. B. Quantification of accumulation of *P. gingivalis* objects greater than $15 \mu\text{m}^3$ in dual species communities by Velocity software. Data are representative of four independent replicates. P-values at each time point was calculated by t-test, and significant differences from WT are at $p < 0.05$ (*) or $p < 0.01$ (**).


doi:10.1371/journal.pone.0076271.g007

the streptococcal SspA/B protein [22,38] and human monocyte-derived dendritic cells [39]. However, Mfa1 is thought to impede the process of internalization into epithelial cells, and the $\Delta mfa1$ mutant invades epithelial cells more efficiently than the parental strain [40]. Similarly, the presence of the Mfa1 protein is detrimental to community formation with *F. alocis*. Interestingly, initial association between *F. alocis* and *P. gingivalis* was not affected by the loss of Mfa1, rather the accumulation into microcolonies was reduced, indicating that Mfa1 may be involved in the transmission of antagonistic signals between the two organisms. This effect was most pronounced with the type strain, suggestive of heterogeneity of *F. alocis* responses to *P. gingivalis* signals.

The LuxS enzyme is an AI-2 synthase which is responsible for the production of the AI-2 family of inter-convertible signaling molecules. AI-2 is required for optimal accumulation of *P. gingivalis*-*S. gordonii* communities [26], and also controls mixed biofilm formation by various oral streptococcal species [41] and by *Actinomyces oris* and *S. oralis* [42]. In the current study LuxS activity was necessary for maximal association between *P. gingivalis* and *F. alocis*. The LuxS enzyme is also a component of the activated methyl cycle (AMC) [43] and is responsible for recycling of *S*-adenosylhomocysteine (SAH) to homocysteine. Disruption of *luxS* will therefore lead to both a defect in AI-2 mediated signaling and a potential build up of the toxic AMC intermediate, SAH, either of which could affect *P. gingivalis*-*F. alocis* interactions. To distinguish between these possibilities,

Figure 8. Role of *P. gingivalis* LuxS in dual-species community formation with *F. alocis*. A. *P. gingivalis* ATCC 33277 (WT), and Δ luxS (1×10^8 , blue, stained with DAPI) were cultured on glass coverslips. *F. alocis* strains ATCC 35896 and D-62D were stained with FITC (green) and reacted with the *P. gingivalis* strains for 72 h. B. Biovolume of *P. gingivalis* or *F. alocis* in dual species communities at 72 h. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are $p < 0.01^{(**)}$. C. Accumulation of *F. alocis* ATCC 35896 stained with FITC (green) and cultured in TSB, conditioned medium (CM) from *P. gingivalis* WT, CM from *P. gingivalis* Δ luxS, or CM from *P. gingivalis* Δ luxS with 4 μ M DPD. D. Biovolume of *F. alocis* ATCC 35896 cultured in TSB, conditioned medium (CM) from *P. gingivalis* WT, CM from *P. gingivalis* Δ luxS, or CM from *P. gingivalis* Δ luxS with 4 μ M DPD. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are at $p < 0.05^{(*)}$ or $p < 0.01^{(**)}$. doi:10.1371/journal.pone.0076271.g008

Figure 9. Three-species community formation with *F. alocis*, *S. gordonii* and *F. nucleatum* analyzed by CLSM. A. *S. gordonii* DL1 (red, stained with hexidium iodide), *F. nucleatum* (blue, stained with DAPI) were co-cultured on glass coverslips. *F. alocis* strains ATCC 35896 and D-62D were stained with FITC (green) and reacted with *S. gordonii* and *F. nucleatum* for 72 h. B. Biovolume of *F. alocis* ATCC 35896 and D-62D, *S. gordonii* DL1 and *F. nucleatum* ATCC 25586 in three species communities. Data are representative of four independent replicates. P-value compared with control single species communities was calculated by t-test, and significant differences are $p < 0.01^{(**)}$. doi:10.1371/journal.pone.0076271.g009

communities comprised of *P. gingivalis* Δ luxS and were chemically complemented with either conditioned medium from the *P. gingivalis* parental strain or with 4,5-dihydroxy-2,3-pentanedione (DPD) an AI-2 precursor. In both cases the wild type phenotype was restored, indicating that the effect of LuxS on *P. gingivalis*-*F. alocis* communities relates to its role in AI-2 signaling. An in silico examination of the currently available *F. alocis* genomic database did not reveal any obvious *luxS* homologs in *F. alocis* and thus *F. alocis* may not produce AI-2 but may be able to sense and respond to the signal, although further studies to resolve this issue are necessary.

F. alocis is one of only a few organisms that is associated with both generalized and localized aggressive periodontitis (LAP). The consensus pathogen in LAP is *A. actinomycetemcomitans*, and the type strain of *F. alocis* displayed mutualistic community growth with *A. actinomycetemcomitans*. This result is consonant with the recent report that the presence of a consortium of *A. actinomycetemcomitans*, *S. parasanguinis*, and *F. alocis* is indicative of future bone loss in LAP [44]. Interestingly, the more recent clinical isolate D-62D did not show this synergy with *A. actinomycetemcomitans*. This result, along with other differences between the type strain and D-62D reveals heterogeneity within the *F. alocis* taxon, particularly with regard to potential involvement in LAP. As few *F. alocis* isolates have been studied, the existence of subgroups with differing properties are yet to be defined. However, in a proteomic study of *F. alocis* strains, Arumi et al. [19] found more cell wall anchoring proteins in D-62D compared to ATCC 35896, which may have relevance for interactions with *A. actinomycetemcomitans*. Future studies involving additional *F. alocis* strains will be necessary to more fully delineate the interspecies coadhesion profile of the organism. Isolates of *A. actinomycetemcomitans* from the oral cavity also display heterogeneity with respect to levels of leukotoxin and fimbrial production [45,46], and different strains of *A. actinomycetemcomitans* therefore could also exhibit different patterns of reactivity with *F. alocis*.

Conclusions

While the dental plaque biofilm develops on all subgingival tooth surfaces in the oral cavity, periodontal disease is more usually localized to specific sites. Thus, spatial variations in the pathogenic potential of the biofilm communities exist. Complex synergistic and antagonistic interactions occur within oral microbial communities and these underlie the success or failure of microbial colonization. The results of this work indicate that the pattern of colonization of *F. alocis* depends heavily on the antecedent inhabitants of the microbial community. Although dental biofilms can comprise several hundred bacterial species, by practical necessity *in vitro* studies such as these are limited in the number of organisms and strains that can be investigated, and we recognize that the presence of other bacterial species could modulate the interactions reported herein. Nonetheless, the network of interactions established for *F. alocis* provides mechanistic insights into the colonization strategies of the organism and form a framework for future studies to define the molecular basis of *F. alocis* colonization and community formation.

Author Contributions

Conceived and designed the experiments: QW HD SU RL. Performed the experiments: QW CW. Analyzed the data: QW CW. Wrote the paper: QW CW HD SU RL.

References

- Hajishengallis G, Lamont RJ (2012) Beyond the red complex and into more complexity: the polymicrobial synergy and dysbiosis (PSD) model of periodontal disease etiology. *Mol Oral Microbiol* 27: 409–419.
- Kuboniwa M, Lamont RJ (2010) Subgingival biofilm formation. *Periodontol 2000* 52: 38–52.
- Rosan B, Lamont RJ (2000) Dental plaque formation. *Microbes Infect* 2: 1599–1607.
- Holt SC, Ebersole JL (2005) *Porphyromonas gingivalis*, *Treponema denticola*, and *Tannerella forsythia*: the "red complex", a prototype polybacterial pathogenic consortium in periodontitis. *Periodontol 2000* 38: 72–122.
- Socransky SS, Haffajee AD, Cugini MA, Smith C, Kent RL Jr (1998) Microbial complexes in subgingival plaque. *J Clin Periodontol* 25: 134–144.
- Griffen AL, Beall CJ, Campbell JH, Firestone ND, Kumar PS, et al. (2012) Distinct and complex bacterial profiles in human periodontitis and health revealed by 16S pyrosequencing. *ISME J* 6: 1176–1185.
- Dewhirst FE, Chen T, Izard J, Paster BJ, Tanner AC, et al. (2010) The human oral microbiome. *J Bacteriol* 192: 5002–5017.
- Kumar PS, Griffen AL, Moeschberger ML, Ley S (2005) Identification of candidate periodontal pathogens and beneficial species by quantitative 16S clonal analysis. *J Clin Microbiol* 43: 3944–3955.
- Kumar PS, Ley S, Bryk JM, Martinez FJ, Moeschberger ML, et al. (2006) Changes in periodontal health status are associated with bacterial community shifts as assessed by quantitative 16S cloning and sequencing. *J Clin Microbiol* 44: 3665–3673.
- Paster BJ, Boches SK, Galvin JL, Ericson RE, Lau CN, et al. (2001) Bacterial diversity in human subgingival plaque. *J Bacteriol* 183: 3770–3783.
- Abusleme L, Dupuy AK, Dutzan N, Silva N, Burleson JA, et al. (2013) The subgingival microbiome in health and periodontitis and its relationship with community biomass and inflammation. *ISME J* 7: 1016–1025.
- Colombo AP, Boches SK, Cotton SL, Goodson JM, Kent R, et al. (2009) Comparisons of subgingival microbial profiles of refractory periodontitis, severe periodontitis, and periodontal health using the human oral microbiome identification microarray. *J Periodontol* 80: 1421–1432.
- Dahlen G, Leonhardt A (2006) A new checkerboard panel for testing bacterial markers in periodontal disease. *Oral Microbiol Immunol* 21: 6–11.
- Shaddox LM, Huang H, Lin T, Hou W, Harrison PL, et al. (2012) Microbiological characterization in children with aggressive periodontitis. *J Dent Res* 91: 927–933.
- Montagner F, Jacinto RC, Signoretti FG, Sanches PF, Gomes BP (2012) Clustering behavior in microbial communities from acute endodontic infections. *J Endod* 38: 158–162.
- Mansfield JM, Campbell JH, Bhandari AR, Jesionowski AM, Vickerman MM (2012) Molecular analysis of 16S rRNA genes identifies potentially periodontal pathogenic bacteria and archaea in the plaque of partially erupted third molars. *J Oral Maxillofac Surg* 70: 1507–1514 e1501–1506.
- Aruni AW, Roy F, Fletcher HM (2011) *Filifactor alocis* has virulence attributes that can enhance its persistence under oxidative stress conditions and mediate invasion of epithelial cells by *Porphyromonas gingivalis*. *Infect Immun* 79: 3872–3886.
- Moffatt CE, Whitmore SE, Griffen AL, Ley S, Lamont RJ (2011) *Filifactor alocis* interactions with gingival epithelial cells. *Mol Oral Microbiol* 26: 365–373.
- Aruni AW, Roy F, Sandberg L, Fletcher HM (2012) Proteome variation among *Filifactor alocis* strains. *Proteomics* 12: 3343–3364.
- Schlafer S, Riep B, Griffen AL, Petrich A, Hubner J, et al. (2010) *Filifactor alocis* involvement in periodontal biofilms. *BMC Microbiol* 10: 66.
- Westergaard J, Frandsen A, Slots J (1978) Ultrastructure of the subgingival microflora in juvenile periodontitis. *Scand J Dent Res* 86: 421–429.
- Park Y, Simonato MR, Sekiya K, Murakami Y, James D, et al. (2005) Short fimbriae of *Porphyromonas gingivalis* and their role in coadhesion with *Streptococcus gordonii*. *Infect Immun* 73: 3983–3989.
- Kuboniwa M, Tribble GD, James CE, Kilic AO, Tao L, et al. (2006) *Streptococcus gordonii* utilizes several distinct gene functions to recruit *Porphyromonas gingivalis* into a mixed community. *Mol Microbiol* 60: 121–139.
- Barlow AL, Macleod A, Noppen S, Sanderson J, Guerin CJ (2010) Colocalization analysis in fluorescence micrographs: verification of a more accurate calculation of Pearson's correlation coefficient. *Microsc Microanal* 16: 710–724.
- Herce HD, Casas-Delucchi CS, Cardoso MC (2013) New image colocalization coefficient for fluorescence microscopy to quantify (bio-)molecular interactions. *J Microsc* 249: 184–194.
- McNab R, Ford SK, El-Sabaeny A, Barbieri B, Cook GS, et al. (2003) LuxS-based signaling in *Streptococcus gordonii*: Autoinducer 2 controls carbohydrate metabolism and biofilm formation with *Porphyromonas gingivalis*. *J Bacteriol* 185: 274–284.
- Jenkinson HF, Lamont RJ (2005) Oral microbial communities in sickness and in health. *Trends Microbiol* 13: 589–595.
- Wright CJ, Burns LH, Jack AA, Back CR, Dutton LC, et al. (2013) Microbial interactions in building of communities. *Mol Oral Microbiol* 28: 83–101.
- Whitmore SE, Lamont RJ (2011) The pathogenic persona of community-associated oral streptococci. *Mol Microbiol* 81: 305–314.
- Bradshaw DJ, Marsh PD, Watson GK, Allison C (1998) Role of *Fusobacterium nucleatum* and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. *Infect Immun* 66: 4729–4732.
- Kolenbrander PE (2011) Multispecies communities: interspecies interactions influence growth on saliva as sole nutritional source. *Int J Oral Science* 3: 49–54.
- Hajishengallis G, Liang S, Payne MA, Hashim A, Jotwani R, et al. (2011) Low-Abundance Biofilm Species Orchestrates Inflammatory Periodontal Disease through the Commensal Microbiota and Complement. *Cell Host Microbe* 10: 497–506.
- Daep CA, Novak EA, Lamont RJ, Demuth DR (2011) Structural dissection and in vivo effectiveness of a peptide inhibitor of *Porphyromonas gingivalis* adherence to *Streptococcus gordonii*. *Infect Immun* 79: 67–74.
- Xie H, Lin X, Wang BY, Wu J, Lamont RJ (2007) Identification of a signalling molecule involved in bacterial intergeneric communication. *Microbiology* 153: 3228–3234.
- Wang BY, Wu J, Lamont RJ, Lin XH, Xie H (2009) Negative correlation of distributions of *Streptococcus cristatus* and *Porphyromonas gingivalis* in subgingival plaque. *Journal of Clinical Microbiology* 47: 3902–3906.
- Mans JJ, von Lackum K, Dorsey C, Willis S, Wallet SM, et al. (2009) The degree of microbiome complexity influences the epithelial response to infection. *BMC Genomics* 10: 380.
- Nobbs AH, Lamont RJ, Jenkinson HF (2009) *Streptococcus* adherence and colonization. *Microbiol Mol Biol Rev* 73: 407–450.
- Chung WO, Demuth DR, Lamont RJ (2000) Identification of a *Porphyromonas gingivalis* receptor for the *Streptococcus gordonii* SspB protein. *Infect Immun* 68: 6758–6762.
- Zeituni AE, McCaig W, Scisci E, Thanassi DG, Cutler CW (2010) The native 67-kilodalton minor fimbria of *Porphyromonas gingivalis* is a novel glycoprotein with DC-SIGN-targeting motifs. *J Bacteriol* 192: 4103–4110.
- Capestanay CA, Tribble GD, Maeda K, Demuth DR, Lamont RJ (2008) Role of the Clp system in stress tolerance, biofilm formation, and intracellular invasion in *Porphyromonas gingivalis*. *J Bacteriol* 190: 1436–1446.
- Cuadra-Saenz G, Rao DL, Underwood AJ, Belapure SA, Campagna SR, et al. (2012) Autoinducer-2 influences interactions amongst pioneer colonizing streptococci in oral biofilms. *Microbiology* 158: 1783–1795.
- Rickard AH, Palmer RJ, Blehert DS, Campagna SR, Semmelhack MF, et al. (2006) Autoinducer 2: a concentration-dependent signal for mutualistic bacterial biofilm growth. *Mol Microbiol* 60: 1446–1456.
- Schauder S, Shokat K, Surette MG, Bassler BL (2001) The LuxS family of bacterial autoinducers: biosynthesis of a novel quorum-sensing signal molecule. *Mol Microbiol* 41: 463–476.
- Fine DH, Markowitz K, Fairlie K, Tischio-Bereski D, Ferrendiz J, et al. (2013) A consortium of *Aggregatibacter actinomycetemcomitans* (Aa), *Streptococcus parasanguinis* and *Filifactor alocis* are present in sites prior to bone loss in a longitudinal study of localized aggressive periodontitis. *J Clin Microbiol* 51: 2850–2861.
- Rylev M, Bek-Thomsen M, Reinholdt J, Ennibi OK, Kilian M (2011) Microbiological and immunological characteristics of young Moroccan patients with aggressive periodontitis with and without detectable *Aggregatibacter actinomycetemcomitans* JP2 infection. *Mol Oral Microbiol* 26: 35–51.
- Haubek D (2010) The highly leukotoxic JP2 clone of *Aggregatibacter actinomycetemcomitans*: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. *APMIS Suppl*: 1–53.