@PLOS ‘ ONE

OPEN 8 ACCESS Freely available online

Comparing Memory-Efficient Genome Assemblers on
Stand-Alone and Cloud Infrastructures

Dimitrios Kleftogiannis', Panos Kalnis', Vladimir B. Bajic*

1 Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King Abdullah University of Science and Technology (KAUST), Thuwal,
Saudi Arabia, 2 Computational Bioscience Research Center (CBRC), Computer, Electrical and Mathematical Sciences and Engineering Division (CEMSE), King

Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

Abstract

A fundamental problem in bioinformatics is genome assembly. Next-generation sequencing (NGS) technologies
produce large volumes of fragmented genome reads, which require large amounts of memory to assemble the
complete genome efficiently. With recent improvements in DNA sequencing technologies, it is expected that the
memory footprint required for the assembly process will increase dramatically and will emerge as a limiting factor in
processing widely available NGS-generated reads. In this report, we compare current memory-efficient techniques
for genome assembly with respect to quality, memory consumption and execution time. Our experiments prove that it
is possible to generate draft assemblies of reasonable quality on conventional multi-purpose computers with very
limited available memory by choosing suitable assembly methods. Our study reveals the minimum memory
requirements for different assembly programs even when data volume exceeds memory capacity by orders of
magnitude. By combining existing methodologies, we propose two general assembly strategies that can improve
short-read assembly approaches and result in reduction of the memory footprint. Finally, we discuss the possibility of
utilizing cloud infrastructures for genome assembly and we comment on some findings regarding suitable
computational resources for assembly.

Citation: Kleftogiannis D, Kalnis P, Bajic VB (2013) Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures. PLoS

ONE 8(9): €75505. doi:10.1371/journal.pone.0075505

Editor: Haixu Tang, Indiana University, United States of America

Received April 27, 2013; Accepted August 14, 2013; Published September 27, 2013

Copyright: © 2013 Kleftogiannis et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: DK and PK are supported by the KAUST Base Research Fund of PK. VBB is supported by the KAUST Base Research Fund. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing interests: The authors have read the journal's policy and have the following conflicts: VBB is an Academic Editor of PLOS ONE. This does not
alter the authors' adherence to all the PLOS ONE policies on sharing data and materials, as detailed online in the guide for authors.

* E-mail: vladimir.bajic@kaust.edu.sa

Introduction

Genome assembly is a fundamental problem in sequence
bioinformatics [1] and many assemblers have been developed
up to now [2-13]. Today, the input for genome assembly is
generated using the Next-Generation Sequencing (NGS)
technologies. Current NGS technologies deliver the following
significant improvements over older methods [14]: (i) the read
length has increased to several hundreds or even thousands of
base pairs for single-molecule, real-time sequencing; (ii)
genome coverage has increased by orders of magnitude
(depending on the genome size); (iii) the sequencing process
has become much faster and much cheaper [15]; (iv) whole
genome sequencing (WGS) for every organism has now
become feasible [16]; (v) metagenomics assembly from
environmental samples has now become possible [17].

A side effect of NGS is the massive amount of generated raw
data that normally requires computers with very large
memories for the assembly process. For example, traditional

PLOS ONE | www.plosone.org

short-read assemblers require around 256 GB RAM for
datasets with roughly 500 million reads [18]. This problem is
expected to worsen in the future because the NGS data
generation rate has exceeded expectations based on Moore’s
law [19], meaning that the amount of raw data is expected to
grow much faster than the capacity of available memory.
Despite the practical significance of the problem, existing
reviews [1,20-22] and comparison studies like Assemblathon
[23] and GAGE [18], have focused on the quality of the
assembly, but not on memory requirements.

Recently, there has been significant progress in the
development of memory-efficient genome assemblers [24-27].
The term memory efficient refers to assemblers that aim to
reduce the memory footprint of the process and, consequently,
handle larger NGS datasets with the same amount of memory.
The development of preprocessing techniques is also popular
and results in lightweight processing of large NGS datasets. A
method that eliminates redundant information [28] and a disk-

September 2013 | Volume 8 | Issue 9 | e75505

based partitioning algorithm [29] are two
preprocessing techniques.

In this study, we quantify the memory requirements of
modern assemblers for a variety of datasets. We compare the
prevalent memory-efficient techniques against a typical
traditional approach (i.e., Velvet [6]). We compare the following
programs: SparseAssembler [24], Gossamer [25], Minia [27]
and SGA [30]. All of them are open-source and representative
of the recent assembly trends, namely: the efficient
construction of large assembly graphs with less memory and
the utilization of compressed data structures. Our performance
evaluation follows the gold standard of genome assembly
evaluation [18] and is applied to four well-studied datasets with
diverse complexity and sizes, ranging from a few millions to
hundreds of millions of reads. We performed the experiments
on systems with 4 to 196 GB RAM, corresponding to a wide
range of equipment, from laptops to desktops to large servers.
We report the memory requirements for each program and
provide directions to researchers for choosing a suitable
execution environment for their assemblies. This is the first
study that offers a practical comparison of memory-efficient
assemblers with respect to the trade-offs between memory
requirements, quality of assembly and execution time.

We also propose two new assembly strategies that combine
existing memory-efficient approaches for each stage of the
execution. The first strategy is Diginorm-MSP-Assembly
(DiMA), which uses two pre-processing steps: Diginorm [28] for
data cleaning followed by MSP [29], which distributes the data
on disk partitions. The final assembly step allows for lightweight
processing and any well-known assembler can be used. Our
results show that DIMA is a general strategy for reducing the
memory requirements of traditional assemblers. The
combination of DIMA with the Velvet assembler results in better
memory utilization than that by the original Velvet program and
is capable of assembling the B. impatiens genome using about
20 GB RAM, whereas the original Velvet program would crash
because of insufficient memory on a 192 GB server. The
second strategy is Zero-memory assembly (ZeMA), which has
a data cleaning preprocessing phase that uses Diginorm.
Afterwards, ZeMA builds a sparse de Bruijn graph using
SparseAssembler. The ZeMA pipeline executed on a
conventional laptop successfully assembles the B. impatiens
genome using only 3.2 GB of RAM.

Finally, when access to local computational resources is not
available, we discuss the possibility of utilizing cloud
infrastructures for genome assembly. As a proof of concept, we
repeated all experiments on Amazon EC2 by utilizing suitable
virtual machine instances based on the reported minimum
memory requirements. Based on how often genome assembly
is executed, we performed a cost analysis to determine the
financial benefits of running assemblies on cloud systems. We
conclude that, under some constrains, it is cheaper to perform
genome assembly in the cloud when local access to powerful
computers is not possible. Thus, the opportunity to process
large NGS data becomes available to a wide spectrum of
researchers without extensive computing resources.

The contributions of our work are:

promising

i. A comparison of current memory-efficient assemblers.

PLOS ONE | www.plosone.org

Comparing Memory-Efficient Genome Assemblers

ii. Two novel assembly strategies that combine existing
memory-efficient techniques.

iii. Analysis of the applicability of cloud computing
infrastructures to genome assembly.

The remainder of this paper is organized as follows: In the
beginning of Materials and Methods section we survey recent
memory-efficient assembly methods. Afterwards we describe
our two novel assembly strategies and we present the
experimental setup. In the Results and Discussion section we
present the results and the outcome of the comparison. Next,
we present a cost analysis on utilizing a cloud infrastructure for
genome assembly. The last section provides conclusions and
comments on new perspectives for the future.

Materials and Methods

Background on assembly methods

Traditional assemblers. From the algorithmic perspective,
there are two common types of assembly algorithms[1] (i)
overlap-layout-consensus (OLC) approaches. OLC approaches
build an overlap graph in which nodes represent the reads and
edges correspond to overlaps between reads. Typically,
overlaps are computed using pair-wise sequence alignment.
The very first genome assemblers were OLC based and they
targeted reads from Sanger sequencers [31]. Examples include
the Celera assembler [32], PCAP [33], Arachne [34], Phrap [35]
and CAP3 [36]. However, NGS technologies now generate
millions of reads and computation of pair-wise alignment
between millions of reads has become infeasible. For this
reason, OLC-based approaches are not efficient with NGS
data.(ii) de Bruijn graph (DBG) approaches. DBG-based
assemblers are state of the art. In these approaches, reads are
decomposed into k-mers (a k-mer is a subsequence of a fixed-
length, k). Then, a DBG is built in which each node
corresponds to a k-mer and edges correspond to suffix-prefix
matching between them. Practical strategies for applying DBGs
to NGS data are reviewed in 37. The most popular DBG
assemblers are Euler [2], AbySS [3], SOAPdenovo [4],
ALLPATHS [5] and Velvet [6].

Memory-efficient techniques. Methods that reduce the
memory footprint of an assembly can be divided into three
categories: (i) construction of large DBG with less memory. The
deep genome coverage of NGS data produces large amounts
of redundant information. A promising new technique for DBG
construction is based on the idea of sparseness in genome
assembly [24]. The approach generates all possible k-mers
from input reads. Then, it performs uniform k-mer sampling
with a predefined sampling ratio. Based on the sampled subset
of k-mers, a sparse DBG is built. Storage of the sparse DBG
ensures sufficient information for accurate assembly, while
simultaneously reducing the storage requirements. However,
the sampling ratio has profound effects on the quality of the
assembly and dominates the memory requirements ; (ii)
effective indexes for identifying duplicate k-mers (or
equivalently overlapping in OLC). Analysis of DBGs properties
gives a lower bound for the number of bits required for
representing the graph. A memory-efficient implementation can

September 2013 | Volume 8 | Issue 9 | e75505

be obtained using succinct data structures (so-called entropy-
compressed structures). Succinct data structures are
compressed data structures that require memory space that is
close to the theoretical lower bound. Following this idea, a
sparse bitmap is used in [25] for representing a DBG. The
implementation runs using a predefined amount of available
RAM (fixed-memory). Fixed-memory execution is very efficient
with large amounts of NGS data because memory utilization is
independent of the input size. Suffix-array is another data
structure used in genome assembly. Typically, suffix-arrays
efficiently compute overlaps between NGS reads. FM-index
[26] is a similar data structure that is derived from Burrows—
Wheeler Transform [38] and allows for compressed
representation of input reads and fast computation of overlaps.
These ideas are incorporated in the SGA assembler, which
follows the OLC algorithmic paradigm [30]. Probabilistic data
structures are also applied in genome assembly [39]. The best-
known fixed-memory probabilistic data structure is the Bloom
Filter (BF) [40]. BF enables compact k-mers storage and
reduces memory requirements. In addition, it facilitates
partitioning of the graph to disconnected components, a
property that increases the quality of metagenomic sequence
assembly [41]. Another example of a BF-based assembiler is
Minia [27]. Minia introduces a novel algorithm for finding false
nodes and false branches, allows for accurate and memory-
efficient DBG traversal, and targets commodity desktops with
limited computational resources; (iii) effective preprocessing
techniques for NGS data. Typically, raw NGS data contain
errors. During the assembly process, these errors generate
spurious graph nodes and false branches that dominate RAM
requirements and decrease assembly quality. Digital
Normalization (Diginorm) [28] considers the effect of errors in
the assembly process and eliminates low-quality and highly
covered reads. It runs as a preprocessing step, has fixed
memory and produces a dataset cleansed of errors and
redundant information. The technique is general and can be
combined with any assembler. It is therefore feasible to apply
computationally expensive techniques, such as OLC, to NGS
data. Minimum Substring Partitioning (MSP) [29] splits the input
reads in subsequences longer than k-mers (called super k-
mers) and distributes them in a way that duplicate k-mers are
saved in the same disk partition. Thus, processing one disk
partition at a time allows overlaps between k-mers to be found.
MSP also generates a disk-based representation of DBG by
saving intermediate results on the disk and by utilizing small
chunks of RAM. However, to date, a complete MSP assembler
has not been reported.

Proposed strategies for genome assembly

Various approaches for data cleaning and efficient encoding
of DBGs have been proposed. Here, we explore the case of
producing an assembly by combining existing algorithms that
can be used as black-box units. We explore two strategies for
this purpose: (i) Diginorm-MSP-Assembly (DiMA); (ii) Zero-
memory assembly (ZeMA).

DIiMA. DiMA is a general assembly strategy that aims to
improve traditional assemblers. Without loss of generality, we
target the Velvet assembler and use the velveth and velvetg

PLOS ONE | www.plosone.org

Comparing Memory-Efficient Genome Assemblers

programs. The pipeline is implemented as follows. Initially,
Diginorm parses the raw data and eliminates errors and
redundant information. The clean dataset is piped to the MSP
algorithm. MSP generates super k-mers and distributes them
into different disk partitions. This guarantees that duplicate k-
mers reside in the same partition and hashing enables the
overlaps to be found. The velveth part processes one partition
at a time and generates a set of sub-graphs that can be
combined linearly. Processing small data partitions requires
much smaller RAM. The produced sub-graphs are merged and
the final graph nodes are re-encoded. The final assembly
graph is processed by the velvetg program that generates the
contigs. In addition to Velvet, any traditional assembly program
can be used in DIMA. DiMA is optimized for larger datasets
because it eliminates redundant information and requires small
RAM during MSP processing. Figure 1 illustrates the Diginorm-
MSP-Velvet strategy.

ZeMA. On the other hand, ZeMA aims at further reducing
the memory utilization of existing memory efficient assemblers.
The idea is simple: The processing starts with Diginorm, which
cleans the dataset. Then, a sparse representation of DBG
based on SparseAssembler is constructed. However, the
sparse representation of DBG based on an error-free dataset
might eliminate significant information for accurate assembly.
Although Minia can also be used in this strategy, we tested the
combination of Diginorm with SparseAssembler because
SparseAssembler has a good tradeoff between run-time and
accuracy.

Experimental setup

We compare several memory-efficient assemblers and
estimate their memory requirements for generating fast draft
assembly. The experiments are conducted as follows: Every
program is executed initially on a conventional laptop equipped
with a 1.7 GHz Intel core i5, 4 GB RAM, using the Linux
operating system. In case of failure (crash or insufficient
memory), a Linux server equipped with 192 GB RAM (12 Xeon
CPUs at 2.67 GHz) is utilized. By using the ulimit command,
we simulate different configurations, including 8, 16, 24, 32, 48,
64, 92 and 192 GB RAM. Also, we estimate the maximum
memory consumption and execution time for each assembler.
The total run time is measured with the time command and the
maximum memory consumption is reported using a custom
script available at (http://www.cbrc.kaust.edu.sa/mega/). Every
experiment is repeated three times and the average run time is
reported. The performance evaluation follows the gold standard
proposed in [18]. We downloaded the performance evaluation
scripts from the GAGE data repository (http://
gage.cbcb.umd.edu/data/index.html).

Datasets

The GAGE study provides WGS data from two bacterial
genomes (S. aureus and R. sphaeroides), the human
chromosome 14 and the bumblebee (Bambus impatiens).
Bacterial genomes are considered small. Human chromosome
14 is a typical example of a chromosome of a complex
organism. B. impatiens is representative of large genomes
sequenced with large read coverage. Table 1 summarizes the

September 2013 | Volume 8 | Issue 9 | e75505

http://www.cbrc.kaust.edu.sa/mega/
http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html

Comparing Memory-Efficient Genome Assemblers

Partition elveth - Velvetg
1 part part
Partiti
aré ON | cunlii- VVelveth = Velvetg
part part
Original .) —
Data \
Diginorm Partition elveth B Velvetg / @ o
3 part part

Partition elveth V/e:\;;;;
N part part

Figure 1. DIMA (Diginorm-MSP-Velvet) strategy. This figure depicts the DIMA assembly strategy combined with the Velvet
assembler. The process begins by cleaning the original data with a three-phase Digital Normalization algorithm. The cleaned data
are distributed on different disk partitions based on the MSP algorithm. Then, the velveth program runs followed by velvetg on
each partition. These programs constitute the Velvet assembler’s distinct phases (overlapping computation using hashing and graph
construction) and the results are stored on the disk. A merging phase creates the final assembly graph and Velvet's traversing
algorithm produces the final results.

doi: 10.1371/journal.pone.0075505.g001

Table 2. Memory-efficient techniques.

Program Assembly Method Characteristic Fixed Memory WebSite
SparseAssembler DBG Exploits sparseness No https://sites.google.com/site/sparseassembler/
) . http://www.genomics.csse.unimelb.edu.au/product-
Gossamer DBG Succinct Data Structure (Bitmap) Yes
gossamer.php
Minia DBG Probabilistic Data Structure (BF) No http://minia.genouest.org/
SGA oLC FM-index No https://github.coml/jts/sga
Minimum Substring . . . o .
. Pre-processing On-disk processing based on heuristics No http://grafia.cs.ucsb.edu/msp/download.html
Partitioning
Elimination of redundant information and
Diginorm Pre-processing Yes khmer.readthedocs.org/

errors

doi: 10.1371/journal.pone.0075505.t002

details of each dataset including estimated genome size, Table 1. NGS data used in the experiments.
number of reads and the average read length. Reference
genomes for mapping the generated contigs were downloaded
from the GAGE data repository (http://gage.cbcb.umd.edu/ Average Data size
data/index.html). Since the reference genome for B. impatiens Organism Genome Size (bp) #of Reads Length (bp) (GB)
is not well annotated, we use as reference the assembly 3 s 2,860,307 1294104 101 0.15
produced by SOAPdenovo [4], which performs well in the R. sphaeroides 4,603,060 2,050,868 101 0.24
original GAGE study [18]. Human chr 14 143,819,757 36,504,800 101 47
B. impatiens 373,481,773 303,118,504 124 46.5

Assemblers doi: 10.1371/journal.pone.0075505.t001

From the previously presented assemblers, we exclude the
probabilistic DBG constructor [39] because it targets reads Velvet program, called Diginorm-Velvet, is also used. The
from metagenomic samples (similar to MetaVelvet [42] or results for the original Velvet program are also reported.

MOCAT [43]). Table 2 summarizes the methods used in the
comparison. Here, a combination of Diginorm with the original

PLOS ONE | www.plosone.org 4 September 2013 | Volume 8 | Issue 9 | e75505

http://gage.cbcb.umd.edu/data/index.html
http://gage.cbcb.umd.edu/data/index.html
https://sites.google.com/site/sparseassembler/
http://www.genomics.csse.unimelb.edu.au/product-gossamer.php
http://www.genomics.csse.unimelb.edu.au/product-gossamer.php
http://minia.genouest.org/
https://github.com/jts/sga
http://grafia.cs.ucsb.edu/msp/download.html
http://khmer.readthedocs.org/

Table 3. Fragment assembly results for S. aureus.

Comparing Memory-Efficient Genome Assemblers

Diginorm- Original
Metric SparseAssembler Gossamer Minia SGA Velvet DiMA ZeMA Velvet
Total # of resultant contigs 679 914 1,039 1,009 627 1,341 2,373 467
N50 size in bp 8,127 5,427 4,277 4,700 8,688 3,344 1,669 12,363
Assembly Size in bp 3,185,299 2,817,839 2,783,007 2,860,307 2,863,078 2,877,916 2,905,031 2,844,437
Chaff bases in bp 356,537 26,709 19,703 636,820 28,179 50,827 97,791 28,997
48,720 93,467 30,262 13,765 16,230
Missing Reference Bases 9,639 (0.34%) 8,700 (0.30%) 21,059 (0.74%)
(1.70%) (3.27%) (1.06%) (0.48%) (0.57%)
Bad Trim 5,860 2,402 3,348 34,668 5,094 4,444 4,551 3,948
Translocation 28 2 9 50 30 10 42 22
Total Units Corrected 674 912 1,037 981 625 1,333 2,364 476
N50 size Corrected 8,053 5,427 4,277 4,672 8,547 3,337 1,665 11,850
Time (min:sec) 2:32 4:52 0:52 33:29 3:14 3:10 3:20 1:39
Memory Peak (GBs) 0.31 3 0.11 1.27 0.96 0.96 0.96 1.7

doi: 10.1371/journal.pone.0075505.t003

The latest versions for each program were downloaded from
the web links provided in Table 2. Execution commands and
scripts for preparing the datasets are available at (http://
www.cbrc.kaust.edu.sa/mega/). The same repository contains
all the generated contigs for reproducing the results. To clarify
suitable RAM configurations and to estimate the minimum
memory requirements of various programs, we test the case of
producing fast draft assembly using fragment read libraries. We
expect that the usage of all the available read libraries, as well
as the optimization of the k-mer size, will result in improved
quality. All of our experiments are conducted with the k-mer
size fixed to 31.

All programs are open source. The execution recipes are not
optimized. We use the default values for the program
parameters.

Comparison of assembly methods and ranking

The comparison includes execution time, memory
consumption and nine quality metrics. Including the total
number of resultant contigs, the N50 size in base-pairs (bp),
the assembly size in bp, missing reference bases, chaff bases
in bp, bad trim, translocation, total corrected resultant contigs
and corrected N50 size. All the performance metrics are
presented in the GAGE report [18] and explicit definitions can
be found in Table S1.

To quantify the quality of the studied programs, we rank
them as follows: For every quality metric, the assembler that
achieves the best result obtains 7 points, the second best
obtains 6 points and so on, down to 1 point. When an
assembler fails to produce results, it obtains 0 points. The
overall rank for each program is based on the sum of obtained
points, which we call the ranking score; the maximum score is
7x9=63 points. Thus, the program with the highest score is
ranked at position 1 and so on.

PLOS ONE | www.plosone.org

Results and Discussion

Small NGS datasets

All programs are able to finish and assemble ~99% of the
reference genomes of S. aureus and R. sphaeroides (Table 3
and Table 4). Regarding quality, Diginorm-Velvet produces
longer N50 and corrected N50 contigs and misses the fewest
reference bases. A possible reason is Velvet's characteristics
when dealing with bacterial genomes [23]. SparseAssembler
generates slightly shorter N50 contigs and achieves
comparable memory utilization and speed. However, the larger
number of chaff bases and missing reference bases reveals
that the sparse graph discards significant information. This is
apparent in ZeMA results where there is significant quality
degradation of the resulting assembly. Regarding the other
programs, SGA performs quite well, but it is very slow.
Gossamer performs fairly well and, overall, it has the
advantage of running with fixed memory. It is fast and it
assembles correctly on average 96.5% of the original
genomes. Minia is the fastest assembler and requires the
smallest amount of RAM. The small number of chaff bases that
it produces can be attributed to the sophisticated graph
traversal that discards false branches. DIMA has poorer
performance compared with Diginorm-Velvet because of the
intermediate phase of partitioning the original data.

In summary, for bacterial size genomes, we can efficiently
generate draft genome assemblies with less than 4 GB RAM
using any of the memory-efficient programs or traditional DBG
assemblers like Velvet.

Medium NGS datasets

Medium size genomes (Table 5, human chromosome 14) are
more naturally complex than small genomes; limited memory
resources therefore restrict efficient solutions for genome
assembly. Based on missing reference bases,
SparseAssembler correctly assembles 53.55% of the reference
chromosome by utilizing only 1.72 GB of RAM and finishes this
task in 61 minutes. Gossamer correctly assembles about 50%

September 2013 | Volume 8 | Issue 9 | e75505

http://www.cbrc.kaust.edu.sa/mega/
http://www.cbrc.kaust.edu.sa/mega/

Table 4. Fragment assembly results for R. sphaeroides.

Comparing Memory-Efficient Genome Assemblers

Diginorm- Original
Metric SparseAssembler Gossamer Minia SGA Velvet DiMA ZeMA Velvet
Total # of resultant contigs 2,218 6,927 2,887 2,652 2,143 3,582 5,580 2,164
N50 size in bp 3,211 607 2,246 2,275 3,369 1,822 989 3,245
Assembly Size in bp 4,985,042 4,372,958 4,502,157 4,386,839 4,580,783 4,581,634 4,676,725 4,603,060
Chaff bases in bp 490,566 370,300 51,725 110,663 67,933 129,282 307,705 69,147
236,516 119,552 303,703 49,767 47,324
Missing Reference Bases 34,461 (0.76%) 22,572 (0.49%) 88,863 (1.93%)
(5.14%) (2.60%) (6.60%) (1.08%) (1.03%)

Bad Trim 2,716 3,609 3,125 1,288 6,850 6,486 3,508 11,233
Translocation 1 1 1 1 5 1 5 2
Total Units Corrected 2,224 6,923 2,890 2,658 2,147 3,579 5,579 2,169
N50 size Corrected 3,201 607 2,239 2,267 3,326 1,812 988 3,232
Time (min:sec) 3:15 7:37 1:23 55:37 5:12 5:15 6:04 2:33
Memory Peak (GBs) 0.36 3 0.17 2.01 0.96 0.96 0.96 22
doi: 10.1371/journal.pone.0075505.t004
Table 5. Fragment assembly results for Homo sapiens chromosome 14",
Metric SparseAssembler Gossamer Minia Diginorm-Velvet DIiMA ZeMA Original Velvet
Total # of resultant contigs 52,785 67,160 52,926 55,002 61,039 68,253 52,085
N50 size in bp 264 123 161 273 233 252 325
Assembly Size in bp 101,600,523 73,046,277 74,079,569 79,129,375 80,448,331 81,139,464 81,190,207
Chaff bases in bp 28,034,067 3,861,802 3,318,028 5,365,076 7,803,232 7,554,603 6,844,058

72,145,106 71,829,430 67,835,777 67,535,775 68,640,864 66,461,819
Missing Reference Bases 66,811,187 (46.45%)

(50.16%) (49.94%) (47.17%) (46.96%) (47.73%) (46.21%)
Bad Trim 1,811,908 797,409 1,256,381 1,742,555 1,644,762 1,688,868 1,506,630
Translocation 3,849 1,247 1,447 3,920 2,026 4,874 3,824
Total Units Corrected 55,175 69,103 55,230 56,146 61,351 68,849 53,589
N50 size Corrected 172 0 107 177 159 171 195
Time (hours:min:sec) 1:1:37 3:6:50 1:33:13 1:18:16 1:21:8 1:15:09 2:27:46
Memory Peak (GBs) 1.72 3 0.76 3.34 8.7 1.2 49.3

“ The SGA program failed similarly to ref [18].
doi: 10.1371/journal.pone.0075505.t005

of the reference chromosome by utilizing 3 GB of the available
RAM, and it finishes this task in about 3 hours. Diginorm-Velvet
takes 78 minutes to assemble about 53% of the reference
chromosome by utilizing 3.34 GB RAM, whereas Minia takes
93 minutes to achieve a less accurate assembly, although it is
extremely light in terms of memory utilization (0.76 GB RAM).
As with the bacterial genomes, ZeMA uses relatively small
memory (1.2 GB RAM) to assemble correctly 52.3% of the
reference chromosome and finishes this task in 1 hour and 15
minutes. In contrast to the cases of the bacterial genomes, in
which the performance is significantly degraded, the quality of
the assembly produced by ZeMA is similar to that of the other
assemblers. The SGA program is ineffective. It indexes the
reads using 38.5 GB RAM; during the assemble phase, it
crashes and is not able to produce contigs. On the other hand,
due to MSP’s partitioning phase, DIMA creates a denser graph
than does Diginorm-Velvet and requires 8.7 GB RAM to
assemble about 53% of the reference chromosome in 81
minutes. In contrast to Velvet's memory management

PLOS ONE | www.plosone.org

bottlenecks [18], the combination of Diginorm with Velvet is
able to finish the execution in a reasonable amount of time.
Overall Diginorm-Velvet and DiIMA achieve comparable results
in terms of quality. Most importantly, the original Velvet
program using fragment read libraries requires about 50 GB
RAM, while other widely used assemblers [3—5] cannot run on
commodity desktops.

Large NGS datasets

Finally, to assemble the B. impatiens genome (Table 6),
ZeMA and Minia significantly reduce the memory footprint and
are able to complete the assembly on a conventional laptop.
ZeMA utilizes 3.2 GB RAM and correctly assembles about 63%
of the reference genome. The execution is slow and takes
around 7 hours and 13 minutes. On the other hand, Minia
correctly assembles about 65% of the reference genome and
utilizes only 1.28 GB RAM. However, the execution is slow and
takes 49 hours and 42 minutes to finish. A better estimation of
the genome size may decrease the execution time, but it will

September 2013 | Volume 8 | Issue 9 | e75505

Table 6. Fragment assembly results for B. impatiens’.

Comparing Memory-Efficient Genome Assemblers

Metric SparseAssembler Minia Diginorm-Velvet DiMA ZeMA

Total # of resultant contigs 73,065 69,110 184,131 388,411 414,813
N50 size in bp 2,318 2,312 708 260 161
Assembly Size in bp 494,097,945 227,494,682 232,965,134 228,316,538 237,258,668
Chaff bases in bp 267,660,451 2,539,466 11,619,692 39,540,500 67,160,134
Missing Reference Bases 123,265,375 (33%) 129,390,711 (34.64%) 127,532,299 (34.15%) 136,372,260 (36.51%) 138,953,569 (37.20%)
Bad Trim 1,084,237 443,936 867,642 746,248 892,388
Translocation 10,566 1,709 7,945 5,696 10,101

Total Units Corrected 73,842 69,523 181,952 385,691 409,935
N50 size Corrected 2,178 2,250 696 203 155

Time (hours:min:sec) 13:30:22 48:42:50 7:40:31 7:32:41 7:13:36
Memory Peak (GBs) 17.7 1.28 21.8 19.7 3.2

" Gossamer, SGA and the original Velvet failed to produce results.
doi: 10.1371/journal.pone.0075505.t006

increase the memory utilization without improving quality [27].
Regarding the programs that require larger RAM,
SparseAssembler correctly assembles about 67% of the
reference genome. The execution takes about 13.5 hours and
the memory utilization is 17.7 GB. Diginorm-Velvet correctly
assembles about 66% of the reference genome, takes 7 hours
and 40 minutes and requires 21.8 GB RAM. The quality of
DiMA’s results are comparable to that of Diginorm-Velvet. The
execution time is 8 minutes faster than Diginorm-Velvet and the
memory utilization is 19.7 GB. Gossamer crashes while writing
intermediate results on the hard drive; SGA also crashes. The
crashing of assemblers and incompatibility of read libraries
were not specific to our experiments. These problems were
also reported in the GAGE study [18].

Overall, most of the programs are able to finish the execution
with less than 24 GB RAM, which is a significant improvement
over typical DBG assemblers. Consequently, the speed of the
assembly is enhanced and the quality is improved.

Discussion

The reduced memory requirements impact the accuracy of
the results. Specifically, under limited RAM, the generated N50
contigs are shorter and more contigs are produced, although
the total assembly size is similar and in some cases errors are
fewer or comparable to traditional short-read assemblers (see
[18]). With medium and large NGS datasets, fragment reads
are not sufficient to achieve high-quality assembly.
Incorporation of paired-end libraries may improve the quality,
fill the gaps and reduce incorrect assemblies. We note that in
our experiments the default parameters are used for all
programs. Tuning the program parameters can affect the
accuracy and the number of errors, but such optimizations are
out of the scope of this study. Table 7 ranks the quality of the
studied programs and reports time and memory utilization. The
maximum memory utilization for each program is given in Table
8. Researchers who focus on the optimization of the quality for
specific genomes can take advantage of this information and
select suitable computational resources. In some cases,
utilizing a commodity laptop is sufficient for generating

PLOS ONE | www.plosone.org

reasonable draft assemblies. For larger genomes, the
utilization of desktops or workstations with memory resources
ranging from 8 to 24 GB seems sufficient and most memory-
efficient techniques can be further optimized. This is a
significant improvement considering that in the GAGE study,
the assemblers were run using 256 GB RAM.

Our experiments suggest the following promising designing
strategies for future development of memory-efficient
assemblers: (i) sparse representation of the assembly graphs;
(ii) utilization of probabilistic data structures for encoding graph
nodes; (iii) preprocessing to remove errors and redundant
information. Our results show that Diginorm-Velvet,
SparseAssembler [24], Minia [27] and Diginorm [28] appear to
be among the most useful methods under limited memory
resources.

Regarding the ranking of the performance of the assemblers,
we are compelled to say that the selection of the metrics and
the ranking criteria were somewhat subjective and far from
perfect. Thus, the ranking results that we report should be
considered with caution. Based on the selected ranking
procedure Diginorm-Velvet ranks first among the studied
programs for two reasons: (i) Velvet is a very efficient
assembler that produces high-quality results; (i) when data
size and complexity increase, Diginorm reduces the memory
footprint without affecting the accuracy of the results.
SparseAssembler ranks second. SparseAssembler has good
trade-offs between accuracy, wrong assemblies, run-time and
memory utilization. Minia ranks third in our comparison. The
quality is slightly lower for smaller datasets and, surprisingly,
the method is optimized for larger genomes like that of the
bumblebee. Minia requires minimal memory and it can be used
on conventional laptops and desktops. DIMA enhances the
memory footprint of Velvet for larger datasets and ranks fourth.
However, in-memory loading of a huge assembly graph
remains a bottleneck and restricts the applicability of DIMA.
ZeMA ranks fifth. The low quality that it achieves confirms our
initial hypothesis that data cleaning and sparse creation of
DBG lead to the loss of significant information. However under
limited memory, the strategy is able to process large datasets
and produce draft assemblies on a conventional laptop. SGA

September 2013 | Volume 8 | Issue 9 | e75505

Comparing Memory-Efficient Genome Assemblers

Table 7. Ranking of memory-efficient assemblers based on the quality of the assembly.

Dataset SparseAssembler Gossamer Minia SGA Diginorm-Velvet DiMA ZeMA

S. aureus Rank 2nd 3rd 4th 6th 1st oth 7th
Time(min:sec) 2:32 4:52 0:52 33:29 3:14 3:10 3:20
RAM (GB) 0.31 3 0.11 1.27 0.96 0.96 0.96

R. sphaeroides Rank 2nd 7th 3rd 4th 1st 5th 6th
Time(min:sec) 3:15 7:37 1:23 55:37 5:12 5:15 6:04
RAM (GB) 0.36 3 0.17 2.01 0.96 0.96 0.96

Human chr 14 Rank 1st sth.gth 2nd _3rd 7th 2nd _3rd 4th sth.gth
Time(h:m:s) 1:1:37 3:6:50 1:33:13 Failed 1:18:16 1:21:8 1:15:09
RAM (GB) 1.72 3 0.76 3.34 8.7 1.2

B. impatiens Rank 3rd gth -7th 1st gth-7th 2nd 4th 3rd
Time(h:m:s) 13:30:22 Failed 48:42:50 Failed 7:40:31 7:32:41 7:13:36
RAM (GB) 17.7 1.28 21.8 19.7 3.2

doi: 10.1371/journal.pone.0075505.t007

and Gossamer work only for the smaller datasets and the
quality if the assemblies is lower compared to those of other
programs.

Using Cloud Infrastructures for Genome Assembly

In recent years, cloud computing has emerged as an
alternative infrastructure for genome informatics [14].
Specifically, when access to local computational resources is
not possible, cloud computing offers a variety of high-
performance computers that can be rented on-demand for
executing genome assembly. Up to now, Amazon EC2 is the
best known provider that offers high-memory virtual machines
equipped with 17.1, 34.2, 68.4 and 244 GB RAM.

We executed the previously presented experiments without
problems on Amazon EC2. Table 8 gives guidelines for renting
suitable virtual machines (so called instances) in the cloud. The
execution times for assembly on Amazon EC2 cloud are given
in Table 9. Depending on the type of virtual machine, the
execution can be slower compared with that of local machines.
This artifact can be attributed to the sharing of resources
among virtual machines. In particular, Amazon’s EBS network
file system is typically slower than local disks. In cheaper
instances like the micro free and medium instances, the
execution is 2 to 10 times slower compared with local
machines. More expensive instances, like the high memory
one, achieve better performance.

In addition, transferring several hundreds of GBs through the
network is a drawback. For instance, sending 1 GB of data with
a network bandwidth 350 KB/sec takes roughly 45 minutes.
Also, the lack of a graphical interface might be problematic for
users who do not have prior programming or system
administration experience.

To answer the question whether it is more cost effective to
buy a local machine or to rent a similar instance from a cloud
provider, we perform the following financial analysis: Assume
that the available budget allows spending C dollars every three
years to purchase a local machine. Also assume that when
using the preferred genome assembler, the average execution
time takes t hours (3 years = 26,280 hours). Owning a machine

PLOS ONE | www.plosone.org

Table 8. Maximum memory utilization for each assembler in
GB'.

Assembler S. aureus R. sphaeroides Human chr 14 B. impatiens
SparseAssembler 0.31 0.36 1.72 17.7
Gossamer 3 3 3 Failed

Minia 0.11 0.17 0.76 1.2

SGA 1.27 2.01 Failed Failed
Diginorm-Velvet 0.96 0.96 3.34 21.8

DiMA 0.96 0.96 8.7 19.7

ZeMA 0.96 0.96 1.2 3.2

Original Velvet 1.7 24 49.3 Failed

* Typically, a program that requires less than 4 GB RAM can run on a laptop; 4-8
GB RAM on a desktop; 8-32 GB RAM on a workstation; and more than 32 GB
RAM on a server.

doi: 10.1371/journal.pone.0075505.t008

enables for a,=26,280/t assemblies. If the same amount of
money is spent on renting instances from a cloud web service
(Amazon EC2), we use the equation

_ C
U= Trw)dot)

where a_EC2 is the number of assembles on the cloud, w is
the overhead introduced by Amazon EC2 and network latency,
d is the cost per hour and t is the execution time of the
assembler. This is a simplified cost analysis and does not take
into account parameters like administration costs, electricity
costs, maintenance and so on.

It is obvious that if the required number of assemblies does
not exceed the a_EC2 threshold, it is worth it to rent instances
on the cloud. The number is bound by a,, which corresponds to
full utilization of a local machine. Moreover, when more than
a_EC2 are required, a combination of owning a machine and
executing part of the remaining workload on the cloud is
suggested as the most cost effective technique.

September 2013 | Volume 8 | Issue 9 | e75505

Comparing Memory-Efficient Genome Assemblers

*

Table 9. Executing assembly on the cloud (Amazon EC2)

Dataset SparseAssembler Gossamer Minia SGA Diginorm-Velvet DiMA ZeMA

S. aureus Amazon Instance/Cost ($) M1/0 M2/0.015 M1/0 M2/0.17 M2/0.008 M2/0.006 M1/0
Amazon Time(min:sec) 24:20 7:45 5:46 82:23 3:50 3:8 20:30
Local Time (min:sec) 2:32 4:52 0:52 33:29 3:14 3:10 3:20

R. sphaeroides Amazon Instance / Cost ($) M1/0 M2/0.027 M1/0 M2/0.22 M2/0.011 M2/0.011 M1/0
Amazon Time (min:sec) 29:29 13:41 10:23 109:16 5:28 5:33 28:27
Local Time (min:sec) 3:15 7:37 1:24 55:37 5:12 5:15 6:4

Human chr 14 Amazon Instance/Cost ($) M2/0.21 M2/0.59 M2/0.41 M2/0.16 M3/1.1 M2/0.17
Amazon Time (h:m:s) 1:45:32 4:57:12 3:22:27 Failed 1:18:21 1:23:23 1:23:22
Local Time (h:m:s) 1:1:37 3:6:50 1:33:13 1:18:16 1:21:8 1:15:09

B. impatiens Amazon Instance / Cost ($) M3/10.9 M2/7.24 M3/6.14 M3/6.04 M2/0.93
Amazon Time (h:m:s) 13:38:23 Failed 60:20:16 Failed 7:40:16 7:33:15 7:47:42
Local Time (h:m:s) 13:30:22 48:42:50 7:40:31 7:32:41 7:13:36

* We use the cheaper eligible instance for each combination of assembler and dataset. We report the financial cost and the time required per assembly. For comparison, we

also report the execution time on local memory-equivalent machines. These comparisons should be considered with caution.

doi: 10.1371/journal.pone.0075505.t009

Table 10. Cost-equivalent number of assemblies per week between local and cloud execution.”

Dataset SparseAssembler Gossamer Minia SGA Diginorm-Velvet DiMA ZeMA
S. aureus 127,145 430 563,539 38 915 843 151,572
R. sphaeroides 105,050 239 300,774 29 607 601 108,840
H. sapiens chr 14 30 10 15 - 40 13 38
B. impatiens 1 - 1 - 2 2 6

“ Below this threshold, it is cheaper to utilize a cloud system instead of running the assembly on a local machine. Computations are based on formula (I) and use prices from

Amazon EC2 (June 2013).
doi: 10.1371/journal.pone.0075505.t010

As a proof of concept, we compute the threshold for a_EC2
based on our previous experimental results and reference
prices from Amazon EC2 (June 2013). Table 9 presents the
costs under the following assumptions: (i) M1 micro instance
with 613 MB of RAM costs US$0.0001 (in practice, it is free)
per hour and introduces 50% time overhead; (ii) M2 instance
with 4 GB RAM and 1 virtual core costs US$0.12 per hour and
introduces 20% time overhead; (iii) M3 high memory instance
with 32 GB RAM and 8 virtual cores costs US$0.8 per hour and
introduces 10% time overhead. All prices are from June 2013.

In addition, we assume that a new laptop equipped (M2
equivalent instance) with 4GB RAM costs US$1,200 and a
workstation (M3 equivalent instance) with 32 GB RAM costs
US$2,670 (these prices are indicative http://www.dell.com/us/
business/p/). Table 10 presents the number of assemblies per
week that one can perform at less cost than the cost of owning
an equivalent local machine.

In summary, the financial analysis reveals that the assembly
of bacterial genomes, which takes a few minutes, can be
processed on the cloud at a very small cost. It is also possible
to utilize the micro free instance and assemble such genomes
at zero cost. SparseAssembler, Minia and ZeMA have smaller
RAM requirements and run using micro free instance. It is also
possible to start multiple instances simultaneously and optimize
the assembly by setting different configurations for the

PLOS ONE | www.plosone.org

parameters and the k-mer size. Assembly of medium-sized
genomes costs around US$1, which is a significant
improvement if we consider that a machine equipped with 32
GB RAM costs around US$2,500. The cost for assembly of
more complex genomes is higher because such an operation
requires more expensive virtual machines and the assembly
takes several hours. The average cost is around US$10 per
assembly with programs such as SparseAssembler. The ZeMA
strategy, on the other hand, which has a good trade-off
between memory consumption and execution time, costs only
US$1 per assembly. However, ZeMA does not perform very
well in terms of quality and is suitable only for draft assemblies
that can be further be optimized. Overall, the combination of
Diginorm with Velvet and SparseAssembler (ZeMA) allow for
more assemblies per week when the datasets are large.

Conclusions

Here, we focus on memory-efficient assemblers and their
ability to generate genome assemblies under conditions of
limited memory. It also demonstrates that ordinary laptops and
commodity computers can effectively process large NGS
datasets. Our results reveal that reasonably accurate assembly
and a good trade-off between memory and run time can be
achieved by: (i) exploiting sparse graphs; (ii) utilizing

September 2013 | Volume 8 | Issue 9 | e75505

http://www.dell.com/us/business/p/
http://www.dell.com/us/business/p/

probabilistic data redundant
information.

We propose two novel assembly strategies suitable for
improving traditional assemblers or processing data under
extremely low memory. These strategies are based on existing
assemblers and preprocessing techniques. Finally, we explore
the use of cloud infrastructures for genome assembly. Financial
analyses reveal that, depending on how frequently assembly is
executed, it is possible to process NGS data without having
access to suitable local computers.

Several questions remain unanswered and genome
assembly remains an interesting research area. For instance,
there is no globally best assembler. A promising future
research direction in this context is the partitioning of dense
DBG, utilization of massive graph processing platforms such as
Mizan [44], as well as cloud-based assembly frameworks.

structures; (iii)

discarding

Supporting Information

Table S1. Performance metrics definitions. The table
contains explicit definitions for all the performance metrics used

References

1. Miller JR, Koren S, Sutton G (2010) Assembly algorithms for next-
generation sequencing data. Genomics 95: 315-327. doi:10.1016/
j-ygeno0.2010.03.001. PubMed: 20211242.

2. Chaisson MJ, Pevzner PA (2008) Short read fragment assembly of
bacterial genomes. Genome Res 18: 324-330. doi:10.1101/gr.7088808.
PubMed: 18083777.

3. Simpson JT, Wong K, Jackman SD, Schein JE, Jones SJ et al. (2009)
ABySS: a parallel assembler for short read sequence data. Genome
Res 19: 1117-1123. doi:10.1101/gr.089532.108. PubMed: 19251739.

4. LiR, Zhu H, Ruan J, Qian W, Fang X et al. (2010) De novo assembly of
human genomes with massively parallel short read sequencing.
Genome Res 20: 265-272. doi:10.1101/gr.097261.109. PubMed:
20019144.

5. Butler J, MacCallum |, Kleber M, Shlyakhter IA, Belmonte MK et al.
(2008) ALLPATHS: de novo assembly of whole-genome shotgun
microreads. Genome Res 18: 810-820. doi:10.1101/gr.7337908.
PubMed: 18340039.

6. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read
assembly using de Bruijn graphs. Genome Res 18: 821-829. doi:
10.1101/gr.074492.107. PubMed: 18349386.

7. Miller JR, Delcher AL, Koren S, Venter E, Walenz BP et al. (2008)
Aggressive assembly of pyrosequencing reads with mates.
Bioinformatics 24: 2818-2824. doi:10.1093/bioinformatics/btn548.
PubMed: 18952627.

8. Warren RL, Sutton GG, Jones SJ, Holt RA (2007) Assembling millions
of short DNA sequences using SSAKE. Bioinformatics 23: 500-501.
doi:10.1093/bioinformatics/btl629. PubMed: 17158514.

9. Hernandez D, Frangois P, Farinelli L, Osteras M, Schrenzel J (2008)
De novo bacterial genome sequencing: millions of very short reads
assembled on a desktop computer. Genome Res 18: 802-809. doi:
10.1101/gr.072033.107. PubMed: 18332092.

. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS et al. (2005)
Genome sequencing in microfabricated high-density picolitre reactors.
Nature 437: 376-380. PubMed: 16056220.

. Schmidt B, Sinha R, Beresford-Smith B, Puglisi SJ (2009) A fast hybrid
short read fragment assembly algorithm. Bioinformatics 25: 2279-2280.
doi:10.1093/bioinformatics/btp374. PubMed: 19535537.

. Liu Y, Schmidt B, Maskell DL (2011) Parallelized short read assembly
of large genomes using de Bruijn graphs. BMC Bioinformatics 12: 354.
doi:10.1186/1471-2105-12-354. PubMed: 21867511.

. Diguistini S, Liao NY, Platt D, Robertson G, Seidel M et al. (2009) De
novo genome sequence assembly of a filamentous fungus using
Sanger, 454 and lllumina sequence data. Genome Biol 10: R94. doi:
10.1186/gb-2009-10-9-r94. PubMed: 19747388.

PLOS ONE | www.plosone.org

10

Comparing Memory-Efficient Genome Assemblers

in the comparison. All the metrics were presented in the GAGE
report [18]..
(DOC)

Acknowledgements

Authors thank Virginia A. Unkefer for proof-reading the
manuscript

Author Contributions

Conceived and designed the experiments: DK PK. Performed
the experiments: DK. Analyzed the data: DK PK VBB.
Contributed reagents/materials/analysis tools: DK. Wrote the
manuscript: DK PK VBB.

. Stein LD (2010) The case for cloud computing in genome informatics.
Genome Biol 11: 207. doi:10.1186/gb-2010-11-5-207. PubMed:
20441614.

. DeFrancesco L (2012) Life Technologies promises $1,000 genome.
Nat Biotechnol 30: 126. doi:10.1038/nbt0212-126b. PubMed:
22318022.

. Li R, Fan W, Tian G, Zhu H, He L et al. (2010) The sequence and de
novo assembly of the giant panda genome. Nature 463: 311-317. doi:
10.1038/nature08696. PubMed: 20010809.

. Rusch DB, Halpern AL, Sutton G, Heidelberg KB, Williamson S et al.
(2007) The Sorcerer |l Global Ocean Sampling expedition: northwest
Atlantic through eastern tropical Pacific. PLOS Biol 5: e77. doi:10.1371/
journal.pbio.0050077. PubMed: 17355176.

. Salzberg SL, Phillippy AM, Zimin A, Puiu D, Magoc T et al. (2012)
GAGE: A critical evaluation of genome assemblies and assembly
algorithms. Genome Res 22: 557-567. doi:10.1101/gr.131383.111.
PubMed: 22147368.

. Jackman SD, Birol | (2010) Assembling genomes using short-read

sequencing technology. Genome Biol, vol. 11, No. 1: 202. doi:10.1186/

gb-2010-11-1-202. PubMed: 20128932.

Schatz MC, Delcher AL, Salzberg SL (2010) Assembly of large

genomes using second-generation sequencing. Genome Res 20:

1165-1173. doi:10.1101/gr.101360.109. PubMed: 20508146.

Zhang W, Chen J, Yang Y, Tang Y, Shang J et al. (2011) A practical

comparison of de novo genome assembly software tools for next-

generation sequencing technologies. PLOS ONE 6: e17915. doi:

10.1371/journal.pone.0017915. PubMed: 21423806.

Paszkiewicz K, Studholme DJ (2010) De novo assembly of short

sequence reads. Brief Bioinform 11: 457-472. doi:10.1093/bib/bbq020.

PubMed: 20724458.

Earl D, Bradnam K, St John J, Darling A, Lin D et al. (2011)

Assemblathon 1: a competitive assessment of de novo short read

assembly methods. Genome Res 21: 2224-2241. doi:10.1101/gr.

126599.111. PubMed: 21926179.

Ye C, Ma ZS, Cannon CH, Pop M, Yu DW (2012) Exploiting

sparseness in de novo genome assembly. BMC Bioinformatics 13

Suppl 6: S1. doi:10.1186/1471-2105-13-S15-S1. PubMed: 22537038.

Conway TC, Bromage AJ (2011) Succinct data structures for

assembling large genomes. Bioinformatics 27: 479-486. doi:10.1093/

bioinformatics/btq697. PubMed: 21245053.

Simpson JT, Durbin R (2010) Efficient construction of an assembly

string graph using the FM-index. Bioinformatics 26: i367-i373. doi:

10.1093/bioinformatics/btq217. PubMed: 20529929.

Chikhi R, Rizk G (2012). Space-efficient and exact de Bruijn Graph

representation based on a Bloom Filter. WABI, Lecture notes in

computer. Springer: Science and Publishing House.

20.

21.

22.

23.

24.

25.

26.

27.

September 2013 | Volume 8 | Issue 9 | e75505

http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://dx.doi.org/10.1016/j.ygeno.2010.03.001
http://www.ncbi.nlm.nih.gov/pubmed/20211242
http://dx.doi.org/10.1101/gr.7088808
http://www.ncbi.nlm.nih.gov/pubmed/18083777
http://dx.doi.org/10.1101/gr.089532.108
http://www.ncbi.nlm.nih.gov/pubmed/19251739
http://dx.doi.org/10.1101/gr.097261.109
http://www.ncbi.nlm.nih.gov/pubmed/20019144
http://dx.doi.org/10.1101/gr.7337908
http://www.ncbi.nlm.nih.gov/pubmed/18340039
http://dx.doi.org/10.1101/gr.074492.107
http://www.ncbi.nlm.nih.gov/pubmed/18349386
http://dx.doi.org/10.1093/bioinformatics/btn548
http://www.ncbi.nlm.nih.gov/pubmed/18952627
http://dx.doi.org/10.1093/bioinformatics/btl629
http://www.ncbi.nlm.nih.gov/pubmed/17158514
http://dx.doi.org/10.1101/gr.072033.107
http://www.ncbi.nlm.nih.gov/pubmed/18332092
http://www.ncbi.nlm.nih.gov/pubmed/16056220
http://dx.doi.org/10.1093/bioinformatics/btp374
http://www.ncbi.nlm.nih.gov/pubmed/19535537
http://dx.doi.org/10.1186/1471-2105-12-354
http://www.ncbi.nlm.nih.gov/pubmed/21867511
http://dx.doi.org/10.1186/gb-2009-10-9-r94
http://www.ncbi.nlm.nih.gov/pubmed/19747388
http://dx.doi.org/10.1186/gb-2010-11-5-207
http://www.ncbi.nlm.nih.gov/pubmed/20441614
http://dx.doi.org/10.1038/nbt0212-126b
http://www.ncbi.nlm.nih.gov/pubmed/22318022
http://dx.doi.org/10.1038/nature08696
http://www.ncbi.nlm.nih.gov/pubmed/20010809
http://dx.doi.org/10.1371/journal.pbio.0050077
http://dx.doi.org/10.1371/journal.pbio.0050077
http://www.ncbi.nlm.nih.gov/pubmed/17355176
http://dx.doi.org/10.1101/gr.131383.111
http://www.ncbi.nlm.nih.gov/pubmed/22147368
http://dx.doi.org/10.1186/gb-2010-11-1-202
http://dx.doi.org/10.1186/gb-2010-11-1-202
http://www.ncbi.nlm.nih.gov/pubmed/20128932
http://dx.doi.org/10.1101/gr.101360.109
http://www.ncbi.nlm.nih.gov/pubmed/20508146
http://dx.doi.org/10.1371/journal.pone.0017915
http://www.ncbi.nlm.nih.gov/pubmed/21423806
http://dx.doi.org/10.1093/bib/bbq020
http://www.ncbi.nlm.nih.gov/pubmed/20724458
http://dx.doi.org/10.1101/gr.126599.111
http://dx.doi.org/10.1101/gr.126599.111
http://www.ncbi.nlm.nih.gov/pubmed/21926179
http://dx.doi.org/10.1186/1471-2105-13-S15-S1
http://www.ncbi.nlm.nih.gov/pubmed/22537038
http://dx.doi.org/10.1093/bioinformatics/btq697
http://dx.doi.org/10.1093/bioinformatics/btq697
http://www.ncbi.nlm.nih.gov/pubmed/21245053
http://dx.doi.org/10.1093/bioinformatics/btq217
http://www.ncbi.nlm.nih.gov/pubmed/20529929

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Brown CT, Howe A, Zhang Q, Pyrkosz AB, Brom TH (2012) A
Reference-free algorithm for computational normalization of shotgun
sequencing data. Available: arXiv:1203.4802. Accessed 2013 June 25.
Li Y, Kamousi P, Han F, Yang S, Yan X et al. (2013) Memory Efficient
minimum substring partitioning. To appear in VLDB Conference in
Trento, Italy.

Simpson JT, Durbin R (2012) Efficient de novo assembly of large
genomes using compressed data structures. Genome Res 22:
549-556. doi:10.1101/gr.126953.111. PubMed: 22156294.

Sanger F, Coulson AR (1977) A rapid method for determining
sequences in DNA by primed synthesis with DNA polymerase. J Mol
Biol 25;94 (3): 441-448.

Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP et al. (2000) A
whole-genome assembly of Drosophila. Science 287: 2196-2204. doi:
10.1126/science.287.5461.2196. PubMed: 10731133.

Huang X, Wang J, Aluru S, Yang SP, Hillier L (2003) PCAP: a whole-
genome assembly program. Genome Res 13: 2164-2170. doi:
10.1101/gr.1390403. PubMed: 12952883.

Batzoglou S, Jaffe DB, Stanley K, Butler J, Gnerre S et al. (2002)
ARACHNE: a whole-genome shotgun assembler. Genome Res 12:
177-189. doi:10.1101/gr.208902. PubMed: 11779843.

de la Bastide M, McCombie WR (2007) Assembling genomic DNA
sequences with PHRAP. Curr Protoc Bioinformatics Chapter 11: Unit11
14. PubMed: 18428783

Huang X, Madan A (1999) CAP3: A DNA sequence assembly program.
Genome Res 9: 868-877. doi:10.1101/gr.9.9.868. PubMed: 10508846.
Compeau PE, Pevzner PA, Tesler G (2011) How to apply de Bruijn
graphs to genome assembly. Nat Biotechnol 29: 987-991. doi:10.1038/
nbt.2023. PubMed: 22068540.

PLOS ONE | www.plosone.org

11

38.

39.

40.

41.

42.

43.

44,

Comparing Memory-Efficient Genome Assemblers

Burrows M, Wheeler D (1994)
compression algorithm, Technical
Corporation

Pell J, Hintze A, Canino-Koning R, Howe A, Tiedje JM et al. (2012)
Scaling metagenome sequence assembly with probabilistic de Bruijn
graphs. Proc Natl Acad Sci U S A 109: 13272-13277. doi:10.1073/
pnas.1121464109. PubMed: 22847406.

Knuth D (1997) The Art of Computer Programming, Volume 2 (3rd Ed.):
Semi numerical algorithms. Boston, MA, USA: Addison-Wesley
Longman Publishing Co., Inc..

Howe A, Pell J, Canino-Koning R, Mackelprang R, Tringe S et al.
(2012) lllumina sequencing artifacts revealed by connectivity analysis
of metagenomic datasets. Available: arXiv:1212.0159. Accessed 2013
June 25.

Namiki T, Hachiya T, Tanaka H, Sakakibara Y (2012) MetaVelvet: an
extension of Velvet assembler to de novo metagenome assembly from
short sequence reads. Nucleic Acids Res 40: e155. doi:10.1093/nar/
gks678. PubMed: 22821567.

Kultima JR, Sunagawa S, Li J, Chen W, Chen H et al. (2012) MOCAT:
a metagenomics assembly and gene prediction toolkit. PLOS ONE 7:
e47656. doi:10.1371/journal.pone.0047656. PubMed: 23082188.
Khayyat Z, Awara K, Alonazi A, Jamjoom H, Williams D et al. (2013)
Mizan: A system for dynamic load balancing in large-scale graph
processing. In proceeding of EuroSys 2013 Conference, Prague,
Chech Republic.

A block sorting lossless data
Report 124, digital Equipment

September 2013 | Volume 8 | Issue 9 | e75505

http://arxiv.org/abs/1203.4802
http://dx.doi.org/10.1101/gr.126953.111
http://www.ncbi.nlm.nih.gov/pubmed/22156294
http://dx.doi.org/10.1126/science.287.5461.2196
http://www.ncbi.nlm.nih.gov/pubmed/10731133
http://dx.doi.org/10.1101/gr.1390403
http://www.ncbi.nlm.nih.gov/pubmed/12952883
http://dx.doi.org/10.1101/gr.208902
http://www.ncbi.nlm.nih.gov/pubmed/11779843
http://www.ncbi.nlm.nih.gov/pubmed/14
http://dx.doi.org/10.1101/gr.9.9.868
http://www.ncbi.nlm.nih.gov/pubmed/10508846
http://dx.doi.org/10.1038/nbt.2023
http://dx.doi.org/10.1038/nbt.2023
http://www.ncbi.nlm.nih.gov/pubmed/22068540
http://dx.doi.org/10.1073/pnas.1121464109
http://dx.doi.org/10.1073/pnas.1121464109
http://www.ncbi.nlm.nih.gov/pubmed/22847406
http://arxiv.org/abs/1212.0159
http://dx.doi.org/10.1093/nar/gks678
http://dx.doi.org/10.1093/nar/gks678
http://www.ncbi.nlm.nih.gov/pubmed/22821567
http://dx.doi.org/10.1371/journal.pone.0047656
http://www.ncbi.nlm.nih.gov/pubmed/23082188

	Comparing Memory-Efficient Genome Assemblers on Stand-Alone and Cloud Infrastructures
	Introduction
	Materials and Methods
	Background on assembly methods
	Proposed strategies for genome assembly
	Experimental setup
	Datasets
	Assemblers
	Comparison of assembly methods and ranking

	Results and Discussion
	Small NGS datasets
	Medium NGS datasets
	Large NGS datasets

	Discussion
	Using Cloud Infrastructures for Genome Assembly

	Conclusions
	Supporting Information
	Acknowledgements
	Author Contributions
	References

