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Abstract

Noise reduction is often essential for cochlear implant (CI) recipients to achieve acceptable speech perception in noisy
environments. Most noise reduction algorithms applied to audio signals are based on time-frequency representations of the
input, such as the Fourier transform. Algorithms based on other representations may also be able to provide comparable or
improved speech perception and listening quality improvements. In this paper, a noise reduction algorithm for CI sound
processing is proposed based on the wavelet transform. The algorithm uses a dual-tree complex discrete wavelet transform
followed by shrinkage of the wavelet coefficients based on a statistical estimation of the variance of the noise. The
proposed noise reduction algorithm was evaluated by comparing its performance to those of many existing wavelet-based
algorithms. The speech transmission index (STI) of the proposed algorithm is significantly better than other tested
algorithms for the speech-weighted noise of different levels of signal to noise ratio. The effectiveness of the proposed
system was clinically evaluated with CI recipients. A significant improvement in speech perception of 1.9 dB was found on
average in speech weighted noise.
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Introduction

In an ideal, quiet listening environment, modern cochlear

implant (CI) devices are capable of restoring speech perception to

most recipients [1]. In a more realistic, noisy listening environ-

ment, however, the level of speech perception degrades rapidly

with the increased noise level [2]. Studies evaluating single channel

noise reduction algorithms for CIs have reported significant speech

perception improvements of 24 percentage points in babble noise

[2], 2.1 dB speech reception thresholds [3] and 19 percentage

points [4] in speech weighted noise. This work is inspired by the

improvement of speech understanding due to noise reduction

techniques. We aim to explore different ways to further improve

speech understanding in noisy listening environments. In the

following, we briefly review noise reduction techniques related to

our work.

Early multichannel stimulation strategies used feature extraction

methods to present formant information to the implant electrode

array [5]. A noise reduction method was shown to provide speech

understanding benefit using such a feature extraction based

stimulation strategy [6]. The current commercially available

stimulation strategies (continuous interleaved sampling (CIS) and

advanced combination encoding (ACETM) [7]) use time-frequency

decompositions of the signal to obtain a number of band-pass

channels. The energy in each channel is then calculated and used

to determine the stimulus level for each electrode [7]. These

stimulation strategies superseded feature based stimulation strat-

egies due to improved speech understanding outcomes. Using

ACETM and CIS stimulation strategies, two acute laboratory

studies tested the benefit of noise reduction by using hearing aids

algorithms to pre-process signals before being presented to the

cochlear processor, finding improvements in some noise types

[8,9]. Implementation in take home behind-the-ear (BTE) devices

for daily use has also shown similar improvements [10,11].

Directional microphones, be this software or hardware in

implementation have also shown improvements of speech

understanding in noise [11,12].

Traditional approaches to single-channel noise reduction in CI

devices, as well as general speech enhancement for normal

listeners, have been spectral subtraction or other spectral

modification applied to the Fourier transform coefficients

[13,14,15,16]. While the Fourier transform is well suited to

capture stationary features of signals, the highly localized wavelet

transform is better suited for non-stationary signals such as speech

[17]. Wavelet transforms have been used in many speech

enhancement applications. For example, Lei and Tung [18]

proposed a system using the wavelet packet transform to emulate

the subband decomposition known to occur in human hearing.

This implementation is also thought to reduce the effect of
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‘musical noise’. The wavelet transform was also proposed as an

alternative to the Fourier transform for signal decomposition in CI

devices [17,19,20,21].

Although wavelets have been used to good effect in other areas

of noise reduction and have been discussed as an alternative to

Fourier decomposition for CIs, there has been no report on using

wavelet transforms specifically for noise reduction in CI devices.

The objective of this study is to investigate the clinical application

of the wavelet transform as a tool in noise reduction for CI

recipients. In particular, a dual-tree complex wavelet transform

based noise reduction technique will be proposed and clinically

evaluated with CI recipients.

Wavelet-based Noise Reduction Algorithm

The Overall System Structure
The proposed algorithm consists of the following major steps:

N The signal x n½ � is buffered as overlapping frames. There are

two parameters: length of each frame, denoted by N and

number of signal samples overlapped with the previous frame,

denoted by M. The settings of these two parameters are based

on a trade-off between latency, computational complexity and

performance of denoising. This frame arrangement is shown in

Figure 1.

N Each frame is processed by the wavelet-based denoising

algorithm.

N It can be seen from Figure 1 that there will be multiple (K )

processed values for each sample - each coming from a

different frame. Assuming that the residual noise in different

processed frames are not correlated to each other, averaging

these values (indicated between two dash lines in Figure 1)

helps further reduce the residual noise.

A block diagram of the overall noise reduction system is shown

in Figure 2. The system works as a pre-processor such that its

output is fed to the input of the CI device. Therefore, proper

arrangement must be made to ensure the continuous flow of

output data while allowing enough data samples in each frame for

accurate calculation of the needed statistics. The parameters N , M
and K were selected based on experiments with a set of recorded

voice samples corrupted with noise. The parameters were set at

N~8192, M~7680, K~16 and N{M~512 for a sampling

rate of 16 kHz.

Dual-tree Complex Wavelet Transform
The discrete wavelet transform (DWT) comes in several forms.

The critically-sampled (standard) form of the transform provides

the most compact representation. However, it is shift-variant,

which is undesirable for speech enhancement. To overcome the

shift-variance problem, noise reduction based on shift-invariant

wavelet transforms [22] have been extensively studied. One of

such transforms is the stationary (or undecimated) DWT [23].

However, a major drawback of the stationary DWT (SWT) is its

computational cost.

Another one is the dual-tree complex discrete wavelet transform

[24]. It consists of two specifically designed critically-sampled

DWTs in parallel applied to the same input data. The subband

signals of these two DWTs can be interpreted as the real and

imaginary parts of a complex wavelet transform that is nearly shift-

invariant. Since the transform equals to two standard DWTs, the

dual-tree complex wavelet transform is more attractive than the

SWT in terms of computational complexity. In this work, we

adopt Sendur and Selesnick’s [24] implementation of the dual-tree

complex wavelet transform (DTDWT).

The Wavelet Shrinkage and Thresholding
A typical wavelet-based noise reduction algorithm involves

shrinkage and thresholding of wavelet coefficients [22]. Using

shrinkage with DTDWT, Sendur and Selesnick [24] have

achieved better image denoising results than with critically-

sampled wavelet transforms. The proposed algorithm is inspired

by their work. For each frame, the proposed algorithm has the

following major steps:

N Let r n,k½ � and q n,k½ � represent the nth wavelet coefficients of

the two trees at the kth level. Let s2
m be the estimated variance

by using the median absolute deviation (MAD) estimator [22],

where m is the frame index. This estimate is further smoothed

by using

�ss2
m~as2

mz(1{a)�ss2
m{1 ð1Þ

where 0vaƒ1: In our experiment, best estimation was given

when a~0:9. This was determined using a bench simulation of

a set of data to maximize the speech transmission index (STI)

(more details are given in subsection ‘‘Simulation experi-

ments’’).

Figure 1. Overlapping frame arrangement. Each frame has N samples with M samples overlapped with the previous frame. The number of
frames used for averaging is K. After the processing of a new frame, N{M processed samples will be output.
doi:10.1371/journal.pone.0075662.g001
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N Treating the two trees as a complex signal s½n,k�~r½n,k�zjq½n,k�,
where j~

ffiffiffiffiffiffiffiffi
{1
p

, we want to denoise its amplitude:

a½n,k�~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2½n,k�zq2½n,k�

p
. Due to the complexity of the

statistical modelling of the amplitude, the maximum a

posteriori probability (MAP) estimation algorithm is very

computationally intensive. This is not suitable for real-time

processing in the cochlear implant device. To solve this

problem, we borrow the idea of shrinkage/thresholding

function which is obtained by solving the following MAP

estimation problem. We assume the additive signal model

x~szv, ð2Þ

where s is the true signal to be estimated and v is the noise. To

simplify the algorithmic development and the algorithm, we

assume that the noise v follows an independent and identically

distributed (i.i.d) zero mean Gaussian distribution

p(v)! exp ({v2=2s2
v) and the prior for the true amplitude

s f o l l o w s a n o t h e r z e r o m e a n i . i . d G a u s s i a n

p(s)! exp ({s2=2s2
s ). Solving the following MAP problem

ŝs~ arg maxsp(sjx)

~ arg maxsp(xjs)p(s)

we obtain

�ss~u|x ð3Þ

where

u~

0, s2
s vs2

v

s2
s

s2
s zs2

v
, otherwise

8<
: ð4Þ

is called the shrinkage/thresholding function.

N In this work we modify the above shrinkage/thresholding

function to process the amplitude signal as follows

�ss½n,k�~u½n,k�a½n,k� ð5Þ

where �ss½n,k� is the denoised amplitude and

u½n,k�~
0, �aa2½n,k�v�ss2

m

�aa2½n,k�
�aa2½n,k�z�ss2

m
, otherwise

8<
: ð6Þ

In the above equation, �aa2½n,k� is an estimate of the signal energy

and is the result of applying a low pass filter on the square of the

amplitude signal a2½n,k�. In this work, we use a simple 7-tap FIR

filter with equal filter coefficient of 1/7. From a signal processing

point of view, the variance represents the energy of the signal.

Therefore, we use the signal energy in (6) to replace the signal

variance in (4). In addition, the denoising of the amplitude of the

signal is equivalent to denoising of the two trees using the same

function u½n,k� as follows

r̂r½n,k�~u½n,k�r½n,k� ð7Þ

and

q̂q½n,k�~u½n,k�q½n,k� ð8Þ

This process is repeated for all levels of wavelet coefficients. The

inverse dual-tree transform produces the denoised signal.

Performance Evaluation and Clinical Validation in
Cochlear Implants

Simulation experiments. Computer simulations of the

proposed DTDWT algorithm and a range of well-established

wavelet algorithms were performed to compare and predict the

algorithms performance. The simulation experiments also provid-

ed the selection of the parameters of the proposed algorithm which

were later applied in the clinical test.

Experiments were performed on two sets of recorded speech

data. One data set was the Bamford-Kowal-Bench (BKB)-like

sentences developed by the Cooperative Research Centre for

Cochlear Implant and Hearing Aid Innovation [25]. The

sentences were corrupted with speech weighted noise (SWN) at

a signal-to-noise ratio (SNR) of 0 dB. The various parameters of

the proposed algorithms were also trained on this set of data. The

other data set was the NOIZEUS corpus developed at the

University of Texas at Dallas [26]. These sentences are corrupted

by 8 types of noise: train, babble, car, exhibition hall, restaurant,

street, airport and train-station.

In the measurement of denoising performance, the speech

transmission index (STI) was used to indicate how close the

denoised signal was to the original clean target signal. This method

has been shown to provide strong correlations with both

modulated and non-modulated noise types [27]. Speech without

noise added results in an STI of 1, as the signal becomes noisier

the STI decreases, until the speech is totally dominated by noise

will result in an STI near 0. The normalized correlation speech

based STI metric proposed by Goldsworthy and Greenberg [28]

was adopted in the calculation, because of its suitability in

predicting speech intelligibility for CI users when non-linear signal

processing is used. This is confirmed in a further study of speech

intelligibility in cochlear implant simulations [29].

The results are summarized in Figure 3, 4, 5, 6 where box-

plots of the STI values for the BKB-like data corrupted with SWN

at the SNR value of 0 dB (Figure 3), NOIZEUS data for the 8

Figure 2. Block diagram of the dual-tree complex discrete wavelet transform (DTDWT) based noise reduction system.
doi:10.1371/journal.pone.0075662.g002
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noise conditions at the SNR values of 0 dB, 5 dB and 10 dB

(Figures 4, 5, 6) were given. To compare the proposed algorithm

to some conventional wavelet-based noise reduction algorithms,

the results for several different forms of wavelets and different

thresholding strategies are also listed in the figures. The forms of

wavelets included DWT, SWT and DTDWT. The thresholding

strategies were Stein’s Unbiased Risk Estimate (SURE), minimax

method [22] and Wiener filtering. The results clearly show that the

proposed algorithm consistently performs better than the other

conventional wavelet-based noise reduction algorithms. Looking

more closely at Figures 4, 5, and 6, one may see that the

advantage of the proposed algorithm over others is not very

obvious in several noise conditions such as exhibition hall,

restaurant and train. However, in most of those conditions, the

proposed algorithm still outperforms the other algorithms in terms

of the average STI value. It should be noted that at SNR values at

or greater than 10 dB, all the noise reduction algorithms produced

STI values that were lower than the unprocessed ones, although

the proposed algorithm still outperformed other algorithms for

most noise types. This suggests that the noise reduction algorithms

should be turned off in relatively high SNR environments. For this

reason, we have not included the results for SNR values greater

than 10 dB.

Clinical test design and results. Nine adults implanted

with a CochlearTM NucleusH CI system participated in the study.

This study was approved by the Royal Victorian Eye and Ear

Hospital Human Research Ethics Committee (HREC 07/754H).

All participants in this study gave written informed consent as

approved by the Royal Victorian Eye and Ear Hospital Human

Research Ethics Committee. All participants were current users of

the FreedomTM sound processor. The ages of subjects at the time

of testing range from 41 to 82 years and the duration of implant

use range from 1.1 to 8.9 years. Total stimulation rate ranged from

4000 to 9600 pulses per second (pps). The biographical data of all

subjects is summarized in Table 1.

The clinical test used a repeated measure, single-subject design

in which each subject served as their own control. The advanced

combination encoder (ACETM) with and without DTDWT pre-

processing were compared for each subject with sentences

presented in SWN or 20-talker babble noise.

An adaptive speech reception threshold (SRT) test using BKB-

like sentences provided the SNR for 50% morpheme intelligibility

[11,28]. BKB-like sentences were developed with region indepen-

dent Australian vocabulary familiar to 5 year old children

containing between four to six words. Sentences were recorded

from a female adult Australian speaker, and noise was either

speech-weighted noise, or 20-talker babble noise made from both

female and male talkers. An adaptive test used in previous noise

reduction studies [3,11] has the advantage of having no floor or

ceiling effects as can be found with fixed level testing due to the

wide CI performance range. Morphemic scoring was chosen since

it increases the number of items on which a sentence is scored and

random measurement error in a score is predicted to decrease with

an increase in the number of items responsible for that score

[30,31]. Two lists (32 sentences) were used to calculate a single

SRT. The sentences were presented through a loudspeaker located

1.2 m directly in front of the subject. The speech was presented at

65 dB SPL (RMS), whilst the competing noise was adapted

according to the accuracy of the subjects’ responses. The

competing noise was decreased in level if the subject scored

,50% morphemes correct and increased if the subject scored

$50% morphemes correct. It was presented at the new, adapted

presentation level for 3 seconds prior to the next target sentence.

Prior to the initial sentence, it was presented for 12 seconds and

thereafter presented continuously between sentences. The adap-

tive rule used in the Hearing in Noise Test (HINT) test was

employed, with a step size of 4 dB for the first 4 sentences and a

2 dB step size for the remaining sentences [32]. The starting SNR

was 5 dB. The SRT was calculated according to the HINT rule

and was the average of the SNRs for sentences 5 to 32, in addition

to the SNR at which sentence 33 would have been presented on

the basis of the subject’s response to sentence 32.

Each subject listened to the sound using their Freedom

processor, each programmed with ADROH+AutosensitivityTM

[1]. For the ACE condition, the sentences were presented

unprocessed. For the implementation of the DTDWT program,

the noisy speech signal was pre-processed by the DTDWT

algorithm running on a computer-based real-time system and the

denoised signal was presented to the subject. The order in which

the ACE and DTDWT programs were tested was counterbal-

anced across the group. Data for analysis was the mean of two

SRTs for each of the ACE and DTDWT programs.

In Figure 7, the time-domain waveforms and the spectrograms

of the clean, noisy and denoised versions of the sentence ‘‘The

fresh bread is baking.’’ are provided as a visualization of the

effectiveness of the DTDWT based denoising algorithm. It is

evident in both time and frequency domains that the proposed

algorithm is able to remove a large amount of noise while keeping

the main features of the original signal unchanged. In particular,

the spectrograms show that the proposed algorithm is very good at

capturing the rapidly changing features of the original signal.

Test results (Figure 8) show the speech performance results for

nine subjects for the ACE condition and the DTDWT denoised

condition. Mean scores in the SWN noise were 0.12 (ACE) and

21.76 (DTDWT) and in the 20-talker babble were 2.41 (ACE)

and 2.02 (DTDWT). A two-way repeated measures analysis of

variance (ANOVA) test was conducted on the main factors

‘program type’ and ‘noise type’. The two levels of ‘program type’

compared ACE and DTDWD and the two levels of ‘noise type’

compared SWN and 20-talker babble. The comparisons within

the interaction factor ‘program type – noise type’, are particularly

Figure 3. The box-plots of the STI values of the original and
denoised BKB-like data. The speech signals were corrupted with
speech weighted noise (SWN) at an SNR of 0 dB. The red dots indicate
the mean values in the corresponding cases. The wavelets employed in
DWT and SWT were the Daubechies-20 wavelets. The number of levels
in decomposition was fixed at 6 for all cases.
doi:10.1371/journal.pone.0075662.g003
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Figure 4. The box-plots of the STI values for NOIZEUS data at SNR = 0 dB. The speech signals were corrupted with 8 types of noise. The red
dots indicate the mean values in the corresponding cases. The wavelets employed in DWT and SWT were the Daubechies-20 wavelets. The number of
levels in decomposition was fixed at 6 for all cases.
doi:10.1371/journal.pone.0075662.g004
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Figure 5. The box-plots of the STI values for NOIZEUS data at SNR = 5 dB. The speech signals were corrupted with 8 types of noise. The red
dots indicate the mean values in the corresponding cases. The wavelets employed in DWT and SWT were the Daubechies-20 wavelets. The number of
levels in decomposition was fixed at 6 for all cases.
doi:10.1371/journal.pone.0075662.g005
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Figure 6. The box-plots of the STI values for NOIZEUS data at SNR = 10 dB. The speech signals were corrupted with 8 types of noise. The red
dots indicate the mean values in the corresponding cases. The wavelets employed in DWT and SWT were the Daubechies-20 wavelets. The number of
levels in decomposition was fixed at 6 for all cases.
doi:10.1371/journal.pone.0075662.g006
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focussed on to determine any benefit of DTDWT over ACE in the

different noise types. A significant main effect of ‘program type’

across both noise types (F [1,8] = 11.35, p,0.01) was found. A

significant main effect of ‘noise type’ across both program types

was also found (F [1,8] = 96.28, p,0.001).

A post hoc Newman-Keuls comparison showed that sentence

perception in SWN was significantly improved by 1.9 dB for the

DTDWT program compared to the ACE program (p,0.001). In

this noise type, five of the nine subjects showed individual

significant improvements above the 1.69 dB critical difference

score for a 95% confidence level for our specific SRT test

conditions [33]. No significant difference between programs was

found in the 20-talker babble condition.

Discussion

The clinical results in SWN conditions show that the wavelet-

based noise reduction provides significant improvements in speech

perception. A previous research study using a SNR-based noise

reduction method showed a 2.1 dB SRT improvement in SWN

[3]. The 1.9 dB SWN improvement in this study is more notable

when considering the high performance (mean SRT +0.1 dB in

ACE condition) of the subjects, who may receive smaller

improvements from noise reduction [3]. Furthermore, no optimi-

zation of the shrinkage parameters for individual subjects was

performed, such as increasing the aggressiveness of noise reduction

[34] or increasing the temporal smoothing of noise reduction gain

changes [4], which have shown to provide significant improve-

ments for CI recipients. Therefore, it is expected that even better

performance can be achieved when optimization of such

parameters is performed.

The clinical results of the DTDWT in babble noise conditions

showed no significant improvement over the ACE condition. One

previous study has been able to show a significant speech

understanding improvement in this noise type of 24 percentage

points [2]. However, small or non-significant performance

improvements have typically been found in babble environments

with Fourier based noise reduction due to the high dynamics of the

noise type [3,4,11]. A further reason for this result with the

DTDWT is that the wavelet denoising algorithm was designed for

SWN and its parameters were trained with the SWN corrupted

speech data.

Table 1. The biographical information of the clinical test
subjects.

Subject Age
Years of
implant use

Stimulus rate
(per electrode) Maxima

1 79 3.9 720 12

2 62 1.6 900 8

3 68 3.3 1200 8

4 78 1.1 900 8

5 42 2.1 900 8

6 70 1.1 1200 8

7 60 6.8 900 8

8 67 8.9 500 8

9 82 7.2 1200 8

doi:10.1371/journal.pone.0075662.t001

Figure 7. The time-domain waveforms and spectrograms of a sample speech signal. The sentence was ‘‘The fresh bread is baking.’’ The
noisy version was corrupted with the speech weighted noise (SWN) at an SNR of 0 dB. The plots in the left are the time-domain waveforms, and those
in the right are the spectrograms. The top row is the clean version. The middle row is the noisy version. The bottom row is the denoised version.
doi:10.1371/journal.pone.0075662.g007
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Simulation results with the NOIZEUS database indicate that

the proposed algorithm performed better when compared to other

conventional wavelet-based noise reduction algorithms under a

variety of noise conditions. Further improvement would be

achievable if separate sets of configuration parameters could be

trained for a few typical noise environments and the system is able

to select suitable configuration parameters according to some

sound classification algorithm, such as the one proposed by Hu

and Loizou [35].

This wavelet noise reduction algorithm was tested as a pre-

processing system. Pre-processing testing has previously been

useful in the initial assessment of noise reduction algorithms [8],

but a ‘‘synergistic’’ implementation which does not require

reconstruction into the time domain could be advantageous [7].

One advantage would be possible speech performance improve-

ments since a synergistic implementation would not be effected by

‘musical noise’ from reconstruction [7]. Another advantage would

be lower complexity and the ability to trial the noise reduction

algorithm on a take home BTE device.

A number of research studies have suggested such a synergistic

implementation where wavelet coefficients are used to determine

stimulus output levels [19,21]. However, clinical implementations

currently require custom and adjustable filter bank boundaries due

to patient individual preference for certain frequencies being

mapped to electrodes. Using the denoised dual-tree wavelet

coefficients directly to derive the stimulating signal with fully

adjustable frequency bands remains a challenging task.

Limitations of the Study, Open Questions, and Future
Work

There are a number of limitations and open questions in this

study. They are briefly discussed in the following to identify, where

possible, ways to address them in future work.

N In its current form, the proposed algorithm will introduce a 0.5

second delay to the incoming signal. Therefore, it is not yet

suitable for direct implementation in cochlear implants. This is

an issue due to the algorithmic design in which many

overlapping frames of signals are used to achieve the

performance of the noise reduction. In addition, because the

algorithm adaptively estimates the parameter for each frame of

the signal, the length of the frame should be long enough to

ensure the accuracy of the estimation. One possible way to

address this problem is use intra-frame information for the

estimation to explore the possibility of reducing the frame

length and thus reducing the delay.

N In the clinical test, due to resource and time restrictions the

proposed algorithm was only benchmarked against the state-

of-the-art algorithm. The underlying assumption is that the

simulation result and the STI index are good predictions of the

clinical test performance of different wavelet-based noise

reduction algorithm. Therefore, in this study different

algorithms are first evaluated through simulation which is a

cost-effective way to identify the candidate algorithm for

clinical test. Subsequent to this, the candidate algorithm is then

compared to the state-of-the-art in the clinical environment.

N A common limitation of all noise reduction algorithms is that

they cause signal distortion as a byproduct of the noise removal

process. An open question is then to try to quantify the effects

of noise reduction and signal distortion in the particular

application area of enhancing the speech intelligibility of

persons with cochlear devices. Whilst this remains an

important problem, it is out of the scope of this study. In

this study, we have demonstrated the combined effects of both

noise reduction and signal distortion. Clinical test results

clearly show that the benefit of noise reduction outweighs the

adverse effect of signal distortion. A future direction of this

work is to use the denoised signal in the transform domain as

the input to the cochlear device. This will serve to reduce

signal distortion due to the modification of the signal in the

transform domain, then transforming it back to the time

domain.

N There are a few parameters in the proposed denoising

algorithm. These parameters have been determined from

simulations to maximize the overall STI for the dataset.

Ideally, these parameters should be optimized for each patient.

However, this would not be feasible in clinical practice.

N In this work, our study is focused on a particular type of noise:

speech weighted noise (SWN). The algorithmic development

Figure 8. Subjects’ average speech reception threshold (SRT)
results. The SRT (in dB) is defined as the SNR providing 50%
morpheme intelligibility. The two noise conditions are the speech
weighted noise (SWN) and 20-talker babble. Asterisks demonstrate a
significant individual improvement at a 95% confidence level. Lower
SRT scores show better performance.
doi:10.1371/journal.pone.0075662.g008
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and the training of the parameters are based on the SWN.

Since different type of noise requires different algorithm to

achieve the best result, the performance of the proposed

algorithm is only optimum for SWN. A future direction of this

study is thus to develop algorithms targeting other types of

noise and develop an automated switching mechanism to select

the algorithm to achieve the best results.

Conclusions

In this study, a dual-tree wavelet-based noise reduction

algorithm has been developed. Simulation experiments with

SWN have demonstrated that the performance of proposed

algorithm (based on the speech transmission index) is better than

those of many existing wavelet-based algorithms. Clinical test

results have also confirmed that the proposed algorithm resulted in

significant speech performance outcomes in CI recipients. Further

work in CI noise reduction with wavelet implementations should

focus on using wavelet coefficients to drive stimulation levels and

testing in a range of noise types.
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