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Abstract

The ability to assess brain tumor perfusion and abnormalities in the vascular structure in vivo could provide significant
benefits in terms of lesion diagnosis and assessment of treatment response. Arterial spin labeling (ASL) has emerged as an
increasingly viable methodology for non-invasive assessment of perfusion. Although kinetic models have been developed
to describe perfusion in healthy tissue, the dynamic behaviour of the ASL signal in the brain tumor environment has not
been extensively studied. We show here that dynamic ASL data acquired in brain tumors displays an increased level of
‘biphasic’ behaviour, compared to that seen in healthy tissue. A new two-stage model is presented which more accurately
describes this behaviour, and provides measurements of perfusion, pre-capillary blood volume fraction and transit time, and
capillary bolus arrival time. These biomarkers offer a novel contrast in the tumor and surrounding tissue, and provide a
means for measuring tumor perfusion and vascular structural abnormalities in a fully non-invasive manner.
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Introduction

Solid tumors account for approximately two thirds of all

childhood cancers, of which brain and central nervous system

tumors are the most common [1]. To grow beyond a few

millimeters in size, tumors must develop networks of new vascular

supply [2]. The new vessels which are formed are often tortuous

[3], display increased permeability to macromolecules [4], and

have significantly larger diameters [5,6]. Characteristic changes in

vessel shape occur not just at the capillary level, but include larger,

initially healthy vessels, and extend over a distance beyond the

tumor margin [6,7]. Imaging modalities which are sensitive to

both abnormal flow characteristics and vascular structure can

therefore provide potential surrogate biomarkers for the evaluation

of tumor malignancy, growth, and response to treatment.

Arterial spin labeling (ASL) is an emerging technique for fully

non-invasive quantification of cerebral blood flow (CBF) [8,9].

Although the signal to noise ratio (SNR) is inherently lower than

MR-based perfusion measurements acquired using injected

paramagnetic contrast agents, ASL has the advantage that it

employs an endogenous tracer, by magnetically labeling water in

the arterial blood supply. As such, it is a completely non-invasive

and non-ionizing technique, allowing for safe repeated measure-

ments in patients, increased patient comfort, and avoids the risk of

nephrogenic systemic fibrosis associated with the use of gadolin-

ium based contrast agents in patients with renal failure [10]. These

combined benefits have seen ASL move from the field of research

into routine clinical practice in recent years [11–13].

Perfusion quantification using ASL is performed by inverting

the longitudinal magnetization of the arterial blood flowing into

the tissue, waiting for a given ‘inflow time’ (TI), then acquiring an

image (known as the ‘label’ acquisition). The same process is

repeated without labeling the inflowing arterial blood (the ‘control’

acquisition), after which the perfusion information is contained in

the subtraction between the two acquisitions (dM, in which dM =

control – label signal intensity). A complication associated with this

technique is the presence of intra-vascular signal if the ASL

acquisition is performed at short TI times, before the labelled

bolus has reached the capillary bed. These appear as bright foci in

dM images, caused by the presence of tagged blood in arterial

vessels which is destined to perfuse more distal tissue. The simplest

way to eliminate the intra-arterial contribution to the ASL signal is

to perform the acquisition at a longer TI; however, the recovery of

the inverted longitudinal magnetization of the labelled blood-

water at longer TIs results in a reduction in SNR. Alternatively,

bipolar crusher gradients have been employed to eliminate

vascular artefacts, by dephasing the moving spins in large vessels

[14,15]. Although effective at eliminating the bright foci seen in

large arteries, these techniques require prior assumptions regard-

ing arterial flow velocity, and due to scan time constraints the

crusher gradients are generally only applied in a single direction,

reducing the efficiency of the technique in vessels perpendicular to

the gradient direction. Furthermore, these bipolar gradients

cannot be employed in conjunction with the GRadient And Spin

Echo (GRASE) readout used in a number of multi-TI ASL
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sequences, due to conflicts with the Carr-Purcell-Meiboom-Gill

echo sequence inherent in the technique [16].

When ASL acquisitions are performed over a range of TIs, the

dynamic behaviour of the inflowing bolus of labelled blood can be

studied. Early work by Buxton et al. [17] demonstrated a general

kinetic model for the time-dependent dM signal, which takes into

account the history of delivery of magnetization by arterial flow,

and clearance by venous flow and longitudinal relaxation. This

kinetic model is able to account for local differences in bolus

arrival time (BAT), which not only improves the accuracy of CBF

quantification, but has also been shown to be a physiologically

useful parameter itself [18–20]. However, CBF quantification

using the Buxton model is still corrupted by vascular artefacts, as it

is assumed that labelled blood instantaneously exchanges with

tissue upon arrival, which neglects both the finite permeability of

the capillary walls, and the ‘through-flow’ of blood in large arteries

destined for capillaries distal to the voxel.

Alternatively, a number of ‘two-compartment’ ASL models

have been developed, which relax the assumption of ‘instanta-

neous tracer exchange’ by accounting for the finite permeability of

the vasculature in the capillary bed [21–24]. Although more

physiologically accurate, these models require either prior

assumptions regarding the local capillary permeability-surface

product (PS) and vascular volume fraction, which are unlikely to

hold true under pathological conditions, or a large number of

fitted parameters. Furthermore, with the exception of [23], they do

not account for the ‘through-flow’ effect in voxels containing large

arterial vessels.

An alternative approach was presented recently by Chappell et

al. [25], in which a probabilistic inference method was used to

identify voxels containing large arteries [26], and in such regions a

separate intra-vascular component was included in the model.

This technique appears effective for eliminating the vascular

artefact in multi-TI ASL data, however, it assumes that the intra-

vascular bolus passes instantaneously through the voxel, and is

therefore best suited to modelling the intra-vascular signal in large

vessels with high flow speeds. While this may be a reasonable

assumption in healthy tissue, this may not be the case for the

chaotic and tortuous vascular structure observed in tumors.

A number of studies have examined the use of ASL for

measuring perfusion in brain tumors (eg. [11,27–29]). However,

the majority of these have acquired ASL data at a single TI, and as

such the dynamic behaviour of the labelled bolus as it traverses the

tumor vasculature could not be evaluated. We present here a study

in which ASL was performed in a small cohort of paediatric brain

tumor patients, with acquisitions made over a wide range of TIs, in

order to probe perfusion kinetics in the tumor environment.

Rather than treating the intra-vascular signal as an artefact, we

developed a modified, ‘two-stage’ version of the Buxton general

kinetic model, in which the total ASL signal in each voxel is

divided into a non-exchanging, ‘pre-capillary’ stage, and a later,

exchanging stage in the capillary bed. The model is similar in

nature to [25], however, in this study modifications are made to

the functional form of the tissue residue function described in [17],

and the assumption of instantaneous passage of the intra-vascular

bolus through the voxel is relaxed, which allows us to include

smaller arteries and arterioles in the pre-capillary stage.

The two-stage model was first tested in healthy adult volunteers,

in which multi-TI ASL data were acquired. This was followed by a

magnetic resonance angiography (MRA) acquisition in two

subjects, to test the hypothesis that the ASL-derived estimates of

high intra-vascular signal corresponded to regions of large arterial

vessels. We then applied the technique to ASL data collected in a

cohort of paediatric brain tumor patients, to test the utility of the

technique for measuring the dynamic perfusion signal in the

presence of abnormal vascular structure. We also investigated

whether parameter maps derived from this model offer a novel

contrast in the tumor environment and surrounding tissue, which

could provide surrogate biomarkers of both CBF and abnormal

vascular structure, derived using dynamic ASL data alone.

Materials and Methods

Theory
The general kinetic model presented in [17] describes the

dynamic ASL signal in terms of three time dependent basis

functions. The first is the delivery function, c(t), which represents

the normalized arterial concentration of magnetization arriving at

a voxel at time t. If the bolus of labelled blood arrives at time

t = BAT, then the second basis function is the tissue residue

function r(t), which describes the fraction of tagged water

molecules that remain in the tissue after arrival (t.BAT). The

third basis function is the magnetization relaxation function, m(t),

which describes the fraction of the original longitudinal magne-

tization tag carried by the water molecules that remains at time t.

It is assumed in [17] blood water instantaneously exchanges with

tissue on arrival in the voxel, resulting in the following form of the

basis functions (for pulsed ASL):

c(t)~

0

a:e
{ t

T1b

0

8><
>:

0vtvBAT

BATƒtƒt

twt

ð1Þ

r(t)~e
{CBF :t

l ð2Þ

m(t)~e
{ t

T1t ð3Þ

where a = inversion efficiency of the tagging pulse, T1b = longitu-

dinal relaxation time of arterial blood, T1t = longitudinal

relaxation time of tissue, CBF = cerebral blood flow, l = equilib-

rium tissue/blood partition coefficient of water, and T= bolus

duration. The time dependent ASL signal is then:

dM(t)~2M0bCBF c(t) � ½r(t):m(t)�f g ð4Þ

where M0b is the equilibrium longitudinal magnetization of arterial

blood and � denotes convolution [17].

In this study we adapted the form of r(t), to account for a pre-

capillary stage (Figure 1). This two-stage model assumes that the

total ASL signal in a given voxel arises partly from blood in the

non-exchanging, pre-capillary blood volume (with volume fraction

fpc), and partly from blood in exchanging capillaries (with volume

fraction 1- fpc). Labelled blood resides in the pre-capillary stage

during the ‘pre-capillary transit time’ (pcTT), and arrives at the

capillary bed at the ‘capillary bolus arrival time’ (BATc). The two

stages are independent (i.e. the capillary stage does not have to

directly follow the pre-capillary stage), to account for the fact that

voxels may contain arteries/arterioles which terminate at capil-

laries outside of the voxel. This may be the case when a voxel

contains either large through-flowing arteries, or tortuous vessels

which may pass into and then out of the voxel. As such, r(t)

represents a combined residue function from two independent

sources of signal. Single compartment kinetics were assumed for

Two-Stage ASL Model for Brain Tumor Perfusion
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the capillary stage to limit the number of free parameters in the

model, and the T1 value used in m(t) was adapted for each stage,

resulting in the following expressions for r(t) and m(t):

r(t)~
fpc

(1{fpc):e{CBF :t
l

(
0vtvpcTT

t§BATc

ð5Þ

m(t)~ e
{ t

T1b

e
{ t

Tt

8<
: 0vtvpcTT

t§BATc

ð6Þ

Equations (5) and (6) were substituted into equation (4) for the

calculation of dM(t).

Simulated data
To provide an illustration of how different levels of fpc influence

both the total ASL signal, and the preferred model choice, a series

of simulated ASL datasets were generated. These were produced

by assuming the total ASL signal arises from two independent

sources: a pre-capillary, intra-vascular source (stage 1), and a

capillary-tissue exchanging source (stage 2). The signal from each

source was generated independently using the single-stage model

(equations 1–4), and the following parameters were used to generate

the data: BAT1 = 0.1 s, T1 = 0.4 s, CBF1 = 50 ml/100 g/min,

BAT2 = 0.9, T2 = 0.7 s, CBF2 = 50 ml/100 g/min, T1t = 1.1 s,

and T1b = 1.3 s. These were chosen to be representative of a

typical imaging voxel in gray matter (GM), which contains both

capillaries and non-exchanging arteries/arterioles (the relative

volume fraction of the latter being controlled via the fpc

parameter). Using these parameters, raw ASL datasets were

created for a range of fpc values (0.0–1.0), with the total signal

(dMtot) being the weighted sum of the two stages: i.e. dMtot = (fpc

*dM1)+(1-fpc)*dM2. The synthetic ASL signal was then sampled

at 12 TI times, ranging from 0.2 to 2.4 s in 0.2 s intervals, to

match the in vivo ASL protocol (see Methods: Imaging Protocol).

Following this, the single- and two-stage models were fit to the

raw data, and the Bayesian Information Criteria value (see

Methods: Post Processing) was recorded for each model.

Participants
Ethics Statement. Approval to conduct this study was

obtained from the Research Ethics Committee at Great Ormond

Street Hospital. All healthy adults imaged for this study provided

written informed consent, in accordance with our institutional

ethical review board. In the case of paediatric patients, verbal

consent was provided by the patients themselves, and written

consent was also provided by a parent/guardian.

All in vivo experiments were performed on a 1.5 T Siemens

Magnetom Avanto scanner (Siemens, Erlangen, Germany),

equipped with 40 mT/m gradients and a 12 channel head receive

coil. Eight healthy adults (mean age = 29 years) and 8 paediatric

brain tumor patients (mean age = 11.5 years) were imaged. The

brain tumor cohort consisted of the following tumor types (with

histologically determined tumor grade according to the World

Health Organization (WHO) classification shown in brackets): 4

pilocytic astrocytomas (all grade I), 3 gangliogliomas (2x grade I,

1x grade III), and 1 glioblastoma multiforme (grade IV).

Imaging Protocol
ASL data were acquired using a flow-sensitive alternating

inversion recovery (FAIR) pulsed-ASL sequence, with 3D single

shot GRASE data acquisition [16], with the following imaging

parameters: TR = 3.0 s, TE = 31.6 ms, NSA = 8, field of view

(FOV) = 230 mm, matrix size = 64664, 20 contiguous slices with

5 mm thickness. Measurements were made at 12 inflow times (TI),

ranging from 0.2 to 2.4 s in 0.2 s intervals, with total scan

time = 9.6 min. Background suppression of static tissue was used,

as described in [16], with x10 scanner gain, to maximise the signal

from the inflowing blood. A series of inversion recovery

acquisitions (TI = 0.2, 0.6, 1.4, 2.4 s) with identical readout,

FOV and resolution were also acquired without background

suppression, for quantification of T1t and M0t in each voxel.

In every subject, a T2-weighted acquisition (TR/TE = 3800/

120 ms) was made with identical FOV and resolution as the ASL

scan, to aid in tissue segmentation. Two healthy adults also

received a time of flight MRA acquisition, with 70 slices of 0.9 mm

thickness, in-plane resolution of 0.4960.49 mm, flip angle of 20u,
TR = 36 ms, TE = 6.3 ms. In the paediatric patients, ASL was

added to the standard clinical brain tumor imaging protocol in use

in our institution, which includes a three-dimensional fast low

angle shot (FLASH) sequence, with flip angle = 15u, TR = 11 ms,

TE = 4.94 ms, voxel size = 1 mm isotropic, slices = 176, and T1-

weighted acquisitions pre and post-contrast (Dotarem, 0.2 ml/kg).

Post Processing
All data analysis was performed using Matlab (MathWorks Inc.,

Natick, MA), and all model fitting was performed using an

iterative Nelder-Mead nonlinear least squares algorithm. Firstly,

voxel-wise values of T1t and M0t were calculated by fitting the

signal intensity from the inversion recovery acquisitions to the

following equation:

S(t)~M0t 1{2e
{ t

T1tze
{TR

T1t

� �
ð7Þ

with T1t and M0t as fitted parameters. Values of M0b were

calculated on a voxel wise basis (to account for B1 inhomogene-

ities), using M0b = M0t/l, with l = 0.9 [30].

Figure 1. Illustration of the adapted tissue residue function r(t)
used in the two-stage model. The ASL signal arises from two
sources: the non-exchanging, ‘pre-capillary blood volume’ (volume
fraction fpc), and the exchanging, capillary blood volume (volume
fraction 1- fpc). Labelled blood traverses the pre-capillary stage during
the ‘pre-capillary transit time’ (pcTT), and arrives at the capillary bed at
the ‘capillary bolus arrival time’ (BATc).
doi:10.1371/journal.pone.0075717.g001
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The two-stage ASL model (equation 4) was then fit to the

measured dM values in each voxel, with the modified versions of

r(t) and m(t) described in equations (5) and (6) incorporated. The

fitted parameters were BAT, CBF, pcTT, fpc, and BATc, with T fixed

at 0.7 s (based on previous studies performed using the same ASL

protocol at our institution [31]), and a= 1.0. The single-stage

Buxton general kinetic model [17] was also fit to the dM values,

with BAT and CBF as fitted parameters (again with T fixed at

0.7 s), and the two models were compared using the Bayesian

Information Criterion (BIC):

BIC~ ln
RSS

N

� �
z

k: ln (N)

N

� �
ð8Þ

where RSS = residual sum of squares between fitted and measured

dM values, N = number of TIs (N = 12), and k = number of free

parameters (k = 5 in the two-stage model, k = 2 in the single-stage

model). Values of BIC were calculated on a voxel-wise basis, with

the model producing the lower value being the preferred model in

that voxel.

Whole tumor regions of interest (ROIs) were manually drawn

on the T2-weighted images acquired during the imaging session,

obtained using an identical FOV and voxel resolution as the ASL

acquisition. Tumor ROIs were identified as hyper-intense regions

on the T2w image, with the routine clinical images (e.g. post-

gadolinium T1-weighted) used to guide tracing of the tumor

outline. In each patient, a ‘healthy tissue’ ROI was also defined.

For tumors located laterally, this was defined as an ROI of equal

volume, contralateral to the tumor. For midline tumors, the

healthy tissue ROI was defined as a region of equal volume, drawn

in the GM lateral to the tumor region. In the healthy adults,

whole-brain GM masks were obtained by automatic segmentation

of the T2-weighted images, using the FAST module within FSL

(FMRIB’s Software Library, Oxford University, www.fmrib.ox.ac.

uk/fsl). In every subject (patients and healthy controls), a whole-

brain mask was also obtained using the BET module within FSL.

Noise regions were defined as all voxels outside of this mask. A

noise filter was then applied to all raw ASL data prior to

processing, to exclude voxels in which the peak dM value was less

than 3 times greater than the mean dM value in the noise, to

exclude regions with very low perfusion (e.g. necrotic and highly

oedematous regions).

In previous clinical studies involving dynamic susceptibility

contrast enhanced perfusion MRI (DSC MRI), the most widely

used parameter for predicting tumour grade has been tumour

vascularity, defined as the relative cerebral blood volume (rCBV)

[32–35]. This parameter can be derived from the central volume

theorem [36], which states:

CBF~
CBV

MTT
ð9Þ

where MTT = mean transit time. The aim of this study was to

introduce a novel two-stage model for describing perfusion

kinetics, which is able to describe biphasic behaviour in the ASL

signal in both healthy and tumour tissue: as such, the patient

cohort we demonstrated this in was not large enough for a

statistical comparison between different tumour subtypes / grades.

Nonetheless, it is worth examining if the derived parameters from

the two-stage model show potential for predicting tumour grade in

future clinical studies. Therefore, following previous DSC MRI

studies, we aimed to measure tumour vascularity in our clinical

cohort. Although the fpc parameter is derived from the two-stage

model, this represents a weighting fraction on the total ASL signal

which arises from the pre-capillary vasculature, and does not

reflect the pre-capillary blood volume in physiological units (e.g.

ml/100 g tissue). However, using equation 9, it is possible to define

an equivalent CBV parameter in such units, by multiplying the

fitted values of CBF and pcTT from the two-stage model. We

henceforth refer to this parameter as pcCBV, with units of ml

blood /100 g tissue. Previous DSC studies have shown improved

stratification of tumour grade and reproducibility when measure-

ments are made in areas of maximum abnormality in rCBV maps

[37,38]. We followed a similar approach here, and defined an

automatically generated ROI within each tumour, based on voxels

which demonstrated pcCBV above the 90th percentile value within

the tumour. Mean values of all fitted parameters were recorded in

this ROI in each lesion.

Results

Simulated Data
The results from the analysis of the simulated data are shown in

Figure 2. When fpc = 0 or 1, the simulated data represent a voxel

containing only exchanging capillaries or non-exchanging arteries

respectively, and therefore no bi-phasic behaviour is seen in the

raw data. In these cases, the ASL signal was accurately described

by the single stage model, and the BIC values from this model

were correspondingly much lower than those from the two-stage

model, due to the smaller number of fitted parameters. When

biphasic behaviour was seen in the raw data (0,fpc,1), the single

stage model was unable to accurately describe the raw ASL data,

and the BIC values from the two-stage model were lower than

those from the single stage model, suggesting that this is the

preferred model. In this range of fpc values, the mean fitted value

of CBF from the single stage model was significantly underesti-

mated (32614 ml/100 g/min), compared to the mean CBF value

from the two-stage model (5864 ml/100 g/min; note the

underlying value of CBF used to generate the raw data was

50 ml/100 g/min).

Two-stage model validation in healthy adults
A comparison between the large arterial vessels identified using

time of flight angiography, and fitted values of fpc from the two-

stage ASL model, is illustrated for a representative healthy adult in

Figure 3. Voxels in which a large fraction of the total ASL signal

originates from arteries or arterioles appear bright on fpc maps; in

both subjects the location of these voxels showed good visual

agreement with the position of the larger arteries (e.g. anterior,

middle, and posterior cerebral arteries) identified in the MRA

acquisition.

Using the two-stage model, the mean voxel-wise CBF in the

GM across the healthy adult cohort was 7663 ml/100 g/min

(mean6SD), compared to 6764 ml/100 g/min using the single-

stage model. Mean values of fpc, pcTT and BATc were 0.3460.03,

894625 ms and 705619 ms respectively. Across all healthy

subjects, 3764% of voxels in the GM were best described by

the two-stage model.

Brain Tumor Cohort
Standard images (T2w and post-contrast T1w), and example

maps of CBF, fpc and BATc from the two-stage model, are shown

after affine registration to the FLASH images acquired during the

same imaging session, for three representative patients, in Figure 4.

Regions of elevated fpc and BATc were observed in and around the

tumor regions, as indicated by the white arrows in Figure 4. A

comparison between the mean values of the fitted parameters

Two-Stage ASL Model for Brain Tumor Perfusion
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derived from the two-stage model, from whole-tumor ROIs and

contralateral healthy tissue and in all patients, is shown in Figure 5.

In contralateral healthy tissue, the number of voxels best

described by the two-stage model (according to the BIC values)

was 40622% (similar to the mean GM value in the healthy adult

cohort). This increased significantly in tumor tissue, to 52615%

Figure 2. Results from the analysis of simulated ASL datasets, containing both a pre-capillary component (initial peak in dM curve
around TI = 0.6 s) and an exchanging capillary component (second peak in dM curve, around TI = 1.6 s). (A) Simulated raw ASL data, for
fpc values ranging between 0 and 1 (see color bar), with the total signal sampled at 12 TI times (filled circles). The fits to the raw data from the two-
stage and single-stage models are shown in (B) and (C) respectively. (D) Bayesian information criteria (BIC) value from fitting the single-stage (red) and
two-stage (blue) models, as a function of fpc. The model producing the lower BIC value is the preferred model.
doi:10.1371/journal.pone.0075717.g002

Figure 3. Comparison of time of flight angiography data and
two-stage ASL model fitting in a healthy adult. (A) Axial
maximum intensity projection from time of flight angiography, showing
large arteries such as the anterior, middle, and posterior cerebral
arteries. (B) Maps of the fitted fpc parameter (pre-capillary blood
volume), derived from ASL data collected in the same subject.
doi:10.1371/journal.pone.0075717.g003

Figure 4. Examples of standard T2w and T1w (post contrast)
images obtained in three brain tumor patients, with fitted
values of cerebral blood flow (CBF), pre-capillary blood
volume (fpc) and bolus arrival time at the capillary bed (BATc)
overlaid. The top row shows data from a 10 year old male with a
glioblastoma multiforme (WHO grade IV). The middle row shows data
from a 15 year old male with a ganglioglioma (WHO grade I), and the
bottom row is from a 7 year old female with an anaplastic
ganglioglioma (WHO grade III). The white arrows highlight regions of
increased fpc and BATc in the tumor region. Fitted parameter maps are
shown after affine registration to the FLASH images acquired during the
same imaging session.
doi:10.1371/journal.pone.0075717.g004

Two-Stage ASL Model for Brain Tumor Perfusion
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(p,0.05). Median cerebral blood flow was lower in the tumor

environment compared to contralateral healthy tissue (52612 ml/

100 g/min in tumor tissue, compared to 69619 ml/100 g/min in

contralateral healthy tissue, p,0.01, two-tailed paired t test).

There was a significant increase in the median fpc in tumor tissue

compared to contralateral healthy tissue (0.4360.14 vs.

0.3260.16, p,0.05). There was a non-significant increase in both

pcTT and BATc in tumor tissue, compared to healthy tissue

(8956141 vs 863663 ms, and 8066102 vs 757699 ms respec-

tively, p.0.05).

Example maps of CBF and regional differences in the optimum

model choice within a lesion are shown for three representative

patients in Figure 6. An example of raw ASL data, and the fits

from the single- and two-stage ASL models, are shown for two

different regions within a tumor, for a representative patient in

Figure 7.The plots show examples of both mono-phasic and

biphasic raw ASL data. The mono-phasic example originates from

a voxel placed within a large artery which runs into the tumor

region. The ASL signal in this region is dominated by the high

CBF in this artery, and there is therefore little evidence of biphasic

behaviour, and the single-stage model is preferred. The biphasic

example originates from a voxel within the tumor, but more distal

to the large artery. The ASL data appears biphasic here, and the

two-stage model is preferred.

Mean fitted values from both models (single- and two-stage) in

the automatically generated tumour ROIs (based on regions of

high pcCBV in each lesion, see Methods: Post Processing), are shown

for each patient in Table 1. The best discrimination between low

grade (WHO I-II) and high grade (WHO III-IV) lesions was found

in the pcCBV parameter, as illustrated in Figure 8. However, due

to the small numbers of patients included in this study (particularly

in the high grade group), no statistical comparisons were made

between the two groups.

Discussion

Simulated Data
The simulated data show that, as the bi-phasic nature of the

ASL signal starts to increase, the ability of the single-stage model

to describe the data decreases. This pattern continues until

eventually the total ASL signal is dominated by the pre-capillary

stage (for fpc.,0.8), after which the signal begins to look mono-

phasic once more. When biphasic behaviour is prominent, the

resulting fitted CBF values from the single-stage model are

Figure 5. Comparison of fitted parameters from the two-stage ASL model in tumour tissue and contralateral healthy gray matter.
Box and whisker plots of mean fitted values of (A) cerebral blood flow (CBF), (B) pre-capillary blood volume (fpc), (C) pre-capillary transit time (pcTT)
and (D) bolus arrival time at the capillaries (BATc). Data are shown for healthy tissue and tumor regions in all patients, with horizontal lines = group
median, box edges = 25th and 75th percentiles, and outliers (+) defined as values larger than q3+1.5*(q32q1) or smaller than q121.5*(q32q1).
Significant difference between groups, determined using a two-tailed paired t test, is indicated by * (p,0.05).
doi:10.1371/journal.pone.0075717.g005

Figure 6. Regional variations in optimum model choice within
the tumour environment. Examples of (A) T2w standard clinical
images, (B) T2w images acquired at the native resolution of the ASL
acquisition, with fitted CBF maps from the two-stage model overlaid in
the tumor region, and (C) regional variations in the optimum model
choice within the tumor region. Voxelwise BIC values were calculated
for the single-stage and two-stage models, with the model producing
the lower BIC value being the preferred model in that voxel (blue
voxels = single-stage preferred, green voxels = two-stage preferred).
Images from three representative patients are shown: the top row is
from a 7 year old female with an anaplastic ganglioglioma (WHO grade
III), the middle row is from an 10 year old female with a pilocytic
astrocytoma (WHO grade I), and the bottom row is from a 15 year old
male with a ganglioglioma (WHO grade I).
doi:10.1371/journal.pone.0075717.g006
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underestimated. The reason for this is that the single-stage model

cannot capture the ‘dual peaks’ seen in the raw data, and therefore

as fpc increases, the fitted curve from the single-stage model

becomes ‘wider’ and ‘flatter’ in an attempt to minimize the least-

squares error between the raw data and modelled values (see

Figure 2, panel C). This results in lower fitted values of CBF

(which is proportional to the height of the peak of the fitted dM

curve). Because the two-stage model is able to account for the ‘dual

peaks’ seen in biphasic raw ASL data, fitted CBF values are not

underestimated in the same way, and remain closer to the true

underlying value.

In vivo Data: Healthy Adults
The good agreement between the location of large arteries

identified using MRA in the healthy volunteers, and regions of

elevated fpc derived from the ASL data, suggests that the two-stage

Figure 7. Examples of raw ASL data, and model fitting within the tumor ROI, in one patient (ganglioglioma, grade III). A map of fitted
CBF values, and regional variations in the optimum model choice within the tumor region (outlined in blue), are shown in A (blue voxels = single-
stage preferred, green voxels = two-stage preferred). Raw and fitted data from two example voxels are shown in B–E. The yellow voxel in A
represents a region in which the single-stage model is preferred – the raw data from this voxel are represented by the filled circles in B and C. The
gray lines in B and C represent the fitted values from the two-stage and single-stage models respectively. The red dashed lines represent the
modelled contribution from the pre-capillary stage, and the blue dashed lines represent the contribution from the capillary stage. The red voxel in A
represents a region in which the two-stage model is preferred, and the raw data from this voxel, and the fits from the two-stage and single-stage
model, are shown in D and E respectively.
doi:10.1371/journal.pone.0075717.g007

Table 1. Fitted parameters from the single- and two-stage model in all patients.

Single-stage Two-stage

ID Subtype WHO grade CBF CBF fpc pcTT BATc pcCBV

(ml/100 g/min) (ml/100 g/min) a.u. s s ml/100 g

1 pilocytic astrocytoma I 79 65 0.14 0.83 0.70 0.90

2 pilocytic astrocytoma I 48 39 0.49 1.64 0.92 1.03

3 pilocytic astrocytoma I 101 93 0.38 1.06 0.68 1.56

4 pilocytic astrocytoma I 127 68 0.13 0.91 0.78 1.00

5 ganglioglioma I 73 83 0.74 1.28 0.88 1.58

6 ganglioglioma I 54 54 0.47 1.49 0.80 1.19

7 ganglioglioma III 110 122 0.60 1.02 0.71 2.02

8 glioblastoma multiforme IV 113 105 0.54 1.16 0.73 1.83

doi:10.1371/journal.pone.0075717.t001
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model is effective at identifying voxels in which a large proportion

of the ASL signal arises from the pre-capillary stage.

There is a considerable range in previously reported values of

CBF in healthy adult GM, with average values of 77 ml/100 g/

min from ASL methodologies, 69 ml/100 g/min from DSC-MRI,

and 55 ml/100 g/min from PET ([39] and references therein).

The two-stage model produced a mean voxel-wise value of CBF in

our healthy subject’s GM which agrees well with previous ASL

studies (76 ml/100 g/min). The reduced value from the single-

stage model (67 ml/100 g/min) is due in part to the mean fpc

value of 0.34 found in healthy GM; the results from the simulated

data suggest that the data will appear biphasic at this level of fpc,

and therefore CBF values from the single-stage model will be

underestimated. The mean fpc value in healthy GM suggests that a

significant proportion of voxels in this region suffer partial volume

effects, and contain signal from both the capillary bed and larger

arteries / arterioles. This is perhaps not surprising, given vascular

crushing gradients were not applied, the large size of our imaging

voxels, and the close proximity of large arterial vessels to many of

the voxels in the GM.

In Vivo Data: Brain Tumor Patients
Overall, there was a significant increase in the number of voxels

displaying biphasic behaviour in the tumor environment (cf.

contralateral healthy tissue), with over half of all tumor voxels

being best described by the two-stage model. In a number of

lesions, the regions of biphasic behaviour tended to ‘branch off’

from areas of high CBF (which are likely to be large arteries, see

Figure 6), which suggests an abnormal vascular structure stems

from larger arteries feeding into the tumor environment.

The increase in fpc in tumor tissue implies the pre-capillary

contribution to the ASL signal is increased, which perhaps reflects

increased vascularity in the tumour environment. There was also

trend towards increased values of pcTT and BATc in tumour

tissue, which suggests that labelled blood-water spends a longer

time traversing this vasculature, although these fell short of

significance. It is worth re-iterating that the two stages are

independent in our two-stage ASL model, and as such pcTT and

BATc are not required to be equal. In fact, in general BATc was

slightly lower than pcTT, in both healthy and tumor tissue. This

suggests that some of the pre-capillary signal in a given voxel arises

from arteries / arterioles which do not feed directly into the

capillary bed within that voxel.

The marked increase in pcCBV in the high grade tumours

suggests that this parameter, which combines fitted values of CBF

and pcTT, may be the most useful in separating low and high

grade lesions in future clinical studies. This parameter is sensitive

to both changes in blood flow in the tumour environment, and

increased tortuosity of the blood vessels (which would increase

pcTT), which may explain the increased sensitivity of this

parameter to tumour grade.

Overall, these findings support the assertions made earlier: that

new vasculature is formed to feed a tumor, and these vessels tend

to be more dilated and/or tortuous than those seen in healthy

tissue. Furthermore, the increased tortuosity means it is more likely

that pre-capillary vessels will pass into and out of the imaging voxel

before terminating in capillary exchange sites (which may be

outside of the imaging voxel), which would contribute to the

increased level of biphasic behaviour seen in dynamic ASL data

acquired in the tumor environment.

Study Limitations
As a rather heterogeneous cohort of patients was used to

examine perfusion dynamics in this study, it was not possible to

determine whether significant differences in the modelled param-

eters exist between tumor subtypes and grades, and future clinical

studies are needed to explore this. Instead, this cohort of patients

was chosen to provide a testing ground for the investigation of the

biphasic ASL signal in tumors, and to illustrated the application of

the two-stage model.

Secondly, future studies are needed to explore the direct

histopathological correlation between the fitted parameters from

the two-stage model, and the properties of the tumour vasculature.

This would help to clarify any ambiguities in the biophysical

explanation of the fitted parameters – for instance, regions of

increased fpc in the tumour could be due to either neoangiogenesis,

or vasodilation, and it is difficult to separate these processes with

ASL data alone.

Thirdly, for tumors bordering the cerebral cortex or subarach-

noid space, partial volume effects with the leptomeningeal arteries,

which are vigorously perfused in children, may increase the fitted

fcp parameter. In our cohort, abnormalities in the fcp maps did not

appear focussed on these regions, however, this could represent a

source of error in future studies.

Also, although the simulated dM curves presented in Figure 2

are similar in form to the experimental data obtained in the tumor

environment (Figure 7), it is difficult to generate synthetic data that

accurately reflects the expected ASL signal in the haphazard

tumor vascular network. The simulated data are therefore

presented here as a simplified illustration of how biphasic

behaviour in the ASL signal can cause errors in model fitting

and in the estimation of CBF when using a single-stage model.

Lastly, although we fit both the single- and two-stage models in

each voxel in this study, to demonstrate regional variations in

optimum model choice, in practice only the optimum model

should be fit in each voxel. This could be performed on a post-hoc

basis, in which data from the two-stage model are disregarded in

voxels where the single stage model is preferred (based on BIC

values). Alternatively, a probabilistic inference method similar to

that presented in [25] could be used to determine voxels in which

the two-stage model should be used.

Figure 8. Mean values of pcCBV in the low- and high-grade
lesions included in this study. Filled circles represent the mean
value from a given patient, based on an ROI placed in regions of high
pcCBV in the lesion (see Methods: Post Processing). Solid lines represent
the group mean, and shaded boxes represent the standard deviation.
doi:10.1371/journal.pone.0075717.g008
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Conclusion
We have demonstrated that dynamic ASL data acquired in the

tumor environment displays a significantly increased level of

biphasic behaviour compared to healthy tissue, and we present

here a two-stage model to describe this behaviour. As illustrated in

Figure 4, maps of the fitted parameters obtained using the two-

stage model offer a novel contrast in the tumor environment and

surrounding tissue, which, if the hypotheses described above are

correct, would allow surrogate biomarkers of both CBF and

abnormal vascular structure to be derived from dynamic ASL

data. This could provide a useful tool for in vivo assessment

of tumor malignancy. It has been shown that vessel shape changes

do not correlate directly with CBF measurements [40], and

therefore an ASL model which is sensitive to both CBF and

vascular structure could provide valuable information in studying

tumor development. Also, as vessel shape rapidly normalizes

during successful cancer treatment [41], the non-invasive nature of

this technique would make it a useful methodology for longitudinal

monitoring of treatment response to anti-angiogenic therapies in

future patients.
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