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Abstract

Background: Computer-aided diagnosis (CADx) software that provides a second opinion has been widely used to assist
physicians with various tasks. In dermatology, however, CADx has been mostly limited to melanoma or melanocytic skin
cancer diagnosis. The frequency of non-melanocytic skin cancers and the accessibility of regular digital macrographs have
raised interest in developing CADx for broader applications.

Objectives: To investigate the feasibility of using CADx to diagnose both melanocytic and non-melanocytic skin lesions
based on conventional digital photographic images.

Methods: This study was approved by an institutional review board, and the requirement to obtain informed consent was
waived. In total, 769 conventional photographs of melanocytic and non-melanocytic skin lesions were retrospectively
reviewed and used to develop a CADx system. Conventional and new color-related image features were developed to
classify the lesions as benign or malignant using support vector machines (SVMs). The performance of CADx was compared
with that of dermatologists.

Results: The clinicians’ overall sensitivity, specificity, and accuracy were 83.33%, 85.88%, and 85.31%, respectively. New color
correlation and principal component analysis (PCA) features improved the classification ability of the baseline CADx
(p = 0.001). The estimated area under the receiver operating characteristic (ROC) curve (Az) of the proposed CADx system
was 0.949, with a sensitivity and specificity of 85.63% and 87.65%, respectively, and a maximum accuracy of 90.64%.

Conclusions: We have developed an effective CADx system to classify both melanocytic and non-melanocytic skin lesions
using conventional digital macrographs. The system’s performance was similar to that of dermatologists at our institute.
Through improved feature extraction and SVM analysis, we found that conventional digital macrographs were feasible for
providing useful information for CADx applications. The new color-related features significantly improved CADx applications
for skin cancer.
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Introduction

Skin cancer is a commonly occurring malignancy in fair-skinned

populations. In the last decade, the number of skin cancer

treatments grew substantially, and the cost of skin cancer

management was among the highest of all cancers in the United

States [1–3]. There were approximately 76,250 new cases of

melanoma and approximately 8,790 new melanoma-related

deaths in 2012 in the United States [4]. Although the incidence

rates of melanoma in Asians are lower than in Caucasians, non-

melanoma skin cancers, such as squamous cell carcinoma (SCC)

or basal cell carcinoma (BCC), contribute to significant morbidities

among fairer-skinned Asians [5]. In a recent estimation by the

Australian government, the total cost of diagnosing and treating

non-melanoma skin cancer was 511 million Australian dollars in

2010 and will be 703 million in 2015 [6].
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It is always important for clinicians to be able to recognize and

accurately diagnose skin cancer in its early stages. When

conducting a skin cancer screening, doctors usually identify

suspect lesions by visual examination, which is highly dependent

on specific training, and diagnostic accuracy can vary greatly

among individuals with varied experiences [7–9]. In the U.K. and

Australia, there has been increasing interest in improving the

diagnostic performance of general practitioners in recognizing and

accurately diagnosing skin cancers [10,11]. With the development

of computer-aided image analysis technologies, physicians may

obtain an objective ‘‘second opinion’’ from computer-aided

detection (CAD) or computer-aided diagnosis (CADx) software

to refine their diagnoses [12]. In clinical practice, CAD has been

widely used in the field of lesion detection, such as breast lesion

detection in mammography [13–15], lung nodule detection on

chest radiographs or CT scans [16–18], and polyp detection in CT

colonography [19,20]. CADx has also been applied to the analysis

of nuclear medicine images [21,22], skin lesions [23–26], and

histopathological images [27–29]. CADx has been demonstrated

to increase the diagnostic accuracy of trainees in the field of

radiology. In dermatology, the benefits of the integration of CADx

into the clinical diagnosis of pigmented skin lesions for dermatol-

ogists remain under investigation [26,30,31].

It has been suggested that the accuracy rate of clinicians can be

improved with the support of dermatoscopy. However, this

approach depends on specific training of a limited population of

clinicians, and mainly dermatologic specialists who manage skin

tumors [26]. Moreover, previous CADx studies in dermatology

based on digitized color images or dermatoscopic images mainly

focused on melanoma or melanocytic skin cancer detection

[23,32–36]. This approach is not generally applicable, especially

given the low incidence of melanoma in Asians. We became

interested in developing a diagnostic system that can also classify

non-melanocytic skin cancers in Asian people. Considering easy

accessibility to digital photography, the ability to analyze regular

digital photographic images would be invaluable for general

practitioners. This method could possibly play an important role

in the remote analysis of skin lesions using digital photography for

hospitals lacking dermatologic specialists.

Therefore, the purpose of this study was to investigate the

potential for skin lesion classification by CADx utilizing regular

digital photographic images. In particular, this study aimed to

develop new color-related features for conventional photography

by investigating multicolor channel characteristics using Pearson

correlation coefficients and principal component analysis (PCA).

The proposed CADx system was compared with conventional

methods.

Materials and Methods

Ethics statement
This study was approved by the institutional review board of the

Kaohsiung Medical University Hospital (KMUH-IRB-980433),

and the requirement to obtain informed consent was waived.

Data acquisition
Between January 2006 and July 2009, a total of 44418 digital

photographs of consecutively biopsied or excised skin lesions for

histological confirmation at the Department of Dermatology,

Kaohsiung Medical University were taken by dermatologists for

recording purposes prior to procedures. After removing images

that were mis-registered or of poor quality (unfocused or

containing a motion artifact), the database consists of 24178

images from 3964 subjects (4192 specimens). We retrospectively

reviewed all cases and excluded nontumor specimens (N= 3415)

or lesions that had undergone previous surgical procedures (N= 8).

There were 676 subjects (769 specimens, 1899 images) remaining

in the database. A dermatologist (W. Y. C., with 5 years of

experience) carefully reviewed theses images and selected a

representative close-up image for each lesion. Images with hair

artifacts were not excluded because the pre-selection of data

showed little influence in a large dataset in a previous study [23].

Our photography equipment was a 6.1-megapixel digital single-

lens reflex camera (D70, Nikon Corporation, Tokyo, Japan) with

an 18–50 mm F2.8 macro lens (Sigma Corporation, Fukushima,

Japan). When obtaining close-up images, the target lesion was

focused and located at the center of the photographs, and the size

was controlled so as not to exceed 50% of the area of the

photograph.

All of the lesions were observed at the clinic by board-certified

staff dermatologists from our institute. The clinicians’ impressions

prior to biopsy were classified as ‘‘benign’’, ‘‘malignant’’, or

‘‘indeterminate’’. When the clinicians were not confident enough

to make a definite benign or malignant diagnosis, the clinical

impression was considered as ‘‘indeterminate’’. Histopathological

diagnoses were used as a ‘‘gold standard’’ and were also classified

as ‘‘benign’’ or ‘‘malignant’’. A physician’s classification was

considered concordant if the category of primary diagnosis agreed

with the final pathologic report. For example, the diagnoses were

concordant for a clinically suspect BCC that was pathologically

proven to be SCC because both tumors are in the malignant

category.

CADx system
A dermatologist (W. Y. C., with 5 years of experience) manually

marked the borders of a skin lesion. The borders and their

corresponding macrophotographs (Figure 1A) were then processed

by a software system developed by our group. The software system

consists of four components: image preprocessing, feature extrac-

tion, feature selection, and classification. These components are

illustrated in Figure 1 and are explained in the following sections.

Image preprocessing. In previous studies, there were

debates regarding the normalization of different lighting condi-

tions and skin color using adjacent skin [37,38]. In the current

study, the original macrophotograph was cropped into two sub-

images: one consisting of only lesion area and one consisting of a

small rectangular sub-image that contained the entire targeted

lesion plus a portion of the surrounding normal skin. To

standardize this step, the cropped normal skin area was set equal

to the lesion area, and the lesion was situated in the center of the

sub-image (Figure 1C). A binary image mask (Figure 1B) was also

derived to mark the lesion pixels.

Extracting conventional features. We investigated three

groups (shape, texture, and color) of a total of 73 conventional

features to build a baseline CADx. These features are briefly

reviewed as follows.

The first group is shape features. From the binary image masks

(Figure 1B), three conventional shape features were extracted:

asymmetry, compactness, and radial variance [39,40].

The second group is texture features. Two types of texture

features were extracted: the gray-level run-length matrix

(GLRLM) [41] and Tamura’s coarseness features [42]. Tamura’s

coarseness estimates were computed for the entire sub-image

(including both normal skin and the lesion) and for the lesion area

alone. As GLRLM features were defined in rectangular images,

these features were only computed for the entire sub-image.

However, the grayscale images were converted from 256 to 16, 8,

4, and 2 levels of gray images. Eleven GLRLM features (listed in

CADx of Skin Lesions with Digital Macrographs
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Table S1) were computed for each converted gray image. This

computation resulted in two Tamura’s coarseness and 44 GLRLM

features.

The third group is conventional color features. Three common

statistical features were considered: 1) variance, a measure of the

spread of a dataset; 2) entropy, a measure of randomness; and 3)

skewness, a measure of distribution asymmetry. These features

were estimated for the gray-, red-, green-, and blue-channel values

in the entire sub-image and in the lesion area. This analysis

resulted in eight variance, eight entropy, and eight skewness

features.

New color features. Two groups of a total of 18 new color

features were investigated in this study to improve CADx

performance. In contrast to the aforementioned conventional

color features that only considered color data for one color

channel at a time, these new color features were derived from

Figure 1. Flowchart of the CADx system.
doi:10.1371/journal.pone.0076212.g001
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multidimensional color channels simultaneously. The features are

delineated as follows:

The first group is two-dimensional color features. The Pearson

product-moment correlation coefficient is a measure of the linear

dependence of two variables [43]. Figure S1A illustrates the

correlation of red- and green-channel pixel values for the image in

Figure 1C. Six correlation coefficients (red-green, green-blue,

blue-red, red-grayscale, green-grayscale, and blue-grayscale) were

computed for both the entire sub-image and the lesion area. This

computation resulted in 12 correlation features.

The second group is three-dimensional PCA of color features.

PCA is a linear transformation technique used to de-correlate data

and maximize information content [44,45]. Figure S1B illustrates

an example PCA for the image in Figure 1C. The PCA technique

basically analyzes an image’s red, green, and blue (RGB) values to

obtain a new coordinate system (Figure S1B), such that the

greatest variance, known as the first principal component (PC1),

lies on the first axis; the second principal component (PC2) is the

greatest variance in a direction orthogonal to the first axis; and the

third (PC3) is orthogonal to the first and second axes. Alterna-

tively, the principal components PC1, PC2, and PC3 can also be

estimated by projecting every pixel’s RGB values onto the three

principal axes to form individual histograms for computing the

corresponding variances (Figures S1C–E). In this study, we

computed all three principal components for both the entire

sub-image and the lesion area. This computation resulted in six

PCA color features.

Feature evaluation and selection. First, the receiver

operating characteristic (ROC) method was used to evaluate each

feature [46]. A univariate analysis based on the area under the

ROC curve (Az) was performed to evaluate the 73 conventional

and 18 new features individually. Second, multivariate analysis

methods were used to remove less informative features, which

provide less or duplicate information to differentiate malignancy,

needed to be eliminated to yield a better, more compact subset of

features for CADx optimization. In this study, we performed this

selection task by utilizing a popular backward stepwise algorithm

named recursive feature elimination (RFE) [47]. In summary, the

algorithm removed the least informative features one at a time

from a set of features by utilizing linear support vector machines

(SVMs) [48]. The feature assigned the smallest weight by the

SVMs was considered as the least informative. The elimination

procedure was performed recursively until the set of remaining

features was empty. The final ranking of features was based on the

order of elimination. The RFE algorithm was applied to optimize

both the baseline CADx, with a set of 73 (conventional) features,

and the proposed CADx, with 91 features (73 conventional and 18

new features).

Software implementation. For feature selection, we used

mlpy version 3.5.0, a freely available python library for machine

learning [49], running on the Windows 7 (Microsoft, Richmond,

WA, USA) platform. The linear classifier in mlpy was LIBLINEAR

[50], and w2 was used for ranking criteria [47]. In-house CADx

software for image processing was developed using MATLAB

version R2012a (MathWorks, Natick, MA, USA) and the

MATLAB code can be found in Compressed Archive S1.

Statistics
Using pathological results as a gold standard, the sensitivity and

specificity of classifying skin lesions by individual and all dermatol-

ogists were assessed. The performance of discrimination between

malignant and non-malignant lesions by CADx was evaluated using

leave-one-out cross-validation (LOOCV) with ROC curve analysis.

The AUC of the ROC (Az) was estimated for every set of the top-n

feature set ranked by theRFE algorithm.Thus, Azwas estimated for

the baseline CADx using the top 1, top 2, to top 73 conventional

features and for the proposed CADx using the top 1 to top 91 of all

features. The performance difference between the baseline and the

proposed CADx was estimated using a paired bootstrap t-test based

on the Az estimated for the optimal sets of features selected by RFE.

The Az values of two ROC curves were compared using DeLong’s

test [51]. Finally, we compared the diagnostic accuracy of CADx

with that of individual and overall clinical diagnoses for malignant

skin lesions. All statistical analyses were performed using R version

3.0.0 [52–54].

Results

Demographics
A total of 769 images of distinct regions of interest (ROI) were

obtained from 676 patients, including 296 males (43.8%) and 380

females (56.2%) with a mean6 SD age of 47.6621.0 years. These

images included 174 malignant lesions and 595 benign lesions.

The demographic data for each histological diagnosis are

summarized in Table 1. There were eight melanomas in this

study, including four invasive melanomas and four noninvasive

melanomas. The number of melanomas is small in our database,

consistent with the relatively low incidence in the Asian population

compared with Caucasians.

Clinical performance
Face-to-face clinical diagnoses of skin lesions were made by 25

staff dermatologists at our institute. Clinical performance deter-

mined based on lesions about which the physicians were more

confident and for which they could provide a definite diagnosis

would be better than the true performance of clinicians, assessed

by including lesions about which they were less confident or which

they were even unable to discriminate as benign or malignant. To

prevent selection bias and the overestimation of clinical perfor-

mance, indeterminate cases were not removed and were consid-

ered ‘‘incorrect’’ in this study because the clinician was unable to

make a correct diagnosis. In the 769 lesions, there were 74 (15

malignant and 59 benign) clinically indeterminate lesions. By

categorizing these cases as incorrect diagnoses, the overall

sensitivity, specificity, and accuracy were 83.33% (95% confidence

interval (CI), 77.09–88.14%) (145/174), 85.88% (82.85–88.45%)

(511/595), and 85.31% (82.63–87.63%) (656/769), respectively.

The performance of each dermatologist is illustrated in Table 1

and Figure 2.

CADx performance
The Az values of 91 studied features, ranging from 0.503–0.823

and determined by univariate analysis, are summarized in

Table S1. The higher the Az, the better that a feature performs

individually. Compactness achieved the highest Az (0.745) among

the shape features. Texture features scored moderately, from

0.511–0.769. Conventional color features apparently scored below

average, from 0.506–0.703. In comparison, new correlation and

PCA color features achieved a much higher Az, from 0.504–0.823.

The ranking of 73 conventional and all 91 (plus 18 new color-

related) features, determined using the RFE algorithm for feature

selection in the multivariate analysis, is also summarized in

Table S1. The higher the ranking, the more discriminating

information that a feature contributes collaboratively. Four new

color features were ranked in the top 10 of all 91 features. These

features were the PC3 of the lesion area alone and for the entire

cropped image (ranked first and eighth) and the green-blue and

green-grayscale correlation coefficients of the lesion area alone

CADx of Skin Lesions with Digital Macrographs
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(ranked sixth and seventh). The optimal operating Az was 0.953

(95% CI, 0.934–0.968) by the new CADx using 24 features

compared with 0.927 (95% CI, 0.906–0.947) by the baseline

CADx using 21 features. The Az improved significantly, by 0.026

(p = 0.001). To avoid over-fitting, the variable number in the final

model was reduced to be less than one tenth of the number of

malignant lesions (N= 174) [55,56]. After reducing the feature

number, the optimal operating Az was 0.949 (95% CI, 0.932–

0.965) by the new CADx using 16 features compared with 0.918

(95% CI, 0.895–0.941) by the baseline CADx using 17 features.

The Az improved significantly, by 0.031 (p= 0.001). Figure 3

illustrates the Az of the baseline and proposed CADx for all

possible top-n selected features.

To compare the performance of CADx and dermatologists,

the two best feature sets with the largest Az from the baseline

and proposed CADx were chosen. Figure 2 presents the

performance of the discrimination of skin malignancy by the

baseline and proposed CADx and the individual and overall

sensitivity/specificity of clinical diagnosis by dermatologists. The

accuracy of clinicians and CADx regarding each pathological

diagnosis is shown in Figure 4. The proposed CADx system

(using the top 16 features) performed comparably to the overall

performance of the dermatologists. The maximal accuracy was

90.64%, at which the sensitivity and specificity were 78.16% and

94.29%, respectively. By adjusting the operating point to be

similar to that of dermatologists, CADx sensitivity and specificity

were 85.63% and 87.65%, respectively. These numbers were

similar to the overall clinical sensitivity (83%) and specificity

(85.88%) determined for all dermatologists. After grouping the

lesions into melanocytic (N= 383) or non-melanocytic (N= 386)

lesions, the diagnostic accuracy of the proposed CADx was

91.38% and 82.90%, respectively. Two examples of skin lesions

with incorrect clinical diagnoses but correct CADx classification

are shown in Figure 5.

Discussion

In this study, a prototype of a CADx system was developed for

the classification of skin lesions using a state-of-art machine

learning technique. Whereas the baseline CADx system uses

features that dermatologists usually consider in clinical practice,

the introduction of new color-related features increases the Az of

the baseline CADx system. The strength of this study lies in its

generous inclusion criteria and good-sized dataset, which repre-

sents a wide spectrum of skin lesions encountered in daily practice,

with each lesion given a definite histopathological diagnosis. Our

classification system was developed based on substantially hetero-

geneous lesion categories and aimed to identify features of

digitized images of skin lesions, which had not been developed

before for Asians.

In this study, we investigated the potential diagnostic value of

digital macrophotography and made two important findings. First,

Table 1. Demographic data for each histological diagnosis and the performance of dermatologists and CADx.

No. of Correct/Incorrect Diagnoses2

Pathology N1 % Sex (F/M) Mean Age (Year) Dermatologist CADx

Benign 595 77.37 358/237 40.88 511/84 521/74

Blue nevus 22 2.86 16/6 35.64 19/3 20/2

Compound nevus 53 6.89 35/18 28.68 50/3 47/6

Congenital nevus 9 1.17 3/6 22.89 9/0 6/3

Dermatofibroma* 49 6.37 30/19 36.84 47/2 48/1

Dysplastic nevus 2 0.26 1/1 39.5 1/1 1/1

Epidermal nevus* 3 0.39 2/1 17 3/0 2/1

Hemangioma* 38 4.94 22/16 47.21 35/3 23/15

Intradermal nevus 240 31.21 161/79 36.98 209/31 225/15

Junctional nevus 46 5.98 29/17 35.85 39/7 42/4

Lentigo simplex 1 0.13 0/1 72 0/1 1/0

Nevus lipomatosus superficialis* 1 0.13 0/1 57 1/0 0/1

Nevus sebaceous* 2 0.26 2/0 30.5 2/0 2/0

Nevus spilus 2 0.26 2/0 23.5 2/0 2/0

Seborrheic keratosis* 127 16.51 55/72 57.69 94/33 102/25

Malignant 174 22.63 81/93 68.86 145/29 149/25

BCC* 110 14.3 57/53 68.14 97/13 99/11

Cutaneous melanoma 8 1.04 5/3 63.25 6/2 6/2

Kaposi’s sarcoma* 14 1.82 2/12 70.5 11/3 10/4

Keratoacanthoma* 22 2.86 7/15 64.82 14/8 18/4

SCC* 20 2.6 10/10 78.35 17/3 16/4

All lesions 769 100 439/330 47.21 656/113 670/99

1N: number of images.
2Indeterminate diagnoses by dermatologists were considered as incorrect. The diagnoses by CADx were made using the final 16-feature model with a cutoff value
0.3972.
*Non-melanocytic skin lesions.
doi:10.1371/journal.pone.0076212.t001
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by taking advantage of a good-sized dataset of heterogeneous skin

lesions, we found that useful information can be extracted from

clinical macrophotographs, which are recorded by a regular digital

camera, to help to classify malignancies using modern machine

learning technologies such as SVM and RFE. By extracting only

the conventional shape, color, and texture features, the baseline

CADx achieved a high Az performance (0.918; 95% CI, 0.896–

0.941), where 0.8, Az #0.9 is considered as good performance,

and 0.9, Az #1 is considered as excellent. Second, we found that

multidimensional color features such as correlation and PCA

significantly improved CADx (p = 0.001) to a maximal Az of 0.949

(95% CI, 0.932–0.965). Four of the 18 investigated new color

features (the PC3 of the lesion alone, the PC3 of the entire cropped

image, and the green-blue and green-gray correlation for the

lesion area alone) were ranked by RFE in the top 10 of all 91

studied features (Table S1). The high ranking indicates that the

multidimensional approach generated good color features. More

importantly, the significant Az improvement by 0.031 indicates

that extra discriminating information of color variance was

uncovered by adding new features. The clinical performance of

the diagnosis of skin lesions varies within different institutes, and at

our hospital, the clinical performance of the dermatologists varied

widely as well (Figure 2), which may be due to the different

experience levels of the clinicians and the complexity of the cases

[23,57]. Therefore, we compared CADx with the overall

performance of the dermatologists and found that the diagnoses

were similar.

Color variance has been proposed to be an important feature in

clinical observation by both the naked eye and dermatoscopic

examination. In the ABCD rule, the number of colors is positively

related to the risk of malignancy. However, these color impressions

are mainly subjective descriptions that remain extremely difficult

to quantify. This difficulty is rooted in complex human color

perception mechanisms. Cone cells in the human retina are three

different types of light-sensitive photoreceptor cells that peak at

RGB colors and can receive signals by responding to visible colors

to different degrees. The human brain perceives colors through an

opponent process of color vision by detecting differences between

the three cone cell types, allowing humans to perceive different

colors. Although the human brain is good at color recognition for

discriminating a lesion from normal skin, the brain is not good at

the quantification of perceived color variance within lesions. With

a filter array of primary colors, the RGB components can be

extracted from different colors by a camera and can be stored as

digital data, which in turn can be quantified and analyzed by

CADx. The variance of the blue channel, for example, was ranked

in the top 3 (Table S1) in both the baseline and the proposed

CADx systems. This concept suggests that the quantification of

single-color channels by the CADx system provides important

diagnostic values for baseline features.

When clinicians evaluate color variance, related criteria, such as

pigmentary change, secondary ulceration, and abnormal vascular

growth, significantly contribute to decision making. Because each

lesion has a different RGB distribution in the color space, the

conventional color features defined in the pure red, green, and

blue channels may not capture the entire spectrum of all colors

under consideration. Furthermore, the statistics of pixel RGB

values could be affected by artifacts, such as reflection of the

corneal layer, which may shift the actual color toward brightness,

or the shadow of steric information, which may shift the actual

color toward darkness in conventional photography. Digital

dermatoscopic systems, which decrease reflection of the corneal

layer, have been preferred over conventional digital photography

in recent CADx research studies [23,58,59]. To overcome the

aforementioned problems, we investigated two multidimensional

color analytic approaches: correlation and PCA. As far as we

know, multidimensional color features have not been reported as

potent features for skin cancer analysis and diagnosis. Our findings

suggest that multidimensional analysis could be a useful tool for

quantifying skin color variance in digital macrophotography.

Correlation coefficients examine the linear relationship between

two color channels or between one color and grayscale. The results

indicated that the color correlation features derived from the

entire cropped image achieved high Az values, between 0.508 and

Figure 2. Comparison of the diagnostic performance of CADx
systems and dermatologists. The ROC curves for differentiating
between benign and malignant lesions using the baseline (red line) and
proposed (blue line) CADx systems. The clinical sensitivity and
specificity of the performance of the dermatologists (circles) at our
institute are shown, and the area of the circle indicates the number of
biopsies performed by each doctor. Note that the clinical sensitivity and
specificity were calculated presuming that the clinician always made a
‘‘wrong’’ diagnosis for ‘‘indeterminate’’ lesions.
doi:10.1371/journal.pone.0076212.g002

Figure 3. Az with different numbers of features for the baseline
and proposed CADx systems. After adding new color-related
features, the proposed CADx had a better Az performance than the
baseline CADx system did.
doi:10.1371/journal.pone.0076212.g003
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0.823, compared with conventional color features’ Az values,

which were between 0.503 and 0.703. The green-blue and green-

grayscale correlation of the entire cropped image were ranked as

the sixth and seventh features by RFE, whereas the green-channel

variance of the lesion area alone dropped from fifth to fifty-ninth.

By considering PCA in terms of geometry, three principal

components reflect the three-dimensional ‘‘shape’’ of the distribu-

tion of pixels in the RGB space. For example, if a pigmented BCC

presents with ulceration and telangiectasia, the three-dimensional

‘‘shape’’ of the distribution might be more dispersed than a benign

nevus, which often consists of mainly a plain brownish color.

Among all PCA features, the PC3 derived from both the lesion

area and the entire cropped image achieved the best Az. Variance

along three principal color components of the lesion area was

eliminated early during feature elimination, and the PC3 of both

the lesion area alone and the entire cropped image were highly

ranked as first and eighth. This finding might be explained by the

following. The color distribution of the lesion or skin alone is more

similar to an oval or spindle shape (Figure S1B), and each would

not produce a specific pattern of malignancy. The skin color could

provide a baseline, whereas inclusion of the lesion would change

the shape of the color distribution being analyzed. The mixture of

these two regions introduces the irregularity of the color shape in

the color space. The PC1 coordinate roughly reflects the direction

of luminance and is therefore not a good discriminating feature.

PC2 and PC3 are the diagonal directions regarding the largest

variance of colors, which might be affected by the variance of the

lesion and skin themselves and/or by the difference between the

lesion and the skin. Through the process of RFE, the high ranking

of PC3 suggests that this component may be a new discriminating

feature in the diagnosis of malignant skin lesions. After de-

correlating the colors, the CADx system helps to analyze and

quantify the three principal components of each lesion, thus aiding

diagnostic accuracy, whereas human or conventional 1D color

Figure 4. The accuracy of dermatologists and CADx for different pathological diagnoses.
doi:10.1371/journal.pone.0076212.g004

Figure 5. Two lesions with incorrect clinical diagnoses but
correct CADx categorization. Two lesions with incorrect clinical
diagnoses but correct CAD system categorization. (A) Basal cell
carcinoma. A skin nodule with variegated color. The clinical impression
was a benign epidermal cyst. (B) Intradermal nevus. An asymmetric
pigmented nodule with an irregular border. The clinical impression was
malignant melanoma.
doi:10.1371/journal.pone.0076212.g005
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features have little use in the quantification and analysis of this

type of color variance.

The necessity of normalization using adjacent normal skin has

been debated [37,38]. In the present study, all color features were

extracted from images with and without the inclusion of adjacent

normal skin. Including the adjacent skin area did improve the Az

performance of all multidimensional color features except PC1.

The exact mechanism of how the inclusion of normal skin area

aids these features performance requires further study. The use of

the CADx system for analyzing the complex color space might

compensate for the weakness of human eyes and help to diagnose

malignant lesions.

Regarding texture analysis, Tamura’s coarseness was selected

because it corresponds well to human visual perception of spatial

variation of grey levels. The coarseness procedure estimates the

differences between the averages of neighbor blocks of various

sizes. The larger the block size generating the maximal difference,

the coarser the image texture is. GLRLM features were selected

for a similar visual perception reason. Consecutive pixels along a

selected orientation tend to have the same intensity in a smooth

region (with a long run length) while their values change

significantly in rough regions (with a short run length).

In clinical settings, sensitivity and specificity varied widely

between doctors at our institute (Figure 2). The result is compatible

with previous reports stating that diagnostic performance is related

to individual clinical experience and specific training in managing

skin lesions [9,57]. The proposed CADx system is not intended to

replace routine clinical examinations, but with a high Az (0.949)

and a manageable size of 16 meaningful features, the system may

have a role in providing consistent criteria for feature measure-

ment by on-site computation, a stable second opinion for less-

experienced staff, or support for a clinical decision. Additionally,

CADx may provide rapid second opinions in the setting of

diagnosis by teledermatology, especially in a clinical situation in

which it is not easy to access an expert clinician.

Several limitations of this study need to be acknowledged. The

feasibility relies on a single image-capture system and consistent

quality control for each image. To use a histopathological report

as a gold standard, the analysis must be restricted to biopsied

lesions. Those lesions for which clinicians or patients decided not

to perform biopsy were not included in the dataset. All images in

the dataset in our study were from Asian patients visiting a single

center in southern Taiwan, so we do not know the system’s

performance with skin types of different races. Therefore, the

generalizability of our results may be limited to biopsied lesions

in Asians. There is concern about a single dermatologist drawing

the lesion margin because the accuracy of the study might be

compromised due to human subjectivity [24,60]. Research on

margin drawing by a group of experts or on the development of

automated lesion segmentation should be performed in future

studies.

Conclusion

In conclusion, we have developed an effective CADx system

that has performance similar to that of the dermatologists at our

institute and that classifies both melanocytic and non-melanocytic

skin lesions by utilizing conventional digital macrophotographs.

Through advanced feature selection and SVM analysis, we also

found that the new color correlation and PCA features signifi-

cantly improved CADx applications for skin cancer.

Supporting Information

Figure S1 Correlation of red- and green-channel pixel
values of skin lesions and PCA analysis of the lesion
image. (A) It shows that the lesion area (blue cloud points) has a

wider width (indicating higher color variation) and therefore, has a

lower correlation coefficient value than the normal skin area (red

cloud points). Six correlation coefficients (red-green, green-blue,

blue-red, red-grey, green-grey, and blue-grey) were computed for

both the whole sub-image and the lesion area respectively. (B)

Three new coordinate axes computed by using PCA (blue: lesion

pixels; red: normal skin). (C, D, E) Histograms of the lesion (blue)

and normal skin (red) for projected data on the directions of the

first, second and third principal components respectively.

(TIF)

Compressed Archive S1 MATLAB code of the software
that was used for feature extraction and classification.

(ZIP)

Table S1 The area under receiver operator character-
istic curve (Az) of different features using univariate
analysis and their ranking after recursive feature
elimination (RFE) procedure using SVM.

(DOC)
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