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Abstract

Objective: To investigate the association of risk alleles for type 2 diabetes with prediabetes accounting for age,
anthropometry, inflammatory markers and lifestyle habits.

Design: Cross-sectional study of 129 men and 157 women of medium-sized companies in northern Germany in the Delay of
Impaired Glucose Tolerance by a Healthy Lifestyle Trial (DELIGHT).

Methods: Besides established risk factors, 41 single nucleotide polymorphisms (SNPs) that have previously been found to be
associated with type 2 diabetes were analyzed. As a nonparametric test a random forest approach was used that allows
processing of a large number of predictors. Variables with the highest impact were entered into a multivariate logistic
regression model to estimate their association with prediabetes.

Results: Individuals with prediabetes were characterized by a slightly, but significantly higher number of type 2 diabetes risk
alleles (42.564.1 vs. 41.364.1, p = 0.013). After adjustment for age and waist circumference 6 SNPs with the highest impact
in the random forest analysis were associated with risk for prediabetes in a logistic regression model. At least 5 of these
SNPs were positively related to prediabetic status (odds ratio for prediabetes 1.57 per allele (Cl 1.21–2.10, p = 0.001)).

Conclusions: This explorative analysis of data of DELIGHT demonstrates that at least 6 out of 41 genetic variants
characteristic of individuals with type 2 diabetes may also be associated with prediabetes. Accumulation of these risk alleles
may markedly increase the risk for prediabetes. However, prospective studies are required to corroborate these findings and
to demonstrate the predictive value of these genetic variants for the risk to develop prediabetes.
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Introduction

The prevalence of type 2 diabetes is dramatically increasing and

represents a worldwide growing health problem [1–4]. Even in

those individuals with prediabetes the risk for cardiovascular

disease and total mortality is almost doubled [5–10]. A prediabetic

status is also associated with microvascular complications [11].

Finally, 5 to 10% of untreated prediabetic patients will develop

diabetes each year [12,13]. Yet, the same proportion may convert

back from the prediabetic status to normoglycemia [11]. In routine

medical practice, prediabetes is not yet recognized nor treated,

although it has been repeatedly demonstrated that the transition to

type 2 diabetes can be delayed or avoided [14]. A sedentary

lifestyle and an unhealthy dietary pattern promote weight gain,

particularly central adiposity, which increases the risk for

prediabetes and eventually type 2 diabetes [12,13]. Adipocytokines

such as leptin and adiponectin or the proinflammatory cytokine

interleukin-6 (IL-6) are affected by lifestyle habits and seem to play

an important role for weight development, body composition and

risk for type 2 diabetes [15–20]. In addition, a family history of

type 2 diabetes markedly increases the risk for diabetes reflecting

the interaction of genetic factors with modern lifestyle and

anthropometry [21,22]. Results from family studies and research

in various ethnic groups indicate that the heritability of the disease
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may exceed 50% [23]. Still, up to now information on the impact

of multiple gene loci as to the risk for prediabetes is limited. In a

cohort of non-diabetic Caucasians a significant association

between impaired glucose tolerance and risk alleles for type 2

diabetes has been shown for female and obese individuals, whereas

it has not been possible to demonstrate an effect in male, lean and

insulin sensitive subjects [24].

Until 2011 approximately 40 diabetes-associated genes had

been identified [23,25–28]. Single nucleotide polymorphisms

(SNPs) are the most commonly investigated type of specific genetic

variants. However, the identification of a single gene variant

associated with a complex disease such as diabetes among a large

number of SNPs by statistical methods such as logistic regression

analysis has limitations [29–31]. As more SNPs and interaction

terms are added, the model becomes unstable in the sense that the

variance of the parameter estimates becomes excessively large or

even inestimable, when the number of model parameters exceeds

the number of cases, and the effect of a genetic variant can be

neutralized by the interaction with related parameters. Lately, new

nonparametric predictive models have been developed to over-

come this problem such as the random forest analysis, which

attracts growing interest. One major advantage of this statistical

approach is its capability to cope with a large number of predictors

and to identify those factors with a relevant contribution to the

disease, even in the presence of high order interactions [31–33].

This prompted us to analyze cross sectional data of young

employees in the Delay of Impaired Glucose Tolerance by a

Healthy Lifestyle Trial (DELIGHT) as to the association of 41

SNPs indicating risk for type 2 diabetes with a prediabetic status

[23,25]. This research uses random forest analysis to identify

genetic markers of prediabetes that may add to the information of

anthropometric data, inflammatory markers and lifestyle factors as

to the risk for developing prediabetes [31–33].

Methods

Ethics Statement
The study protocol was approved by the ethical committee of

Hamburg and conducted according to the principles of the

Declaration of Helsinki. Written informed consent was obtained

from all participants. The trial was registered in the German

Clinical Trials Register No. DRKS00000695 (www.germanctr.de).

Design and Recruitment
DELIGHT is a feasibility study on sustainable prevention of

diabetes in young men and women. 18–65 year-old employees of 5

medium-sized companies in the northern part of Germany were

informed about prediabetes, risk for diabetes, and chance of

lifestyle modification [34]. Employees were advised how to

measure their waist circumference, and were eligible for a

check-up, if the waist circumference was $80 cm for women

and $94 cm for men or close to these cut-off points.

Exclusion criteria were known pregnancy, known type 1 or type

2 diabetes, or acute malignant or severe chronic diseases. The final

study population comprised 300 participants. However, the

present analysis focuses on the data at screening of 129 men and

157 women for whom complete information about lifestyle habits,

anthropometric parameters, laboratory values and genetic data

were available.

Data Collection
Assessment of anthropometric data and lifestyle. Height

and weight - light clothing, but no shoes allowed - were measured

to the nearest 0.5 cm or 0.1 kg, respectively, and body mass index

(BMI) was calculated as BMI = (weight, kg)/(height, m)2. Waist

circumference was measured in the middle between the lower rib

margin and the iliac crest. Central obesity was defined by a waist

circumference $80 cm in women and $94 cm in men [35].

Information on lifestyle, nutrition, socio-demographic charac-

teristics and family history of diabetes was obtained using validated

questionnaires developed for the EPIC study (European Prospec-

tive Investigation into Cancer and Nutrition), a prospective

multicenter cohort study in Europe, investigating the association

between lifestyle factors and chronic diseases [36–38]. A self-

administered food questionnaire recorded the frequency and

portion size of 146 food items eaten during the preceding year.

Physical activity was calculated as sports in hours per week, taken

into account activities during summer and wintertime. Smoking

habits were described as number of cigarettes per day.

Laboratory and Clinical Data
Plasma fasting glucose and plasma glucose two hours after oral

challenge with 75 g glucose (oral glucose tolerance test - OGTT)

were measured from Na-fluoride-containing Monovettes (Sarstedt

AG & Co, Nümbrecht, Germany). Routine laboratory parameters

were determined by standard techniques in the central laboratory

of the University Medical Center Hamburg-Eppendorf. Low-

density lipoprotein (LDL) -cholesterol using the Friedewald

formula. Prediabetes was defined as fasting blood glucose levels

(IFG) between 100–,126 mg and/or plasma glucose levels two

hours after an oral load of 75 g glucose (IGT) between 140–

199 mg/dl. Diabetes was defined as fasting plasma glucose levels

$126 mg/dl and/or $200 mg/dl two hours after 75 g of glucose

[10].

Serum concentrations of IL-6 and adiponectin were measured

using the Quantikine HS ELISA kit and the Quantinkine ELISA

kit, respectively (R&D Systems, Wiesbaden, Germany) as

described [38]. Serum leptin concentrations were determined

with a bead-based assay using a Luminex 100 analyser (Luminex

Corporation, Austin, TX, USA) as described [39].

Blood pressure was taken in a sitting position 3 times

approximately 2 min. apart, of which the second and third value

were averaged [40]. Hypertension was defined by antihypertensive

medication or blood pressure $140 mmHg/$90 mmHg. The

homeostasis model assessment insulin resistance (HOMA-IR)

score was categorized at 2.5 as the suggested upper limit of

normal and $3.8, the upper quartile of a European population

[41–42]. For the definition of the metabolic syndrome the criteria

of the International Diabetes Federation were adopted [43].

Genetic Data
DNA was isolated from blood samples using the QIAamp DNA

blood Mini Kit (Qiagen, Hilden, Germany). The gene polymor-

phisms of 41 identified SNPs for the risk of type 2 diabetes

(Table 1) with a minor allele frequency of at least 1% in a

population of European descent were analyzed by matrix assisted

laserdesorption/ionization time-of-flight mass spectrometry

(MALDI-TOF MS) using the Sequenom MassARRAY platform

(Sequenom, San Diego, CA, USA). Assay design was performed

using the standard design procedure supported by the system

supplier (www.mysequenom.com). Primers were synthesized by

Metabion, Martinsried, Germany and Biomers, Ulm, Germany.

iPLEX GOLD application was carried out according to

manufacturer’s instructions and as described previously [44].

Routinely 5% of samples were randomly picked for duplicate

genotyping. The concordance was 100%.

Genetic Markers for Prediabetes
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Statistical Analyses
Baseline characteristics of the participants were reported as

means and standard deviation for quantitative data and are

compared between groups using Student’s t-test or Oneway

ANOVA, depending on the number of groups. Qualitative scales

are reported as counts and proportions and compared using chi-

squared tests. Selected quantitative data like waist or BMI,

HOMA-IR were also reported using discretized versions with

clinically defined cut points. P-values below 0.05 were considered

statistically significant. The random forests approach, a collection

of classification trees, was used to cope with the large number of

variables and select those markers with a relevant contribution to

the defined outcome variable ‘prediabetic status’. The model of

the random forests approach has been described previously in

detail [32,33]. Statistical calculations were performed running the

software version R2.15.1 using the forest procedure from the party

Table 1. Gene loci and SNPs associated with increased risk of type 2 diabetes.

Gene locus Cytogenetic location Gene name SNP

ADAMTS9 3p14.3-p14.2 ADAMTS9 antisense RNA 2 rs4607103

ADCY5 3q13.2-q21 adenylate cyclase 5 rs11708067

BCL11A 2p16.1 B-cell CLL/lymphoma 11A rs243021

C2CD4B 15q21.3 C2 calcium-dependent domain containing 4A/B rs7172432

CDC123 10p13-p14 cell division cycle 123 rs12779790

CDKAL1 6p22.3 CDK5 regulatory subunit associated protein 1-like 1 rs7754840

CDKN2AB 9p21.3 cyclin-dependent kinase inhibitor 2A/2B rs10811661

CENTD2 11q13.4 Arf-GAP with RhoGAP domain, ankyrin repeat and PH domain 1 rs1552224

CHCHD9 9q21.31 coiled-coil-helix-coiled-coil-helix domain containing 9 rs13292136

DGKB 7p21.2 diacylglycerol kinase, beta 90 kDa rs2191349

DUSP9 Xq28 dual specificity phosphatase 9 rs5945326

FTO 16q12.2 fat mass and obesity associated rs8050136

FTO 16q12.2 fat mass and obesity associated rs9939609

GCK 7p15.3-p15.1 glucokinase rs4607517

GCKR 2p23.3-p23.2 glucokinase (hexokinase 4) regulator rs780094

HHEX 10q24 hematopoietically expressed homeobox rs1111875

HMGA2 12q14.3 High mobility protein group HMCI-C rs1531343

HNF1A 12q24.2 Hepatocyte nuclear factor 1-alpha rs7957197

HNF1B 17q12 HNF1 homeobox B rs4430796

IGF2BP2 2q33-q34 insulin-like growth factor 2 mRNA binding protein 2 rs1470579

IGF2BP2 2q33-q34 insulin-like growth factor 2 mRNA binding protein 2 rs4402960

IRS1 2q36 insulin receptor substrate 1 rs2943641

JAZF1 7p15 JAZF zinc finger 1 rs864745

KCNJ11 11p15.1 potassium inwardly-rectifying channel, subfamily J, member 11 rs5219

KCNQ1 11p15.5 potassium voltage-gated channel, KQT-like subfamily, member 1 rs231362

KLF14 7q32.3 Kruppel-like factor 14 rs972283

MTNR1B 11q21-q22 melatonin receptor 1B rs10830963

NOTCH2 1p13-p11 notch 2 rs10923931

PPARG 3p25 peroxisome proliferator-activated receptor gamma rs1801282

PRC1 15q26.1 protein regulator of cytokinesis 1 rs8042680

PROX1 1q32.2-q32.3 prospero-related homeobox 1 rs340874

RBMS1 2q24.2 RNA binding motif, single stranded interacting protein 1 rs7593730

SLC30A8 8q24.11 solute carrier family 30 (zinc transporter), member 8 rs13266634

TCF7L2 10q25.2-q25.3 transcription factor 7-like 2 rs7903146

THADA 2p21 thyroid adenoma associated rs7578597

TP53INP1 8q22.1 tumor protein p53 inducible nuclear protein 1 rs896854

TSPAN8 12q21.1 tetraspanin 8 rs7961581

UBE2E2 3p24.3 ubiquitin-conjugating enzyme E2E 2 rs7612463

WFS1 4p16.1 Wolfram syndrome 1 rs10010131

ZBED3 5q13.3 ZBED3 antisense RNA 1 rs4457053

ZFAND6 15q25.1 AN1-type zinc finger protein rs11634397

doi:10.1371/journal.pone.0075807.t001
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package [45–48]. The most promising variables found in this

analysis were used to set up a multivariate logistic regression model

to estimate the predictive value of identified parameters individ-

ually and collectively.

Results

Baseline Characteristics
About one third of the study population, men and women

likewise, were affected by prediabetes, identified by elevated

fasting and/or 2-h glucose (Table 2). Mean age and body mass

index (BMI) did not differ between men and women (data not

shown). However, women were characterized more often by an

elevated waist circumference, and by higher levels of leptin and

adiponectin, but also by a more favorable lipid profile. The

prevalences of hypertension and prediabetes were comparable in

both sexes. As to dietary and lifestyle habits women were

characterized by a lower intake of energy, fat, saturated fat and

fiber than men. Smoking habits did not differ between sexes,

whereas females reported less physical activity.

Participants with prediabetes were older, had a higher HOMA-

IR, and a higher BMI particularly within the category of obesity

compared with normoglycemic subjects (Table 2). Also, triglycer-

ide levels and the rate of hypertension were significantly higher in

prediabetic individuals, whereas plasma concentrations of LDL-

and HDL-cholesterol were similar. No differences were observed

as to mean values of leptin, adiponectin, and IL-6, but also dietary

intake and physical activity (data not shown).

Genetic Data
Within the study population the total number of risk alleles did

not differ between men and women (Table 3). Individuals with

prediabetes were characterized by a slightly, but significantly

higher number of total risk alleles (Table 3). Categories of HOMA-

IR did not differ in the number of risk alleles, but trends towards

higher numbers of risk alleles for increasing categories of fasting

glucose levels and 2-h glucose levels were observed (Table 3).

To identify genetic markers with a greater contribution as to risk

for prediabetes the random forest approach was used. 41 SNPs for

which associations with type 2 diabetes were published until 2011,

and as well age, sex, anthropometric data, inflammatory markers

(leptin, adiponectin, IL-6) and lifestyle factors known to contribute

to diabetes (total energy intake, fat intake, intake of saturated fat

and fiber) were included in the model.

Table 2. Baseline characteristics of normoglycemic versus prediabetic participants.

Clinical characteristics Subcategory
Normoglycemic n=197
(68.9%)

Prediabetic n =89
(31.1%) p-value

Sex Male [%] 69.8 30.3 n.s.{

Female [%] 68.2 31.8

Age [years] 42.668.7 47.368.2 ,0.0011

BMI [kg/m2] 28.164.4 30.265.1 ,0.0011

,25 [%] 23.9 13.5 0.008{

25–,30 [%] 49.7 42.7

$30 [%] 26.4 43.8

Waist circumference [cm] 92.8611.4 98.5612.7 ,0.0011

,94 cm*/,80 cm# [%] 23.5 10.1 0.002{

$94 cm*/$80 cm# [%] 37.2 30.3

$102 cm*/$88 cm# [%] 39.3 59.6

Fasting glucose [mg/dl] 91.065.1 104.965.2 ,0.0011

$100 mg/dl [%] 0 96.6 ,0.001{

,100 mg/dl [%] 100 3.4

2-h glucose [mg/dl] 81.6620.3 101.7629.3 ,0.0011

,140 mg/dl [%] 0 13.5 ,0.001{

$140 mg/dl [%] 100 86.5

HOMA-IR 2.064.2 2.762.7 n.s.1

,2.5 [%] 83.6 61.4 ,0.001{

2.5–,3.8 [%] 7.7 19.3

$3.8 [%] 8.7 19.3

Triglycerides ([mg/dl] 122.4668.8 163.16134.4 ,0.0011

HDL-cholesterol [mg/dl] 62.1616.4 60.0616.5 n.s.1

LDL-cholesterol [mg/dl]` 123.6633.1 127.8632.5 n.s.1

Hypertension [%] 20.0 42.5 ,0.001{

Values are given as mean 61 standard deviation or as absolute or relative frequencies.
*males / #females;
1t-test,
{chi-square test;
`estimated by the Friedewald formula.
doi:10.1371/journal.pone.0075807.t002
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In this explorative study those markers that exceeded the

random fluctuation around zero - the magnitude of which is

indicated by the negative variation and the dotted line in Figure 1 -

were selected for further analyses as suggested by [49]. Markers of

relevance comprised age, waist circumference, and leptin, but also

6 SNPs: rs972283 in KLF14, rs5945326 in DUSP9, rs13266634 in

SLC30A8, rs10923931 in NOTCH2, rs4457053 in ZBED3, and

rs1111875 in HHEX (Figure 1).

According to the analysis obtained by the random forest model

the 6 SNPs representing the most powerful genetic markers were

selected. Since the random forest approach does not distinguish

whether the identified SNP may increase or decrease susceptibility

for the disease, a logistic regression was performed including age,

sex, categories of waist circumference and the 6 selected SNPs

(Figure 2a). The results indicate that sex was not associated with

increased risk for prediabetic status, whereas age and central

obesity, particularly a waist circumference $88 cm in women and

$102 cm in men, were significantly related to a higher risk. The

majority of SNPs showed a tendency towards a higher risk as to

prediabetic status, which was significant in carriers of rs972283 in

KLF14, rs5945326 in DUSP9, and rs13266634 in SLC30A8

(Figure 2a). However, rs10923931 in NOTCH2 was significantly

associated with a lower risk as to prediabetic status. To calculate

the effect per risk allele, in the next step a logistic regression was

performed including age, sex, categories of waist circumference

and the 6 identified SNPs as sum score (Figure 2b). With every

SNP the odds for prediabetes increased by 57% (Cl 1.21–2.10,

p = 0.001). Evaluation as to hetero- and homozygote carriers

showed similar results (data not shown). Exclusion of rs10923931

in NOTCH2 would lead to 92% (Cl 1.43–2.68, p,0.0001) increase

in risk per allele. Including leptin in the analysis did not change the

results (leptin 1.01 Cl 0.97–1.05; allele score 1.93 Cl 1.44–2.72).

Discussion

Compared to type 2 diabetes, the information on the impact of

multiple gene loci as to the risk for prediabetes is limited and needs

further clarification. Analysis of the DELIGHT data indicates that

genetic variants, which predispose individuals to type 2 diabetes,

may serve as risk markers for the development of prediabetes as

well. Individuals with prediabetes were characterized by a

significantly higher number of risk alleles than normoglycemic

subjects. On average each relevant SNP increased the odds for

prediabetes by 57%. Accumulation of these risk alleles may lead to

Table 3. Number of total homozygous or heterozygous risk
alleles.

Genetic data
Number of
risk alleles p-value

Sex Male 41.663.9 n.s.

Female 41.863.7

Normoglycemic 41.363.6 p = 0.013

Prediabetic 42.564.1

HOMA-IR ,2.5 41.763.9 p = 0.738

2.5–,3.8 42.263.1

$3.8 41.563.6

Fasting glucose
[mg/dl]

,90 mg/dl 41.163.8 p = 0.059

90–,100 mg/dl 41.563.6

$100 mg/dl 42.564.1

2-h glucose [mg/dl] ,140 mg/dl 41.663.8 p = 0.128

$140 mg/dl 43.364.6

Values are given as mean 61 standard deviation.
doi:10.1371/journal.pone.0075807.t003

Figure 1. Relevance of markers as to prediabetic status of 100
runs in a random forest analysis.
doi:10.1371/journal.pone.0075807.g001
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a markedly increase of the risk for prediabetes, the extent of which

certainly needs to be determined in adequately sized prospective

studies.

There is strong evidence that a prediabetic status is sufficient to

increase the risk of cardiovascular disease and death substantially

[5–10]. Notably, in DELIGHT one third of the relatively young

and healthy employees pre-selected by an elevated waist circum-

ference was affected by prediabetes, most of them as part of a

metabolic syndrome. Once identified, successful lifestyle interven-

tion trials clearly show that diabetes may be delayed, if not

prevented. Untreated, 5 to 10% prediabetic patients may develop

diabetes each year [12,13]. Therefore early detection of individ-

uals at risk is a major challenge. Obviously, genetic markers can be

determined early in life, an advantage compared to established risk

factors, which confer an elevated risk primarily at a later stage. In

DELIGHT the impact of well-established risk factors such as

lifestyle habits or inflammatory markers appeared to be rather

small, possibly explained by an elevated waist circumference as an

inclusion criterion. Since age and anthropometry though risk

factors for prediabetes, lack specificity, an array of simple genetic

markers may be helpful to identify individuals at risk.

In the present analysis a slightly, but significantly higher number

of total risk alleles characterized individuals with prediabetes

compared to normoglycemic subjects. This finding was not sex-

linked. In the TUEbingen Family study (TUEF) Lindner et al.

reported that genetic risk alleles predict risk for impaired glucose

tolerance [24]. This was only shown for women and obese

individuals, yet. However, at that time the results were based on

only 9 selected diabetes-associated genes, particularly those related

to impaired glucose tolerance. Differences as to the influence of

sexes may be explained by an underrepresentation of males in the

TUEbingen Family study. This is supported by some studies which

found that sex-hormones differently modulate glycemic status and

IGT is more frequent in males, whereas IFG occurs more often in

females [50–51].

Observational studies indicate that both parameters, elevated

fasting and 2-h glucose values after an OGTT, seem to be strong

predictors of diabetes incidence [52–59]. However, one should

properly distinguish between variants obtained from genome-wide

studies focusing on type 2 diabetes and those genes examined in

epidemiological studies that are responsible for the regulation of

glucose levels within the normal range [23,60]. In DELIGHT

clinically established categories of IFG and IGT showed a

tendency towards a higher number of risk alleles. Yet, the risk of

diabetes may be higher in subjects with isolated IGT compared to

those with isolated IFG [55]. Pathophysiological mechanisms of

isolated IFG and isolated IGT probably differ, but the finding and

its clinical relevance need further clarification [11]. The small

proportion of individuals with isolated elevated IGT in the

DELIGHT project may be a matter of both the inclusion criteria

of an elevated waist circumference and a low threshold of 100 mg/

dl for IFG in contrast to 110 mg/dl as formerly used.

Results from the random forest analysis indicate that particu-

larly age and waist circumference, but also leptin and 6 single-

nucleotide polymorphisms out of 41 are associated with an

elevated risk for prediabetes. The impact of age, waist circumfer-

ence and leptin is in line with other investigations on risk for

diabetes. Interestingly, sex, adiponectin, interleukin-6 levels and

lifestyle habits were not selected as markers with a particularly

important contribution to the disease by the random forest model.

As to adiponectin and lifestyle habits, one explanation might be

that age, waist circumference, leptin levels and some of the risk

Figure 2. Logistic regression as to risk for prediabetes of SNPs per allele (2a) or sum score (2b).
doi:10.1371/journal.pone.0075807.g002
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alleles cover much of the risk common to the preselected study

population [21,61–66].

In a logistic regression model the majority of the 6 selected

SNPs were positively associated with prediabetic status. However,

a strong significant effect was only revealed in carriers of rs972283

in KLF14, rs5945326 in DUSP9, and rs13266634 in SLC30A8,

explainable either by the smaller sample size of our study or pre-

selection of the participants by waist circumference. Variations at

KLF14, the Krueppel like factor 14, were related to type 2 diabetes

and HDL-cholesterol but also basal cell carcinoma in different

populations [24,26,67–73]. The effect of KLF14 is reportedly not

driven by obesity, quite unlike the known BMI- and fat mass

mediated effect of FTO via insulin resistance [26,74,75].

Additionally, rs5945326 in DUSP9, the dual specificity protein

phosphatase 9, and rs13266634 in SLC30A8, the zinc transporter,

were positively related to prediabetic status. Results from other

investigations indicate that DUSP9 and SLC30A8 are common

susceptibility loci for type 2 diabetes across various ethnicities

[23,25,76–78]. Furthermore, a positive association between

prediabetic status and HHEX and ZBED was revealed. These

findings are supported by others who investigated the effect of the

selected SNPs as to risk for type 2 diabetes [23,26,60,79].

Pre-selection criteria as to central obesity within the DELIGHT

project, the exclusion of participants with known type 2 diabetes,

or the sample size may have biased our result. Therefore

previously identified risk variants in other gene loci such as

TCF7L2 or FTO failed to show an important relationship in our

analysis or were even associated with a decreased risk such as

NOTCH2.

Limitations and Strength of this Study
DELIGHT has limitations that need to be addressed. First, our

findings are confined to those employees who voluntarily chose to

take part in the program, and were characterized by central

obesity or at least a waist circumference close to the threshold.

Second, the sample size was rather small and therefore associa-

tions between several identified SNPs and prediabetic status may

fail to reach statistical significance. However, DELIGHT is one of

the first studies, to evaluate the association between a wide array of

SNPs published at the time of this analysis and risk of prediabetes

above and beyond established predictors. This was possible by

applying the advanced statistical method of a random forest

analysis. Advantage of this explorative approach is not only the

capability of coping with large numbers of predictors even in the

presence of complex interactions that may have any impact.

Conclusions
This explorative analysis of DELIGHT demonstrates that at

least 6 out of 41 genetic variants characteristic of individuals with

type 2 diabetes may be related to prediabetic status as well. With

every SNP the odds for prediabetes increased significantly beyond

well-established risk factors such as age and waist circumference.

In the future the identification of those markers may be useful in

clinical practice to identify individuals at risk at an early stage.

Certainly, more research using prospective data is required to

confirm these findings, obtained by the application of the method

of selected random forest analysis, to establish a clinically

applicable tool.
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