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Abstract

Sheep pox virus (SPPV), goat pox virus (GTPV) and lumpy skin disease virus (LSDV) are very closely related viruses of the
Capripoxvirus (CaPV) genus of the Poxviridae family. They are responsible for sheep pox, goat pox and lumpy skin disease
which affect sheep, goat and cattle, respectively. The epidemiology of capripox diseases is complex, as some CaPVs are not
strictly host-specific. Additionally, the three forms of the disease co-exist in many sub-Saharan countries which complicates
the identification of the virus responsible for an outbreak. Genotyping of CaPVs using a low-cost, rapid, highly specific, and
easy to perform method allows a swift and accurate identification of the causative agent and significantly assists in selecting
appropriate control and eradication measures, such as the most suitable vaccine against the virus during the outbreaks. The
objective of this paper is to describe the design and analytical performances of a new molecular assay for CaPV genotyping
using unlabelled snapback primers in the presence of dsDNA intercalating EvaGreen dye. This assay was able to
simultaneously detect and genotype CaPVs in 63 samples with a sensitivity and specificity of 100%. The genotyping was
achieved by observing the melting temperature of snapback stems of the hairpins and those of the full-length amplicons,
respectively. Fourteen CaPVs were genotyped as SPPVs, 25 as GTPVs and 24 as LSDVs. The method is highly pathogen
specific and cross platform compatible. It is also cost effective as it does not use fluorescently labelled probes, nor require
high-resolution melting curve analysis software. Thus it can be easily performed in diagnostic and research laboratories with
limited resources. This genotyping method will contribute significantly to the early detection and genotyping of CaPV
infection and to epidemiological studies.
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Introduction

Capripox is a severe disease of sheep, goat and cattle

characterized by fever, lymphadenopathy, generalized papules,

nodules or vesicles in the skin, internal pox lesions particularly in

the lungs, and death [1]. Sheep pox virus (SPPV), goat pox virus

(GTPV) and lumpy skin disease virus (LSDV) belong to the genus

Capripoxvirus (CaPV) within the Poxviridae family [2]. According to

the affected host, sheep, goat or cattle, the disease is named sheep

pox (SPP), goat pox (GTP) or lumpy skin disease (LSD). These

diseases are categorized as notifiable diseases by the World

Organization for Animal Health (OIE) [3].

Capripox affects the ruminant production systems in Africa, the

Middle East and Asia. The existence of SPP and GTP in Turkey

and Greece and LSD in Israel and Lebanon raises concerns that

capripox diseases will become a threat to European countries as

well [2,4]. The economic impact of SPP, GTP and LSD is

substantial due to significant production losses, decreased quality

of skin and hides, restricted access to the global trade of live

animals and animal products, and increased costs of the control

and eradication measures [4].

The geographical distribution of LSD differs from that of SPP

and GTP which are endemic in Africa, north of the Equator, Asia,

the Middle East and some southern European countries [5–9].

Lumpy skin disease is currently endemic in most African countries

and in the Middle East [4,10–12]. With the exception of southern

African countries, all three capripox diseases co-exist in sub-

Saharan Africa creating a serious challenge for the identification of

the circulating viral genotype during the outbreak.

CaPVs are mainly classified using the name of the host-species

from which the virus was originally isolated although it has been

reported that some strains are not host-specific [13–15]. Recent

molecular based studies have shown that CaPVs are phylogenet-
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ically and genetically distinct giving a basis for the molecular

differentiation of CaPVs [13–17].

For many years, CaPV genotyping has been based on the

electrophoretic patterns of viral genome isolates following diges-

tion with restriction enzymes [18]. This method is time-consuming

and requires large amount of viral material, therefore cannot be

applied in a routine basis. More recently, gene sequencing has

been proposed for CaPV genotyping [13,15,19]; however, this can

only be applied for selected samples owing to its cost. The only

rapid method available so far for a routine genotyping of the three

CaPVs is a real-time PCR assay based on dual hybridization probe

technology [14]. However, the use of this method for virus

detection and genotyping is costly since it requires the use of two

fluorescently labelled probes and specialized real-time PCR

machines which accommodate the FRET technology.

Thus CaPV genotyping using a cost-effective, rapid, highly

sensitive and specific, and easy to perform method is urgently

needed by diagnostic laboratories in countries endemic for LSD,

SPP and GTP. The accurate and rapid identification of the virus

will assist in the appropriate vaccine selection and will improve the

prospects for the control and eradication of the disease.

High-Resolution melting of small sized PCR products in the

presence of saturating DNA dye, such as LCGreen and EvaGreen,

offers means to develop cost-effective genotyping assays in which,

unlabelled probes can be added to increase the specificity [20–23].

We investigated the possibility of using an unlabelled probe

strategy based on a snapback primer and the intercalating dsDNA

EvaGreen dye [24–26] for CaPV genotyping using the fluorescent

melting curve analysis of the PCR products. Snapback primers are

oligonucleotides that include as a probe element a 59-tail that is

complementary to the extension product of the primer and

creating a hairpin loop in the single-stranded product [26]. In the

present paper, we report on the design and analytical perfor-

mances of this newly developed molecular assay for genotyping of

CaPVs.

Materials and Methods

Ethics Statement
Swab samples collected from animals that were infected

experimentally with capripoxviruses were used in the present

study. The animal experiment was undertaken at the Laboratoire

Central Vétérinaire (LCV) of Mali in 2009 and the results are

being considered for publication elsewhere. This research labora-

tory in Mali did not have an operational animal ethics committee

at the time of the experimental work. Nevertheless, it has received

the necessary authorization to conduct the study from the Ministry

of Livestock and Fisheries in Mali. In addition, all experiments

were carried out according to the guidelines in the Guide to the

Care and Use of Experimental Animals provided by the French

Ministry of Agriculture.

None of the authors in this paper participated directly in this

animal experiment.

Virulent field isolates and clinical specimens collected from

outbreaks at various geographical locations were also used in this

study. Skin lesions collected from capripox suspected animals in

South Africa, Sudan and Ethiopia were received for viral diagnosis

at the Onderstepoort Veterinary Institute, South Africa and the

National Veterinary Institute of Ethiopia for viral diagnosis. DNA

extracts from skin lesions were forwarded to the authors’

laboratory for further characterization. Additionally, skin lesions

collected from capripox suspected animals received at the Central

Veterinary Laboratory of Kenya for diagnosis, were forwarded to

the authors’ laboratory for capripoxvirus genotype confirmation.

Viral isolates including non-capripoxviruses were also used in this

study. All pathological samples and viral isolates were handled in

the biosafety level 3 containment of the Institute for Veterinary

Disease Control, Austria.

Target Gene and Primers Design
Snapback and reverse primers were designed to target the

30 kDa RNA polymerase subunit (RPO30) gene of CaPVs

[13,17,27]. Primers were designed to allow the amplification, in

all CaPVs, of a 96 base pair (bp) fragment corresponding to

position 27875 to 27970 of the SPPV A genome (AY077833).

These primers were selected using AlleleIDH version 6 software

(Premier Biosoft International, Palo Alto, CA, USA). Within this

amplicon, a snapback tail of 16 bases length was designed

manually to match 100% with GTPV and presented a T:A

mismatch with SPPV and a T:G mismatch with LSDV (Figure 1).

This snapback tail, whose sequence is complementary to the

extension product of the forward primer, was added to the 59 end

of the forward primer. Two nucleotides (GG) not relevant to the

extension product of the forward primer were added to the 59 end

of the snapback tail (Table 1) to prevent it from being extended

once it anneals to its complementary sequence. The snapback

primer serves as both primer and probe. All primers were

synthesized by VBC Biotech, Austria and purified by reverse-

phase high-performance liquid chromatography. The specificity of

the primers sequence was checked by using the Basic Local

Alignment Search Tool (NCBI/Primer-BLAST, http://blast.ncbi.

nlm.nih.gov./Blast.cgi). The secondary structures of the primers

and the anticipated PCR amplicons were studied using the DNA

folding form of the Mfold Web Server (http://mfold.rna.albany.

edu/?q = mfold) [28].

Samples and Viral DNA Extraction
Details of 63 CaPV positive samples and 5 non-capripoxvirus

samples used in this study are listed in Table 2. These consisted of

cell-culture adapted vaccine strains (n = 4), virulent field isolates

(n = 27) and clinical specimens (n = 32) collected from outbreaks at

various geographical locations. Additionally, swab samples from

experimentally infected animals were included. For tissue samples,

10% w/v homogenate was prepared in sterile phosphate buffer

saline (PBS). Swabs were re-suspended in 1 ml PBS. A volume of

200 mL of pathological sample suspension or infected cell culture

supernatant was mixed with 800 mL RLT Plus lysis buffer

(Qiagen, Germany). Viral DNA was extracted using a commercial

AllPrep DNA/RNA extraction kit (Qiagen, Germany) following

the manufacturer’s instructions.

Positive Controls
Plasmids containing the full RPO30 gene sequence of GTPV

Denizli, SPPV Denizli and LSDV Ismalia described by Lamien

et al. [13], and available in the laboratory were used. The

concentration of the plasmids was determined following the steps

described by Lamien et al. [13]. The plasmid of each virus

genotype was serially diluted in 10-fold starting from 108 copies

using herring sperm DNA (5 ng/mL) and kept at 220uC until

analysis.

PCR and Melting Curve Acquisition
The PCR was set up in a 20 mL reaction volume containing

500 nM snapback primer, 40 nM reverse primer, 1x SsoFast

EvaGreen Supermix (BioRad) and sample DNA. PCR was

performed in a CFX96TM real-time PCR detection system (Bio-

Rad Laboratories, Inc.) with an initial denaturation step at 95uC

Capripoxvirus Genotyping Using Snapback Primer
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for 3 min, followed by 45cycles of 95uC for 15sec and 58uC for

80sec using a Low Profile Hard-ShellH 96-well PCR plate (Bio-

Rad). The product was then denatured at 95uC (held for 1 min),

cooled to 40uC (held for 1 min), and heated continuously at

0.5uC/10sec with fluorescence acquisition from 40uC to 85uC.

Each sample was tested in duplicate and every PCR run included

no-template and positive GTPV, LSDV and SPPV controls. The

melting temperatures were analysed using the CFXTM Manager

software version 2.0 (Bio-Rad) and the correspondent curves were

displayed as negative first-derivative plots of fluorescence with

respect to temperature. High-Resolution Melting (HRM) analysis,

a post-PCR melting analysis method used to identify variations in

nucleic acid sequences, was also used to plot the melting profile of

the three genotypes using the Precision Melt AnalysisTM software

(Bio-Rad). Normalized melt curves and difference in curves were

acquired by selecting pre-and post-melt regions for snapback

hairpin and full-length amplicons separately.

Alternatively, the current method was tested using different

PCR machines to evaluate the possibility of performing the assay

using the available PCR platforms. Thus, PCR was performed on

a conventional PCR machine (C1000, Bio-Rad) and the PCR

product transferred to the CFX96 real-time PCR machine (Bio-

Rad) for melting acquisition. Likewise, both PCR and melting

analysis steps were conducted in the 7500 Fast Real-Time PCR

System (Life Technologies), the LightCyclerH 480 Real-Time PCR

System (Roche), the Rotor-Gene Q (Qiagen) and the MiniOpti-

conTM Real-Time PCR Detection System (BioRad), in addition to

the CFX96 TM Real-Time PCR Detection System (BioRad).

Limit of Detection for Each Genotype
The analytical sensitivity of the method was assessed by

amplifying five different concentrations (200, 160, 120, 80 and

40 copies/reaction) of each plasmid containing GTPV Denizli,

SPPV Denizli and LSDV Ismalia RPO30 gene. The limit of

detection (LOD) of each genotype was evaluated by testing the

diluted plasmids in pentaplicate separately at different days on five

separate occasions. The data from each PCR reaction was

recorded and subjected to probit regression analysis using the

STATGRAPHICS Centurion XV Version 15.2.12 software

package (StatPoint Technologies, Warrenton, VA, USA).

Because this method aims simultaneously detecting and

genotyping the CaPVs, the criteria for a PCR to be considered

as positive for the LOD determination were taking into account

both amplification plot and the shape of the melting peak of the

snapback stem. Only when the melting curve allowed univocal

identification of the genotype, in addition to the positive

amplification plot, the reaction was considered as positive for

LOD determination. For samples that showed positive amplifica-

tions but could not be genotyped due to low initial copy number,

the number of cycles in the PCR was increased from 45 to 50

cycles to allow the accumulation of more single stranded DNA for

the hybridization of the snapback tail.

Discriminating Power of the Assay
The sensitivity and specificity of the assay was tested by

comparing the amplification and genotyping level of CaPV DNA

samples extracted from infected cell culture and pathological

samples of skin lesions collected from different geographical

regions (Table 2) and swabs collected from animals that were

infected experimentally. Moreover, the analytical specificity of the

assay was also evaluated by testing non-CaPV DNA samples

extracted from Orf virus and Bovine papular stomatitis virus, and

cDNA derived from Peste des petits ruminants virus (Table 2).

Samples were blinded to the operator and analysed in duplicate.

The accuracy of the genotyping was confirmed using a previously

developed dual hybridization assay [14] and capripoxvirus RPO30

gene sequencing [13].

Results

Assay Design and Optimization
The assay for genotyping was designed to amplify a region of

96 bp within the CaPVs RPO30 gene. The region was selected

based on the alignment of 43 CaPVs of the three species to allow

their simultaneous detection and differentiation using HRM

analysis of the PCR amplicons. To do so, the selected region

contained 3 single-nucleotide differences between SPPV and

GTPV (T:G, G:T and A:T for which the sum is only at A:T

change), and four single-nucleotide changes with LSDV (T:G,

G:T, A:G and A:G equivalent to 2xA:G nucleotide changes). The

initial evaluation showed that LSDV could be differentiated from

SPPV and GTPV, but the assay failed to differentiate GTPV from

SPPV. Therefore, a snapback tail of 16 bases length was designed

to match 100% with GTPV, and presented a T:A mismatch with

SPPV and a T:G mismatch with LSDV, and attached to the 59

end of the forward primer to provide a more targeted genotyping.

As anticipated, the in silico analysis of the expected PCR amplicons

showed a secondary structure with a hairpin in which, the

Figure 1. Nucleotides sequence alignment of the RPO30 gene of CaPVs highlighting the snapback tail binding site. The RPO30 gene
sequences of 7 CaPVs representing GTPVs, LSDVs and SPPVs were aligned. A sequence of sixteen nucleotides complementary to the snapback tail in
GTPV (100% match), as well as the corresponding positions in SPPV and LSDV are shown in the box. Note the targeted single nucleotide mismatches
inside the box: T:A between GTPV and SPPV, and T:G between GTPV and LSDV. Conserved nucleotides are shown as dots.
doi:10.1371/journal.pone.0075971.g001

Table 1. Sequences of the snapback and reverse primers.

Primers Sequences

Snapback 59-ggTGTAGTACGTATAAGATTATCGTATAGAAACAAGCCTTTA-39

Reverse 59-AATTTCTTTCTCTGTTCCATTTG-39

The snapback tail of 16 bases is shown as underlined; 2 nucleotides mismatch at
the 59end are indicated as lowercase; and mismatch nucleotide as underlined
bold (A).
doi:10.1371/journal.pone.0075971.t001
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Table 2. Capripoxviruses and other viruses tested by the snapback primer genotyping assay.

No Strain name Origin Source
Viral DNA
extracted from

Species
origin

Genotyping
result

1 SPPV Turkey/98 Van 2 Turkey VCRI-Pendik/Turkey Cell culture Sheep SPPV

2 SPPV Turkey/98 Sivas Turkey VCRI-Pendik/Turkey Cell culture Sheep SPPV

3 SPPV Turkey/98 Denizli Turkey VCRI-Pendik/Turkey Cell culture Sheep SPPV

4 SPPV Turkey/98 Çorum Turkey VCRI-Pendik/Turkey Cell culture Sheep SPPV

5 SPPV Turkey/98 Darica Turkey VCRI-Pendik/Turkey Cell culture Sheep SPPV

6 GTPV Turkey/98 Denizli Turkey VCRI-Pendik/Turkey Cell culture Goat GTPV

7 SPPV Algerie/93 Djelfa Algeria INMV-LCV/Algeria Cell culture Sheep SPPV

8 SPPV Algerie/05 Illizi Algeria INMV-LCV/Algeria Cell culture Sheep SPPV

9 GTPV Ghana Ghana IAH-Pirbright/UK Cell culture Goat GTPV

10 GTPV Bangladesh/86 Bangladesh IAH-Pirbright/UK Cell culture Goat GTPV

11 GTPV Oman/84 Oman IAH-Pirbright/UK Cell culture Goat GTPV

12 GTPV India/83 India IAH-Pirbright/UK Cell culture Goat GTPV

13 GTPV Iraq/61 Gorgan Iraq IAH-Pirbright/UK Cell culture Goat GTPV

14 GTPV Yemen/83 Yemen IAH-Pirbright/UK Cell culture Goat GTPV

15 SPPV Nigeria C4 Nigeria IAH-Pirbright/UK Cell culture Sheep SPPV

16 GTPV Saudi Arabia/93 Saudi Arabia IAH-Pirbright/UK Cell culture Goat SPPV

17 SPPV OMAN/84 Oman IAH-Pirbright/UK Cell culture Sheep GTPV

18 SPPV KS-1 Kenya HSL-AGES/Austria Cell culture Sheep LSDV

19 LSDV Egypt/89 Ismalia Egypt HSL-AGES/Austria Cell culture Cattle LSDV

20 SPPV Morocco vaccine Morocco Biopharma/Morocco Cell culture Sheep SPPV

21 LSDV Sudan 99 Atbara Sudan CVRL/Sudan Skin lesion Cattle LSDV

22 LSDV RSA 06 Springbok South Africa OVI/South Africa Skin lesion Springbok LSDV

23 LSDV RSA 08 M143/08 10/6/08 South Africa OVI/South Africa Skin lesion Cattle LSDV

24 LSDV RSA/07 Brahman South Africa OVI/South Africa Skin lesion Cattle LSDV

25 LSDV RSA/00 OP126402 South Africa OVI/South Africa Skin lesion Springbok LSDV

26 LSDV RSA06 D.19353 South Africa OVI/South Africa Skin lesion Cattle LSDV

27 LSDV RSA/54 Haden South Africa OVI/South Africa Cell culture Cattle LSDV

28 GTPV Desse I Unknown CIRAD/France Cell culture Goat GTPV

29 GTPV Nigeria goat vaccine Nigeria CIRAD/France Cell culture Goat SPPV

30 LSDV Burkina Banfora Burkina Faso CIRAD/France Cell culture Cattle LSDV

31 SPPV Sangalcam/88 Senegal CIRAD/France Cell culture Sheep SPPV

32 LSDV Niger Tougounous Niger CIRAD/France Cell culture Cattle LSDV

33 GTPV Burkina Benogo 3 A Burkina Faso CIRAD/France Cell culture Goat GTPV

34 GTPV Chad VC6 Chad CIRAD/France Cell culture Goat GTPV

35 GTPV Chad VC8 Chad CIRAD/France Cell culture Goat GTPV

36 SPPV vaccine Nigeria/99- 77 Nigeria CIRAD/France Cell culture Sheep SPPV

37 SPPV Niger/88 Niger CIRAD/France Cell culture Sheep SPPV

38 Embu/B338/2011 Kenya CVL/Kenya Nodule Cattle LSDV

39 Marsabit/B291/2007 Kenya CVL/Kenya Nodule Cattle LSDV

40 Kiambu/G143/2009 Kenya CVL/Kenya Skin scrapping Goat GTPV

41 Kitengela/O58/2011 Kenya CVL/Kenya Skin scrapping Sheep GTPV

42 Kitengela/O59/2011 Kenya CVL/Kenya Skin scrapping Sheep GTPV

43 Bungoma/B624/2010 Kenya CVL/Kenya Skin scrapping Cattle LSDV

44 Fairfield/B01/2009 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

45 Kajima/B01/2009 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

46 EIAR/B01/2009 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

47 Akaki/O01/2008 Ethiopia NVI/Ethiopia Skin lesion Sheep GTPV

48 NVI/G01/2009 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

49 Assosa/G01/2010 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

Capripoxvirus Genotyping Using Snapback Primer
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snapback tail hybridizing on the extension product to produce a

stem of 18 base pair and loop of 55 bases (Figure 2).

With the selected primer pairs and following subsequent

optimization steps, it was possible to produce an efficient

amplification strategy, clear melting curve differences among the

three genotypes (Figure 3), and appropriate melting peaks for both

PCR amplicons and snapback stems (Figure 4). The PCR primer

concentrations as well as the annealing temperature and time were

found to be the most critical parameters of the assay. The optimal

concentrations were 500 nM for the forward snapback primer and

40 nM for the reverse primer. Using the positive control plasmids

corresponding to each of the 3 genotypes, under the optimized

conditions, the following pairs of melting temperature (snapback

tail, amplicons) were obtained: GTPV (58.0uC, 72.5uC), SPPV

(52.0uC, 72.5uC) and LSDV (51.0uC, 73.5uC). Following a close

observation and the analysis of these melting peaks, the following

criteria were applied for the genotyping: the amplicons melting

temperature was used to differentiate LSDV (Tm = 73.5uC) from

GTPV/SPPV (Tm = 72.5uC); and the snapback melting temper-

ature to differentiate SPPV (52.0uC) from GTPV (58uC).

Discriminating Power of the Assay
To study the discriminating power of the assay, sixty three cell

culture supernatants or clinical specimens from capripox suspected

animal were tested (Table 2). Fourteen were genotyped as SPPVs,

25 as GTPVs and 24 as LSDVs. Nine of the samples collected in

domestic ruminants and two samples from wildlife contained

CaPVs that were outside the group corresponding to the name of

their host of origin (Table2). The snapback primer genotyping

results were in complete agreement with those obtained using the

dual hybridization probe assay. For each of these 63 CaPV

samples, the genotype was further confirmed by sequencing of the

RPO30 gene, giving a sensitivity of 100%.

No amplification was observed for non-CaPV DNA from Orf

virus, Bovine papular stomatitis virus, and cDNA from Peste des

petits ruminants virus, even when the number of amplification

cycles was increased to 50 cycles (Table 2). Furthermore, 8

additional samples from suspected capripox cases and 20 swab

samples from healthy goats tested negative in the snapback assay.

All these negative samples were also confirmed to be negative by

dual hybridization probe assay; hence the specificity was 100%.

To further confirm the virus host origin discriminating power of

the current genotyping method, the melting data of the PCR

product duplexes acquired using CFXTM Manager software were

analysed using the Precision Melt AnalysisTM software. Since the

assay produced two PCR amplicons duplexes representing the

snapback hairpin and the full-length amplicons, the HRM analysis

was done separately for each melting region. The normalized melt

curves and difference curves were acquired by selecting the pre-

and post-melt regions for the PCR amplicons duplexes by shifting

on the two different melting temperature regions, thus for the full-

length amplicons the data analysis window was gagged between

70uC–74.6uC and then for analysing the snapback hairpin stem

the window was again adjusted between 48uC–59.5uC as shown in

figure 5. The HRM analysis of the full-length amplicons revealed

that LSDV was separated from GTPV and SPPV; likewise the

Table 2. Cont.

No Strain name Origin Source
Viral DNA
extracted from

Species
origin

Genotyping
result

50 Metekel/O01/2010 Ethiopia NVI/Ethiopia Skin lesion Sheep GTPV

51 Adama/B01/2011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

52 Adama/B02/2011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

53 Mojo/B01/2011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

54 Mojo/B02/22011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

55 Wenji/B01/2011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

56 Wenji/B02/2011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

57 Wenji/B03/2011 Ethiopia NVI/Ethiopia Skin lesion Cattle LSDV

58 Chagni/G01/2012 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

59 Chagni/G02/2012 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

60 Chagni/G03/2012 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

61 Chagni/G04/2012 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

62 Chagni/G05/2012 Ethiopia NVI/Ethiopia Skin lesion Goat GTPV

63 Chagni/O06/2012 Ethiopia NVI/Ethiopia Skin lesion Sheep GTPV

Non Capripoxviruses

1 Orf virus D1701 Germany HSL-AGES/Austria Cell culture Sheep Neg

2 Orf virus CE030ODV unknown HSL-AGES/Austria Cell culture Sheep Neg

3 Orf virus Debrezeit/2012 Ethiopia NVI/Ethiopia Skin lesion Sheep Neg

4 Bovine Papular Stomatitis virus M1 Germany HSL-AGES/Austria Cell culture Cattle Neg

5 PPRV Nigeria 75-1 Nigeria CIRAD/France Cell culture goat Neg

The strains genotyped outside the group corresponding to the name of their host of origin are marked in bold.
Abbreviations: CIRAD = Centre de Coopération Internationale en Recherche Agronomique pour le Dévelopement; CVL: Central Veterinary Laboratories; CVRL = Central
Veterinary Research Laboratories Centre; HSL-AGES = High Security Laboratory, Austrian Agency for Health and Food Safety; IAH = Institute for Animal Health; INMV-
LCV = Institut National de la Médecine Vétérinaire, Laboratoire Central Vétérinaire; NVI = National Veterinary Institute; OVI = Onderstepoort Veterinary Institute;
VCRI = Veterinary Control and Research Institute.
doi:10.1371/journal.pone.0075971.t002
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HRM analysis of snapback hairpin resulted in the clear separation

of GTPV from SPPV and LSDV isolates (Figure 5).

Limit of Detection of the Assay
The limit of detection of each genotype was determined using

probit analysis. Five replicates of different dilutions for each three

genotypes were amplified on five separated occasions and the

percentages of positive results were determined. The LODs at

95% confidence determined graphically were: 130 GTPV DNA

copies per reaction (116–155), 168 SPPV DNA copies per reaction

(54–192) and 183 LSDV DNA copies per reaction (165–211). The

detection of the virus was recorded at a concentration down to 20

copies per reaction for all three genotypes, but with poor genotype

determination. Genotype was correctly determined at 10 copies

per reaction when amplification was increased from 45 to 50

cycles without compromising the specificity of the assay.

Figure 2. Secondary structure of the expected GTPV PCR amplicon. The Snapback hairpin with a 18-nucleotide stem and a loop of 55 bases
is shown. The predictions were done on the Mfold web server [28] using the default parameters of the DNA folding form except for the temperature
which was set at 45uC and the salt concentration set at 50 mM.
doi:10.1371/journal.pone.0075971.g002
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Cross-platform Compatibility
To evaluate the cross-platform compatibility of the assay, we

performed the assay under the conditions described in the

Material and Methods section using plasmids containing each of

the three CaPV genotypes in the following instruments: the 7500

Fast Real-Time PCR System (Life Technologies), the Light-

CyclerH 480 Real-Time PCR System (Roche), the Rotor-Gene Q

(Qiagen), the MiniOpticonTM Real-Time PCR Detection System

(BioRad), in addition to the CFX96 TM Real-Time PCR Detection

System (BioRad).

Figure 3. Melting curves of PCR products. Plasmids harbouring the RPO30 gene of GTPV, SPPV and LSDV were used as templates. The melting
regions of the PCR products duplexes are located between the two colored thick vertical lines; the blue lines are flanking the melting region of
snapback hairpins (50–60uC) while the orange lines are flanking the full-length amplicons (70–76uC).
doi:10.1371/journal.pone.0075971.g003

Figure 4. Snapback primer genotyping of CaPVs. The fluorescence melting curve analysis of the PCR products shows two melting peaks for
each of the CaPV three genotypes (GTPV, SPPV and LSDV) corresponding to the snapback stem melting peak at lower temperature and the full-
length PCR amplicon melting peak at higher temperature (see arrows).
doi:10.1371/journal.pone.0075971.g004
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The melting of both amplicons and snapback stems were

obtained for a successful genotyping in all instruments except the

7500 Fast Real-Time PCR System, where only the melting of the

amplicons could be observed. Indeed, the fixed data-acquisition

capabilities (3 data points/uC) of the 7500 Fast Real-Time PCR

System and the supplied version of the software (version 1.4) were

not adequate for evaluating the snapback melting [24].

There was a small shift in the Tm values of both amplicons and

snapback stems from one instrument to another. The following

pairs of snapback tail/amplicons melting temperatures were

observed: GTPV (56.50uC, 73.90uC), SPPV (52.60uC, 73.90uC)

and LSDV (52.20uC, 74.90uC) on the Rotor-Gene Q (Qiagen),

GTPV (56.00uC, 73.30uC), SPPV (51.40uC, 73.30uC) and LSDV

(50.70uC, 74.30uC) on LightCycler 480 (Roche), and GTPV

(56.00uC, 73.00uC), SPPV (51.50uC, 73.00uC) and LSDV

(50.50uC, 74.00uC) with the MiniOpticonTM Real-Time PCR

Detection System (BioRad).

Additionally, after performing the assay on a normal PCR

machine (BioRad C1000) and transferring the amplified products

to the CFX96 TM Real-Time PCR Detection System for melting

curved analysis only, we successfully detected all three genotypes.

Discussion

A cost-effective, cross-platform compatible and easy-to-perform

real time PCR assay was developed for CaPV genotyping using a

snapback primer and the dsDNA intercalating EvaGreen dye. A

snapback probe element added to the 59end of the forward primer

allowed the formation of a second melting peak during the melting

of the PCR products, corresponding to the melting of the

snapback stems. Using a combination of the melting of the

snapback stems and those of the amplicons, we were able to

develop a new approach for CaPV genotyping. The genotyping

was achieved by using information from both snapback and

amplicons melting. The melting of the amplicons was used to

differentiate LSDV (Tm = 73.5uC) from GTPV/SPPV

(Tm = 72.5uC), because the melting peaks separation can be more

accurately determined in this region due to height of the peaks as

compared to the snapback melting peaks of SPPV (52.0uC) and

LSDV (51.0uC) which are more flat. Furthermore, this 1uC
difference between LSDV amplicons Tm and those of GTPV/

SPPV was maintained in all real time PCR machines that were

used. This confirmed that the amplicons melting is the best option

to differentiate LSDV from GTPV/SPPV. In contrast, the

snapback stem Tm difference between LSDV and SPPV varied

according to the real time PCR machine (from 1uC with the CFX

and MiniOpticon of BioRad to 0.4uC with the Rotor Gene of

Qiagen).

The snapback melting was used to differentiate GTPV from

SPPV/LSDV due to the noticeable difference in the melting

temperatures of the snapback stem of GTPV (Tm = 58uC) which

matched perfectly, and those of SPPV and LSDV (Tm = 52.0uC
and 51.0uC respectively) which included one mismatch each (T:A

and T:G, respectively). The Tm difference of the snapback stem

between GTPV and SPPV/LSDV was higher than 3.8uC in all

the 4 real time PCR machines which performed successfully in the

snapback genotyping.

This assay was readily able to genotype all investigated samples

and assign them into one of the following three CaPV groups:

SPPV, GTPV and LSDV. The results of the CaPV genotyping

were in complete agreement with that of the dual hybridization

probe assay [14]. As previously observed [14], we also found that

some CaPVs fall outside the group corresponding to the name of

their host of origin. This was the case of GTPV Saudi Arabia, and

Figure 5. High-Resolution melting curve analysis of CaPVs using the Precision Melt AnalysisTM software (BioRad). A: the normalized
melt curve of the full-length amplicon; B: the difference curve of full-length amplicon; C: the normalized melt curve of snapback stem; D: The
difference curve of the snapback stem. The species are indicated by the arrows: G = GTPV, S = SPPV and L = LSDV.
doi:10.1371/journal.pone.0075971.g005
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GTPV Nigeria goat vaccine, which are in reality SPPVs; SPPV

Oman known to be a GTPV and SPPV KS1 which was confirmed

to be an LSDV [14,15]. Some samples collected from more recent

outbreaks which were clustering outside the group corresponding

to the name of their host of origin were further characterized by

gene sequencing and phylogenetic reconstruction to confirm their

genotypes. These were two samples from Kenya (Kitengela/O58/

2011 and Kitengela/O59/2011), and three from Ethiopia

(Chagni/O06/2012, Akaki/O01/2008 and Metekel/O01/2010),

both collected from sheep, but identified as GTPV using our new

assay. These genotyping results were in complete agreement with

those of the dual hybridization probes assay [14] and the

phylogenetic reconstruction using the CaPV RPO30 gene (data

not shown). Additionally, two samples collected from Springbok

antelope were detected as LSDVs (Table 2) which was in

agreement with our previous characterization data [13].

The snapback primer technology was first established as a

closed tube genotyping method with saturating dye having a

similar specificity to a probe without the need to use any covalent

label [26]. It was successfully applied for the genotyping of Factor

V Leiden [26], Gilbert Syndrome UGT1A1 (TA)n promoter

polymorphism [24] and for the enrichment and detection of rare

alleles [25]. As previously reported in other assays utilizing the

snapback primer strategy [24–26], our method was also found to

be optimal using asymmetric concentrations with an excess of

snapback primer and limiting the reverse primer. Despite the fact

that this assay is based on an intercalating dye (EvaGreen), it

remains highly specific due to the snapback strategy which

increased the specificity of the test to the similar level with the

fluorescently labelled probe assays.

To our knowledge, this is the first report on the application of

unlabelled snapback primer strategy for pathogen genotyping.

Our results show that this approach represents an effective and

cheaper alternative to the fluorescently labelled probes for

pathogen typing such as that described by Lamien et al. [14].

A non-labelled probe approach has been previously described

for herpes simplex virus (HSV) to differentiate HSV1 from HSV2

[21]. However, at the opposite of above mentioned method, the

snapback primer strategy doesn’t use any chemical modification in

the unlabelled probe to prevent its extension [26]. Instead,

similarly to Zhou et al. [26], we used two non-related nucleotides

to block the extremity of the snapback tail of the forward primer to

prevent its non-specific extension.

Although we have used an HRM curve analysis to further

confirm our results, the present assay doesn’t necessarily require

this analysis, since the melting peaks are sufficient for CaPV

genotyping, reducing the technical difficulty for interpretation of

the results.

The main weakness of this assay is its low analytical sensitivity as

compared to the dual hybridization assay developed by Lamien

et al. [14]. This is due to the fact that the best conditions of the

amplification were not selected because an improved amplification

is offset by lower snapback signal. This is probably due to the

lower level of ssDNA production, and the difference in the ratio

between the amplicon melting peak and that of the probe element

in the snapback primer which then tend to become flat as the

amplicons melting peak increases. Similar observations were made

by Dames et al. [21], when working with unlabelled probes for

HSV genotyping. This corroborates also the previous observations

that the intra-molecular hybridization of the snapback can be

favoured by lowering the nucleic acid concentration or by diluting

the PCR products by 10-fold after amplification [26]. Interesting-

ly, it was possible to genotype samples with lower copy number

(down to 10 copies per reaction), without compromising the assay

specificity by increasing the number of amplification cycles to 50

cycles. Nevertheless, according to our experience, the LOD values

observed after 45 amplification cycles are much lower than the

viral load in most the CaPVs clinical specimen.

Genotyping of CaPVs is very crucial due to the complex

epidemiology picture of capripox disease. While sheep pox and

goat pox are reportedly found in Africa (except southern Africa),

Asia, Middle East and southern Europe [5–9], lumpy skin disease

remains restricted to the African continent (except northern

African countries) with some incursions in Egypt and Israel [4,10–

12].

In sub-Saharan and central African countries, it is believed that

the three capripox virus species co-exist causing diseases in cattle,

sheep and goats. However, CaPV nomenclature is still largely

based on the host-species name, so that using currently available

assays it is impossible to differentiate if the capripox disease in

sheep is caused by a GTPV or a goat is affected by SPPV without

genetic characterization of the virus isolate. Considering the high

cost of gene sequencing, the method is not likely to be applied for

routine screening and it is not affordable in most laboratories in

the affected regions. It is well established that most of CaPV strains

especially those affecting small ruminants are not strictly host-

specific and can cross-infect both sheep and goats [13–15,29]. This

study does confirm this finding with five new outbreaks in sheep

caused by GTPVs. The availability of a cost-effective diagnostic

tool for routine determination of CaPV genotype will assist to

clarify the epidemiological picture in the affected regions.

The assay presented in this paper is easy to perform and

interpret. In addition, it is cheap, and thus, is likely to be

affordable for veterinary laboratories with moderate resources. It is

expected that the effective implementation of this assay for routine

screening of capripox outbreaks will facilitate the more precise

disease management and control.
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