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Abstract

Accurate identification of DNA polymorphisms using next-generation sequencing technology is challenging because of a
high rate of sequencing error and incorrect mapping of reads to reference genomes. Currently available short read aligners
and DNA variant callers suffer from these problems. We developed the Coval software to improve the quality of short read
alignments. Coval is designed to minimize the incidence of spurious alignment of short reads, by filtering mismatched reads
that remained in alignments after local realignment and error correction of mismatched reads. The error correction is
executed based on the base quality and allele frequency at the non-reference positions for an individual or pooled sample.
We demonstrated the utility of Coval by applying it to simulated genomes and experimentally obtained short-read data of
rice, nematode, and mouse. Moreover, we found an unexpectedly large number of incorrectly mapped reads in ‘targeted’
alignments, where the whole genome sequencing reads had been aligned to a local genomic segment, and showed that
Coval effectively eliminated such spurious alignments. We conclude that Coval significantly improves the quality of short-
read sequence alignments, thereby increasing the calling accuracy of currently available tools for SNP and indel
identification. Coval is available at http://sourceforge.net/projects/coval105/.
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Introduction

Next-generation sequencing (NGS) technology has enabled us

to determine whole genome sequences and structures rapidly and

inexpensively, including DNA polymorphisms, gene structures,

and epigenetic alterations, by producing massive amounts of short

reads. The current NGS methodology involves a substantially

higher rate of error in reads relative to the Sanger sequencing

method. The sequencing error occurs mainly due to technical

problems including suboptimal discrimination of fluorescent dyes

assigned to different nucleotides and mutations incorporated

during the PCR amplification phase of library preparation [1].

The sequencing errors are likely to occur both in a sequence-

dependent and a sequence-independent manner. Nakamura et al.

have recently reported that GGC-containing genomic regions are

prone to sequence-specific errors in Illumina sequencing reactions

[2]. This phenomenon may be common in polymerase-catalyzed

sequencing systems; a similar bias in sequencing errors has been

observed in the 454 GS-FLX system [3]. In addition, the short

length (36–110 bp) of the sequence reads often leads to

misalignment of the reads to unrelated positions in a reference

genome. This is particularly problematic in organisms with

genomes containing a large proportion of repetitive sequences.

These problems all hinder the accuracy of determination of

genomic structures, including DNA polymorphisms, through the

alignment of NGS short reads with a reference genome.

A number of short-read alignment tools (aligners), including

BWA [4], MAQ [5], SSAHA2 [6], SOAP2 [7], Bowtie [8],

NovoAlign (http://www.novocraft.com), RMAP [9], BFAST [10],

SHRiMP [11], and Stampy [12] have been developed. Many of

these use 20–35 bp substring (seed) sequences within reads for

matching with a reference sequence to enable fast and efficient

alignment, with algorithms based on hash tables and suffix/prefix

tries [13]. The seed-based alignment method increases the

probability of finding the best match position and sequence

variants in the reference sequence by allowing only a few

mismatches between the seed and the reference sequence.

Single nucleotide polymorphisms (SNPs) and insertions and

deletions (indels) can be detected from alignment data using a

number of freely available SNP/indel calling tools such as MAQ/

SAMtools [14], SOAPsnp [15], Crossbow [16], Atlas-SNP2 [17],

VarScan [18,19], Slider II [20], SNPSeeker [21], GATK [22],

SeqEM [23], SNVMix [24], Sniper [25], SomaticSniper [26],

GeMS [27], GenomeComb [28], DBM [29], Dindel [30], and also

using structural variant callers, such as Pindel [31], SvSeq [32],

AGE [33], and SV-M [34]. These tools filter out potentially

miscalled variants and only call reliable variants. Currently

adopted methods of calling SNPs and indels are mainly based

on three algorithms; one is to set thresholds empirically for several
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variables of aligned data such as read depth, base quality, and

allele frequency; second relies on a probabilistic measurement of

calling accuracy of a variant using a Bayesian approach with

statistically measured prior probabilities (e.g., frequencies of SNPs

or error occurrence depending on base quality); third is based on a

machine leaning method utilizing a support vector machine

classifier. For Dindel, GATK, recent versions of SAMtools, and an

SRMA realigner [35], calling of small indels has been improved by

creating a local realignment around the initially called indel

positions. Irrespective of the differences in the calling methods, all

of these tools attempt to increase specificity (decrease false positive

calls attributable to sequencing and alignment errors) while

increasing sensitivity (successful calling of true positives) in the

alignment data.

In this study, we show that all of the available short read aligners

capable of handling indels (gap-aligners), such as BWA, MAQ,

NovoAlign, and BFAST, align a large fraction of the reads with a

high number of mismatches. We demonstrate that alignments and

DNA variant calling can be significantly improved by correction

and filtering of mismatched reads.

Materials and Methods

Illumina Short Read Alignment
DNA libraries from rice (O. sativa Japonica group cv.

Nipponbare) leaves were prepared with the Paired-End DNA

sample Prep Kit (Illumina, San Diego, CA, USA), and were

sequenced using the Illumina GAIIx platform to produce over 126

million 75 bp paired-end reads with an average insert size of

270620 bp. Base calling and filtering of low quality bases were

performed using sequence control software (SCS) real-time

analysis, BCL converter, and the GERALD module (Illumina,

San Diego, CA, USA). The rice reads have been deposited in the

DDBJ Sequence Read Archive [DDBJ:DRA000470]. The base

Table 1. Number of mismatches in aligned reads.

Mismatch number Percentage of mismatched reads in aligned reads (%)a

rice Arabidopsis nematode mouse simu-dwgsim

1 8.6 9.1 19.0 15.7 24.4

2 2.7 2.1 4.5 5.9 4.1

3 1.6 1.4 1.7 3.6 0.45

4 1.2 0.9 1.0 2.7 0.037

5 0.4 0.2 0.6 1.4 0.001

.5 0.8 0.4 0.1 2.8 0.0001

Error rate 0.42 0.33 0.41 1.1 0.45

aThe percentage of reads with mismatches, out of the total number of aligned reads for each species or simulated reads. Aligned reads are paired-end reads of 100 bp
for nematode, 76 bp for mouse, and 75 bp for the others. Artificial reads reflecting the error tendency of the rice reads were generated with a dwgsim. The total error
rates (%) are indicated in the last line.
doi:10.1371/journal.pone.0075402.t001

Table 2. Calling accuracy of SNPs from alignment data containing multiple samples.

Sample (%)a Homo/Heterob Coval-Refine SNP calling accuracy

True positive rate True positive rate

50 Homo 2 617,351 (83.4%) 37,535 (5.73%)

+ 605,175 (81.8%) 1,255 (0.21%)

Hetero – 542,474 (73.3%) 21,588 (3.83%)

+ 492,574 (66.5%) 5,575 (1.12%)

25 Homo – 542,399 (73.3%) 21,198 (3.76%)

+ 527,156 (71.2%) 1,619 (0.31%)

Hetero – 376,688 (50.9%) 7,345 (1.91%)

+ 348,833 (47.1%) 2,849 (0.81%)

12.5 Homo – 375,386 (50.7%) 7,242 (1.89%)

+ 361,669 (48.9%) 1,369 (0.38%)

The experimentally obtained rice reads (60, 30, and 15 millions) were mixed with the simulated 75 bp paired-end reads (60, 90, and 105 millions) generated by dwgsim
with the rice simulated genome as template, respectively, yielding 120 millions of reads. The read mixtures were aligned to the rice simulated genome, resulting in
alignments with average read depth of 246, and each read set (sample) in the read mixtures was discriminated from the other read set using the RG tag. The SNPs were
called using Coval-Call with a maximum of 80 reads covering the called positions, a minimum allele frequency at the called position of 0.2 (for 50% homozygous
sample), 0.1 (for 50% heterozygous and 25% homozygous samples), or 0.05 (for 25% heterozygous and 12.5% homozygous samples), a minimum of three reads (for
50% homozygous sample) or two reads (for the others) supporting the called allele.
aPercentage of the experimentally obtained rice read sample in the read mixture.
bHeterozygosity of the experimentally obtained rice read sample (Homo: 0% heterozygosity, Hetero: 50% heterozygosity).
doi:10.1371/journal.pone.0075402.t002
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quality distribution of the reads was examined using PRINSEQ

[36]. Seventy-two million 100 bp Illumina GAII paired-end reads

of C. elagans WS220 [Run SRR065388 from Study SRP003487]

and 745 million 76 bp Illumina GAII paired-end reads (in part,

containing 54 bp and 104 bp paired-end reads) of mouse 129S5/

SvEvBrd [Run ERR007818,ERR007841 from Study

ERP000036] were downloaded from the NCBI read sequence

archive (http://www.ncbi.nlm.nih.gov/Traces/sra/). For experi-

ments with trimmed reads, we treated 63 million 75 bp paired-end

rice reads using Condetri with options ‘–minlen= 35–ml= 5–

lq = 5 or = 109 and Trimmomatic with options ‘ILLUMINA-

CLIP:GAII:adapter.fa: 1:40:15 LEADING:3 TRAILING:3 MIN-

LEN:50 SLIDINGWINDOW:2:10, :2:15 or :2:209 to produce

reads from which the 39 low quality regions were trimmed. The

reference genomes used for alignment were as follows: IRGSP

build 5 of rice (O. sativa cv. Nipponbare), mouse 129S5/SvEvBrd

consensus genome sequence, and C. elegans WS220 genome, which

were downloaded from RAP_BD (http://rapdb.dna.affrc.go.jp/),

the mouse genomes project site (http://www.sanger.ac.uk/

resources/mouse/genomes/) of the Wellcome Trust Sanger

Institute, and NCBI (ftp://ftp.ncbi.nlm.nih.gov/genomes/), re-

spectively. Assemblies of the mouse consensus sequence were

combined to make one contig for each chromosome. The short

reads and reference genomes used in this study are listed in Table

S1. We used BWA v0.5.9 by default paired-end or single-end

mode for alignment unless otherwise stated. For paired-end

alignment with SOAP2 v2.21, Bowtie 2 v2.0.0-beta7, and Stampy

v1.0.15, with default parameters, were used, and the options ‘–a

400’, ‘–r A 29, and ‘–rtype solexa –best 19 were used for alignment

with MAQ v0.1.7, NovoAlign v2.07.18, and SSAHA2 v2.5.4,

respectively.

Development of Coval Tools
Coval is implemented as a set of Perl programs. An outline of

the Coval pipeline and a schematic description of the Coval-

Refine algorithm are illustrated in Figure S1.

SAM/BAM alignment-refining tool (Coval-Refine). The

Coval-Refine tool removes reads with mismatches that exceed the

number specified by users and whose base-call qualities are lower

than the value specified by users, after the local realignment

procedure that repairs mismatched alignments in the ‘basic mode’.

Coval-Refine corrects potential sequencing errors in reads after

local realignment, and then removes reads with mismatches that

exceed the number specified by users in the ‘error correction

mode’. In this mode, mismatch reads with a larger number of

mismatches than 10% of read length are removed before

realignment. The realigned reads are error-corrected, based on

base quality and/or allele frequency of mismatch bases. The

quality-based correction is a strategy to correct mismatch bases

when the mean quality of non-reference bases supported at the site

is lower than a minimum quality value (10 by default) specified by

users, and the frequency-based correction is to correct mismatch

bases when the non-reference allele frequency is lower than a

minimum allele frequency (0 by default) specified by users (see

Figure S2 for the error-correction algorithm in more detail). If

there are multiple non-reference alleles in a mismatch site,

mismatch bases with lower allele frequencies at the site are

corrected to match the corresponding reference base. For data

from pooled samples, allele frequencies are calculated for each

sample and bases with the non-reference allele frequency lower

than 0.8 for homozygous samples or lower than 0.3 for

heterozygous samples are corrected to reference bases by setting

‘msamp’ option. By default in the error correction mode, when the

first mate is filtered out the second paired-end mate is also

removed (which is also selectable with option ‘fpair’). In both the

Figure 1. Improvement of SNP/indel calling accuracies of various DNA variant callers by Coval-Refine. (A) SNP calling accuracy with or
without Coval-Refine. (B) Indel calling accuracy with or without Coval-Refine. The simulated rice genome was aligned with reads of the real rice
genome (experimental reads) using BWA. Alignment data were filtered (+, red striped and blue striped bars) or not filtered (–, light red and light blue
bars) with the Coval-Refine component (Coval-Refine, error correction mode), and homozygous SNPs and indels were called using the indicated
variant callers. The SNPs and indels extracted by all the callers were further filtered under the same conditions, as described in the text. True positive
rate (TPR, the number of successfully called SNPs or indels divided with the number of SNPs or indels introduced into the simulated genome,
followed by multiplying with 100) is shown with light red and red striped bars, and false positive rate (FPR, the number of wrongly called SNPs or
indels divided with the number of the totally called SNPs or indels, followed by multiplying with 100) with light blue and blue striped bars. The GATK
pileline was carried out with (GATK BQSR) or without (GATK) the base quality score recalibration. A variant quality score recalibration in the GATK
pipeline was omitted because of its unsuitability for our data. Instead it was replaced by simple filtering: a minimum allele frequency of 0.8 and a
minimum allelic read depth of 2 (see Materials and Methods for details).
doi:10.1371/journal.pone.0075402.g001
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modes, the filtering also removes discordant paired-end reads,

either with mates that are not aligned or with a distance between

the mates that exceeds the mean distance plus five standard

deviations, which is automatically calculated. In our simulation

tests, however, the removal of discordant paired-end reads only

slightly improved the accuracy of SNP and indel calling. Removal

of the discordant paired-end reads and selection of a threshold

filtering length of the read distance are selectable as options, which

may be useful for a downstream analysis such as structural variant

finding. Coval-Refine also removes reads containing more than

two indels or containing soft-clipped ends at both termini. The

realignment function realigns mismatch reads overlapping with an

indel, which generally contain multiple mismatches in their

terminal regions due to the failure of the gapped alignment to

support the indel. Coval-Refine also removes reads containing any

mismatch within their terminal 2 bp regions only when the local

realignment is disabled, which is selectable as an option.

The filtering tool finds mismatches in reads and counts the

number of mismatches by comparing the read sequence with the

corresponding region of the reference genome. It does not use the

MD tag for mismatch information in SAM alignment data for

initial seeking of mismatch, enabling application to other kinds of

aligners. In the filtering of mismatch reads, the presence of an

indel or a soft-clipped end is regarded as one mismatch; for

example, a specified two mismatch threshold goes down to a one

mismatch threshold for reads containing a single indel. The

maximum number of allowable mismatches and maximum rate of

mismatches in a read are controlled by the ‘num’ (default is 2) and

‘mrate’ options, respectively. The maximum number of total

mismatches contained in two paired reads can be also specified by

the option ‘fnum’ (default is 1.7-fold of the number specified with

‘num’). The balance between TPR and FPR can be also controlled

by the mismatch-counting with the base quality of mismatched

bases; counting as ‘mismatch’ only mismatched bases with base

call quality less than the value specified with the option ‘minq’.

Short-read alignment tools often misalign reads around indels,

which in many cases results in mismatches in the terminal regions

of the reads, local realignment around indels improves the

accuracy of indel calling, as previously reported [22,30,35]. The

local realignment function of Coval first stores the indel

information and mismatch-containing reads in the alignment

data. Second, it realigns mismatched reads such that the extracted

indel positions overlap with the target indel region. The

realignment is conducted by shifting the 59 or 39 portion of a

read at the target indel site by the length of the indel size. When

the total mismatch number of a read is decreased or unchanged by

the realignment procedure, the realigned state is accepted and

stored in an alignment result. The reads to be realigned are

restricted to reads with at most one indel or one soft-clipped end,

because of the complexity of the realignment process. For reads

without indels or soft-clipped ends, only mismatch-containing

reads are realigned because the realignment of non-mismatch

reads worsens the variant calling accuracy.

The treatment of an alignment file containing 50 million reads

with Coval-Refine should be accomplished within a few hours but

it will take twice or more time when setting –mfreq or –msamp in

the error correction mode.

Variant calling tool (Coval-Call). The variant calling tool is

a filtering tool to call SNPs and indels from a pileup or SAM file.

This filtering is based on the following options for empirical

settings: (1) ‘num’, the number of reads with a non-reference base

at the called site (default is 2), (2) ‘‘freq’’, the frequency of reads

supporting a called allele in the total number of reads covering the

site (default is 0.8), (3) ‘qual_ave’, the average base quality of non-

reference bases at the called site (this is only for SNPs, default is

20), ‘qual_base’, the minimum base quality of a non-reference base

(default is 3) (4) ‘maxr’, the maximum read number covering non-

reference alleles. For heterozygous SNP calling, for example, when

‘freq’ is specified to 0.2, a called allele with ‘freq’,0.9 is controlled

by another option, ‘tnum’, the minimum number of reads

supporting a heterozygous non-reference allele (default is 3),

whereas an allele with ‘freq’ $0.9 is controlled by ‘num’. For SNP

calling, SNPs that are present within 3 bp upstream or 3 bp

downstream of a homozygous indel are not called. For ‘freq’

calculation for indel calling, the number of reads covering the site

that is represented at the eighth column of a pileup file has been

subtracted from the number of reads whose 39 termini (including

soft-clipped ends) are located at the site. DNA variant calling from

a pileup file containing 1.5 million variants would take about

1 min.

Figure 2. Improvement by Coval-Refine of SNP/indel calling accuracy of variant calling tools for mouse alignment data. (A) SNP
calling accuracy with or without Coval-Refine. (B) Indel calling accuracy with or without Coval-Refine. A simulated mouse genome was aligned with
real mouse read data using BWA. The alignments were filtered (+, striped bars) or not filtered (–, plain bars) with Coval-Refine. Homozygous SNPs and
indels were called with the indicated variant callers under the same conditions as in Figure 1.
doi:10.1371/journal.pone.0075402.g002
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Genome-simulator (Coval-Simulate). Genome-simulator

was designed to incorporate SNPs and 1 to 6 bp indels randomly

into a reference genome, evenly distributing the number of SNPs

and indels specified by users, according to the length of each

chromosome. Moreover, SNP bases to be substituted are set to

reflect the base frequency of naturally occurring SNPs; transitions

are 4-fold more frequent than transversions, as previously

observed [37]. Indel lengths to be inserted are also set to reflect

naturally occurring frequencies. We set the frequency of indels

with different lengths as follows: 66% were 1 bp indels, 17% were

2 bp indels, 7% were 3 bp indels, 7% were 4 bp indels, 2% were

5 bp indels, and 1% were 6 bp indels. These percentages were

based on observed frequencies in the human genome [38]. The

frequencies of both the SNPs and indels were roughly identical to

those from our resequencing results for different rice cultivars.

Simulation Tests
A simulated rice genome containing 816,408 artificial SNPs

(corresponding to 0.2% of the rice genome) and 76,100 1 to 6 bp

indels (corresponding to 0.02% of the rice genome) was created

with the Coval-Simulate tool. This simulated genome was then

aligned with the experimentally obtained rice reads using BWA or

other aligners. The published rice genome sequence was slightly

different from our rice cultivar, even though it was the same

Nipponbare strain, and this would be expected to cause a high

background of erroneous SNP/indel calling in the simulation test.

Thus, we needed to substitute or modify the rice reference bases

with those of reliable SNPs and indels that were called between the

reference and the reads from our rice strain. This reference

modification step involves the incorporation of false SNPs/indels

that could affect a subsequent simulation analysis. Our simulation

analysis, by different strategies, for reference modification

suggested that we can minimize the incorporation of false positives

Figure 3. Improvement of targeted alignment by Coval-Refine. Rice whole-genome sequencing reads (63 million 75 bp paired-end reads)
were aligned to chromosome 10 (A and B) or a 1 Mb region of chromosome 10 (C and D) of the simulated rice genome. Snapshot views of the
alignments, corresponding to positions 1,338,000 to 1,342,538, with (B and D) or without (A and C) the Coval-Refine tool (basic mode) are
represented. The shown alignment views were obtained with an IGV 1.5 viewer [46]. Shaded bars represent reads, and colored lines in bars non-
reference bases. Blue arrowheads indicate true positive SNPs that had been introduced into the rice genome using the Coval-Simulate tool.
doi:10.1371/journal.pone.0075402.g003
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when using an aligner that is different from that used in the

simulation tests, and that we can select SNPs/indels in a strict

filtering condition (Table S2). We aligned Nipponbare reads using

NovoAlign (output option: –r A 1), and called 3,411 homozygous

SNPs and 2,279 homozygous small indels with the Coval-Call tool.

The settings were ‘coval call –num 3–freq 0.9–qual 209, where the

minimum number of reads supporting the non-reference allele was

3 and the minimum frequency of the non-reference allele was 0.9.

The rice reference genome was modified by substitution with these

SNPs and by insertion/deletion of the regions corresponding to

the indels. For the simulation test with mouse data, we used 745

million mouse paired-end reads obtained from the Sequence Read

Archive (http://www.ncbi.nlm.nih.gov/Traces/sra/) and the

consensus assembly of the mouse strain 129S5/SvEvBrd as

reference, and created a simulated mouse genome containing

artificial SNPs and indels (0.2% and 0.02% of the genome,

respectively) using a modified reference, wherein the bases of the

original reference had been replaced with reliable endogenous

SNPs and indels detected between the reference and the reads.

The simulated genome was aligned with the mouse reads using

BWA, yielding coverage with an average read depth of 216, and

DNA variants were called with or without the Coval-Refine tool.

In a similar way, 1,186 homozygous SNPs and 1,350 homozygous

indels of C. elegans were called under a stringent filtering condition

using about half (34 million) of the downloaded reads, and were

substituted for the bases of the reference genome. Using these

modified genomes and the Coval simulation tool, we created

simulated genomes containing artificial SNPs and 1 to 6 bp indels

corresponding to 0.2 and 0.02% of each genome, respectively.

For a simulation test for heterozygous SNP calling, we created

120 million 75 bp paired-end simulated reads using a dwgsim

simulator (http://sourceforge.net/apps/mediawiki/dnaa/index.

php?title =Whole_Genome_Simulation), which contained

447,626 heterozygous and 222,167 homozygous SNPs, and

90,041 homozygous 1 to 10 bp indels, together with artificial

errors showing an increasing error rate toward the 39 termini of

reads (0.12% to 0.8%). Simulated reads were also created using

pIRS and MAQ (‘maq simutrain’) simulators, where the read

quality, error distributions, and GC content-coverage bias (for

pIRS) were reflected by calibrated data for the rice reads.

Filtering of alignments with Coval-Refine was carried out with

the default options (e.g., maximum number of allowable

mismatches in a read and two paired reads and is two and three,

respectively) unless otherwise stated. No variant was called at

positions of ambiguous reference bases.

SNP and Indel Calling
To extract DNA variants from alignment data, we used

SAMtools. PCR-duplicated reads were removed from BAM

alignment files with the command ‘samtools rmdup’, and pileup

files containing only variants were produced with the command

‘samtools pileup –vcf’. Alternatively, DNA variants were called

directly from SAM files with the ‘coval call-sam’ command of the

Coval tool. To call homozygous SNPs or small indels, the pileup

Figure 4. Improvement of SNP/indel calling accuracy by Coval-
Refine in targeted alignment. The whole chromosomes (All chr),
chromosome 10 (Chr10), a 1 Mb fragment of chromosome 10 (Chr10-
1M: positions 1000001 to 2000000 of Chr10) from the simulated rice
genome were aligned with 75-bp paired-end reads sequenced from the
whole rice genome using BWA. The alignments were filtered (+, bars in
dark- and middle-red and in dark- and middle-blue) or not filtered (–,
bars in light red and in light blue) with Coval-Refine in the basic mode.
Two different filtering conditions of Coval-Refine for mismatch reads
were applied; one is the default option for removing reads with three or
more mismatches (middle-red and middle-blue bars), the other
removing the second paired-end mate read when the first mate is
filtered and removing a read pair that contained more than two total
mismatches (dark red and dark blue bars). The mean coverage of read
depth before and after (indicated with parentheses) the Coval-Refine
treatment is indicated under the reference chromosome name.
Homozygous SNPs and indels were called as in Figure 1. TPR and FPR
for the called SNPs are shown with red and blue bars, respectively.
doi:10.1371/journal.pone.0075402.g004

Table 3. Increased mismatches of reads observed in a targeted alignment.

Minimal number of
mismatch Content of reads (%)

Whole alignment (chr1-chr12) Targeted alignment (chr10)

1 14.6 59.3

2 6.1 40.2

3 3.7 27.8

4 2.3 18.2

5 1.3 10.1

Rice whole genome sequencing reads were aligned to the rice whole genome or chromosome 10 alone. Among the concordantly aligned paired-end reads, fractions of
reads greater than or equal to the indicated number of mismatches were calculate.
doi:10.1371/journal.pone.0075402.t003
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files were filtered with the Coval command ‘coval call’ with the

default options (–num 2–freq 0.8–qual 20) and by specifying 3-fold

of an average read depth for the option –maxr (Table S3).

Detailed parameters used with the SNP or indel callers are

shown in Table S3. Homozygous SNP calling with the available

variant callers in the rice simulation study was conducted as

follows: Samtools.pl varFilter (options: –d 2–D 35–S 10) was piped

with awk ‘$4,/[ACGT]/&&$3! = ‘‘*’’&&$6.=209. SAMtools

mpileup (options: –uBf for SNP calling and –uf for indel calling, -

Q (default: 13)) was piped with bcftools view (options: –vc –i 0.1–t

0.002) to produce variant call format (VCF) files. VCF files were

further filtered to select variants that had at least two reads

supporting the variants and that showed a minimum allele

frequency of 0.8 and a maximum read depth of 35 at called sites.

Results from GeMS were further filtered by removing SNPs with

‘largest posterior probability,0.89. For the GATK pipeline (v2.2),

‘base quality score recalibration’, ‘local realignment’, and ‘Uni-

fiedGenotyper’ were successively applied to BAM alignment files

that had been pre-filtered with a ‘bwa rmdup’ command. The base

quality score recalibration of GATK was conducted using all of

the SNP sites that were introduced into the simulated rice genome

as known sites. We did not use ‘variant quality score recalibration’

of GATK because, when using high quality SNPs/indels that were

called with Coval-Refine and Coval-Call [–num 6–freq 0.9–qual

30] (20% of the called variants) as both true and training sets and

unfiltered SNPs/indels (50% of totally called variants) as another

training set, the result was worse than when a simple filtering

method was used. This was likely due to incompatibility of the

recalibration modeling with our simulation system. Thus, the

UnifiedGenotyper-generated VCF files were filtered by selecting

variants supported by at least two reads and that showed a

minimum allele frequency of 0.8.

Results

Reads with a Large Number of Mismatches Found in
Short Read Alignments
We show that alignment data from short reads contain many

reads with a large number of mismatches, even when the

maximum number of mismatches between the read seed and

reference sequence has been set to 2. Figure S3 shows examples of

such alignment data with Oryza sativa, Arabidopsis thaliana,

Caenorhabditis elegans, and Mus musculus illumina reads. About 3%

of the aligned reads had more than two mismatches (Table 1), and

over 72% of the mismatches were located in the 39-terminal

regions of the reads, excluding the 35 bp seed. Many of the

mismatches correlated with low-quality base calls, which tend to

be pronounced in the 39 regions, although the quality of the base

calling in the rice reads was high, with a median quality score of 36

at the 39-termini (Figure S4). Alignment results obtained with gap-

aligners, including BWA, MAQ, NovoAlign, and BFAST,

contained high-mismatch reads, whereas those with gap-free

aligners, such as SOAP2 and Bowtie (but not its latest version,

Bowtie 2 [39]), did not show such patterns, even in the ‘‘seeding’’

mode (Table S4). By contrast, the alignment data from artificially

generated short reads that were made using a pIRS [40] or

dwgsim simulator (http://sourceforge.net/apps/mediawiki/dnaa/

index.php?title =Whole_Genome_Simulation) did not contain

such high-mismatch reads (Figure S3E), indicating that simulated

reads do not produce the erroneous alignment observed in the

experimentally obtained reads.

We also noticed that many of the high-mismatch reads were

clustered especially within and/or around low read-coverage

regions (Figure S3). When we counted the average number of

mismatches per read in the rice read alignment, which had an

average read depth of 11.56, we found that low coverage regions

with read depth #36 contained an 8-fold larger number of reads

carrying more than two mismatches compared with those with

read depth .66 (Figure S5). Similar observations were made in

the case of alignment of paired-end reads in Arabidopsis and

nematode alignments but not in alignments with mouse and

simulated reads. Overall, these observations suggest that low read-

coverage regions tend to have a higher incidence of misalignment

and miscalling of DNA variants. Indeed, we confirmed in a

simulation test (see below) using rice and nematode reads that the

regions covered by lower numbers of reads exhibited significantly

lower accuracy in calling SNPs (Table S5).

Simulation System (Coval-Simulate and Coval-Call) to
Evaluate SNP/indel Calling Accuracy Using
Experimentally Determined Data
For reliable calling of SNPs/indels, a simulation system is

required that faithfully reflects observed, real read-error properties

to evaluate the accuracy of SNP/indel calling. We conclude from

the error model in currently available read simulators that they do

not reproduce the complex patterns of error seen in real read sets

(Table 1; Figures S3 and S5). For this purpose, we first developed a

tool for simulated genome alignment using real read data and a

tool for DNA variant calling, as a component of the alignment-

improving and SNP/indel calling pipeline Coval. The Coval

simulation tool (Coval-Simulate) creates a reference genome

containing computationally introduced SNPs at a defined rate

and 1 to 6 bp indels. SNP base-changes and indel length were set

to follow empirical frequency distributions (see Materials and

Methods). The Coval SNP/indel calling tool (Coval-Call) filters

and calls SNPs and small indels by checking for three main factors:

read depth, base quality, and allele frequency at the called allele

sites, as described [41] (see also Materials and Methods). As a first

trial, we created a simulated rice genome, where SNPs (7.46105,

which corresponds to 0.2% of the genome) and 1 to 6 bp indels

(7.4 6 104) were artificially introduced into a modified

Nipponbare rice reference genome using Coval-Simulate (see

Materials and Methods). To create the alignment, we used

experimentally obtained sequence reads from Nipponbare (6.3 6
107 75 bp paired-end reads from the rice genome). To evaluate

the SNP calling accuracy, candidate SNPs/indels were extracted

from the alignment data using SAMtools (‘samtools pileup’

command) and then called using the Coval-Call tool. Since

Coval-Simulate allowed us to know the exact position of artificially

introduced SNPs/indels, we could evaluate how many were

recovered by alignment of short reads followed by calling with

various software including Coval-Call.

To confirm the usefulness of our simulation system, we

compared the SNP/indel calling accuracy in our system with that

in a conventional simulation test using artificial reads created by

short-read simulators. A total of 66107 simulated 75 bp paired-

end reads generated with dwgsim and pIRS were aligned to the

wild-type rice reference (see Materials and Methods for detail).

SNPs/indels were then called using Coval-Call with the same

filtering thresholds as in our simulation method. The results from

simulated reads showed much higher accuracy for calling SNPs

and indels than those from real reads (Table S6). These results

suggest that the simulation system using artificial reads tends to

give a level of accuracy of SNP calling that is too high and that

does not reflect the real experimental situation. Thus, our system

based on real experimental condition is more suitable for

evaluating the SNP/indels calling performance of available tools.
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Development of Coval-Refine, a tool that Improves
Alignments by Removing and Correcting Multiple-
mismatch Reads
To improve alignments with the high-mismatch reads, we first

tried to trim the 39 portions of reads that harbored consecutive

low-quality bases. When we trimmed the 39 low-quality regions of

the rice reads, with Illumina Phred-like quality of ,5, using the

Condetri [42] and Trimmomatic (http://www.usadellab.org/

cms/index.php?page = trimmomatic) read-trimming tools, the

alignment with the 39-trimmed reads, however, did not signifi-

cantly lower the false positive rate (FPR), and instead lowered the

true positive rate (TPR) (Table S7). These results are consistent

with previous observations by Liu et al. [43], indicating that the

observed mismatches may not be solely attributable to low-quality

sequencing results. We developed an alignment-refinement tool,

Coval-Refine, by filtering, correcting, and local realigning

mismatched reads (see Materials and Methods and Figure S1 for

details). To minimize the loss of true positives through filtering,

Coval-Refine was designed to correct sequencing errors that were

judged from their base call qualities and the allele frequency at the

mismatch sites (‘error correction mode’). The Coval-Refine

treatment in the error correction mode increased the TPR by

,1.5% compared with that in the basic mode without error-

correction with only a small increase in FPR for both SNP and

indel calling (Figure S6). The application of Coval-Refine in the

error correction mode to alignment data with various gap-aligners

decreased the FPR by 60–77% for SNP calling and by ,60% for

indel calling, whereas decreasing the TPR by only 1–2.5% for

SNP calling and increasing the TPR by ,40% for indel calling

(Figure S7). The increase in TPR for indel calling is mainly due to

the effect of the local realignment function of Coval-Refine. It is

known that misaligned indels cause miscalling of SNPs around the

indels, but the FPRs in SNP calling were almost unchanged by the

local realignment probably due to the removal of misaligned reads,

the basic function of Coval-Refine. This tool could be applied

robustly to alignment data consisting of different numbers of reads

(Figure S8) and also to simulated genomes containing a wide range

of SNP (Table S8) and indel (Table S9) content by adjusting the

filtering threshold number of mismatch contained in reads.

Some fractions of real DNA variants would not be evenly

distributed across the genome but are clustered. The clustered

variants could be missed when several filtering thresholds of

mismatches are specified for Coval-Refine. Out of the variants

introduced into the simulated rice genome in this simulation test,

3.1% are present in clustered regions where at least three variants

reside within a range of read length (i.e., 75 bp). The missed

variants (false negatives) could be minimized by an increase of the

filtering threshold of mismatch (i.e., –fnum 4)(Table S10).

Coval-Refine Improves the Accuracy of Heterozygous
SNP Calling in a Single and Pooled Sample
Coval-Refine was also effective for heterozygous SNP calling in

a simulation test using simulated rice reads containing heterozy-

gous SNPs generated by the dwgsim and pIRS tools (see Materials

and Methods and Table S11). However, the simulation test with

the artificially generated reads resulted in too high TPR and too

low FPR, as also observed for homozygous SNP calling. To reflect

the property of real data more faithfully, we mixed the

experimentally obtained rice reads with artificially simulated reads

that were generated using the simulated rice reference in a

different ratio and aligned to the simulated rice reference. The

ratios of the rice real reads to be mixed were 12.5%, 25%, and

50%, reflecting the frequency of heterozygous alleles. As expected,

SNP calling from these alignments resulted in a significantly higher

number of false positives than those only with artificially simulated

reads (Table S12). These false positives were effectively reduced by

the treatment of the alignments with Coval-Refine.

Coval-Refine was designed to treat the aligned reads in pooled

samples. The read mixtures used for the above analysis was used as

pooled samples, where the experimentally obtained read set

(sample) was discriminated from the other read set using the RG

tag in the alignment. The alignment refinement for each sample in

the pooled alignment data by Coval-Refine enabled more accurate

SNP calling than those of heterozygous SNP calling from the

single sample data (Table 2 and Table S12), indicating the utility

of Coval-Refine on pooled samples.

Coval-Refine Improves the Accuracy of Available Variant
Callers
To compare the accuracy of SNP/indel calling between Coval

and other available tools (SAMtools pileup/varFilter, SAMtools

mpileup/bcftools, Atlas-SNP2, Atlas-Indel2, VarScan 2, GeMS,

and GATK), we used data from the alignment of experimentally

obtained rice reads (63 million Illumina paired-end reads) with the

simulated rice genome containing artificial mutations. We did not

test other SNP/indel callers described in the Introduction section

since their specific usage (e.g., heterozygous SNP calling from

pooled sequencing data) does not fit our simulation experiment.

To evaluate the performance of the tools fairly as possible, the

SNPs and indels extracted by all the callers were further filtered

under the same conditions, with a minimum allele frequency at the

called position of 0.8, a minimum of two reads supporting the

called allele, and/or a maximum of 35 reads covering the called

positions. SNP/indel calling with the Coval-Refine and Coval-Call

tools resulted in a TPR of 87.6% and an FPR of 0.18% for SNP

calling, and a TPR of 79.6% and an FPR of 1.56% for indel

calling (Figure 1; Tables S13 and S14). This SNP calling accuracy,

especially the specificity, was higher than that of any of the other

SNP calling tools tested (Figure 1A; Table S13). The indel calling

accuracy of our tool was also better than any of the other indel

calling tools (Figure 1B; Table S14). It is, however, difficult to

conclude that our Coval pipeline has the best performance.

Because a variant calling accuracy varies depending on sequencing

depth [43] and the probabilistic variant-filtering strategies adopted

in other tools are optimized for specific species and samples (i.e.,

human tumors), other tools may not perform well under our

simulation conditions. In this analysis, the filtering threshold was

set to require at least two reads with non-reference bases at the

called variant site. For indel calling the indels supported only by a

single read had a significantly low level of FPR in alignment data

treated with Coval-Refine (Figure S9). These results indicate an

ability of Coval to call DNA variants from low coverage regions

accurately.

We then examined whether the enhanced quality of alignment

data with Coval-Refine affects the variant calling accuracy of the

previously reported SNP/indel calling tools. Application of the

Coval-Refine component to other SNP callers considerably

lowered the FPRs for other tools by 85–92% without significantly

decreasing their TPRs (Figure 1A; Table S13). The FPRs of all the

indel callers tested were decreased by 60–82% in the alignment

treated with Coval-Refine, and the TPRs of the non-realignment

indel callers, Atlas-Indel2 and VarScan 2, was significantly

increased by 22 and 28%, respectively (Figure 1B; Table S14).

Their overall accuracies in the error correction mode of Coval-

Refine were higher than those in the basic mode, while those for

mouse data were higher in the basic mode, as shown in the next

section. These results indicated that the Coval-Refine tool can
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improve the SNP and indel calling accuracy of many available

DNA variant callers.

Coval Pipeline Applied to Mouse Alignment Data
To confirm whether the improved variant calling accuracy by

Coval is also observed in reads from other organisms, we

conducted simulation tests with the mouse genome. We used

745 million mouse paired-end reads obtained from the NCBI

Sequence Read Archive (http://www.ncbi.nlm.nih.gov/Traces/

sra/) and the consensus assembly of the mouse strain 129S5/

SvEvBrd as reference, and created a simulated mouse genome

containing artificial SNPs and indels (0.2% and 0.02% of the

genome, respectively), as described in Materials and Methods. The

simulated genome was aligned with the mouse reads using BWA,

yielding coverage with an average read depth of 216, and DNA

variants were called with or without the Coval-Refine tool. The

Coval-Refine tool significantly improved the accuracy of SNP and

indel calling for the mouse alignment data, compared with calling

without Coval-Refine (Figure 2; Table S15). The Coval-Refine

treatment decreased the FPR of the called SNPs from 1.54% to

0.36%, while keeping the TPR unchanged. A high level of indel

FPRs suggests the presence of many endogenous indels remained

to be removed from the reference. A similar improvement of

SNP/indel calling accuracy was also observed in a simulation

study with the nematode genome and real reads (Table S16).

Moreover, Coval-Refine improved the performance of all of the

other tested SNP/indel callers by decreasing the FPR for both

SNP and indel calling and by increasing the TPR for indel calling

(Figure 2; Table S15). These results suggest that Coval-Refine is

consistently effective in improving alignment in any organisms.

Coval Improves ‘Targeted’ Alignments
Alignment of a local DNA fragment (e.g., an assembled contig or

a sequence from a DNA clone) with reads from whole genome

sequencing or RNA-Seq is a common genomics task. When we

carried out this kind of targeted alignment, we observed

alignments with an extraordinary depth of coverage. To examine

whether our method is effective in improving the quality of the

targeted alignments, we conducted an in silico experiment using

local rice genomic regions as simulated references. The 63 million

rice paired-end reads sequenced from the rice whole genome were

aligned to the entire chromosome 10 (chr10; 23.7 Mb) or a 1 Mb

segment (chr10-1M) corresponding to chr10:1000001–2000000

from the rice genome that contains artificial mutations. The

alignment data for chr10 and chr10-1M had 4.9- and 17.6-fold

higher coverage of depth, respectively, than that for the whole

genome (Figure 3A, Figure S10), indicating that these local

genomic regions were wrongly aligned, with many reads that

should have been originally aligned to other chromosomal regions.

We found that these wrongly aligned reads contained many more

mismatches than reads from the whole-genome alignment

(Table 3; Figure S10). When the alignments were filtered with

Coval-Refine, they were remarkably refined due to removal of

many misaligned reads (Figure 3) and the overall calling accuracy

of SNPs and indels was significantly improved (Figure 4). The FPR

was further decreased by removing the second mate of filtered

paired-end reads when the first mate was filtered out and by

removing read pairs that contained more than two total

mismatches. Although filtering based on mapping quality had

some effects on decreasing misaligned reads in the targeted

alignments, these effects were substantially smaller than the

filtering effects of Coval (Table S17). These results indicate that

our method can effectively improve poor alignment data

containing misaligned reads as well as reads containing multiple

sequencing errors.

Discussion

The clustered high-mismatch reads observed in alignments with

Illumina reads are likely due to sequence-specific errors stemming

from the Illumina sequencing system [2]. Because sequence reads

containing substantial numbers of errors introduced through this

mechanism cannot be aligned to the reference sequence, the error-

prone genomic regions tend to have lower read coverage,

containing high-mismatch reads that are still tolerated for the

alignment. Thus, alignment regions with low coverage have a high

potential for miscalling DNA variants, owing to both low read

coverage and a high number of mismatch-containing reads within

these regions. Although gap-free aligners tend not to align such

high-mismatch reads, these aligners have the disadvantages of

poor performance in detection of indels and SNP calling accuracy,

as shown in Figure S7 and as described previously [13]. Thus, our

method could be particularly useful for calling variants in such

error-prone regions due to possible sequence-specific errors.

The fact that the sequence-specific incidence of sequencing

errors is still unpredictable makes it difficult to generate artificial

simulated reads with error properties resembling natural reads

from real genomes. Thus, simulation experiments with artificial

reads may not faithfully evaluate the performance of DNA variant

callers. On the other hand, performance evaluation using real

variant data, such as dbSNP and array data, allows us to

determine sensitivity for variant calling, but not specificity. The

simulation strategy, using both simulated genomic data and real

read data, could solve these problems. By computationally

introducing SNPs and indels into a reference genome sequence,

we can use real short-read sequences to assess various filtering

parameters. To conduct the simulation analysis with real reads,

pre-existing DNA variants observed between a reference sequence

and sequencing reads must be removed. Complete genome

sequences, even those of inbred model organisms such as

nematode, Arabidopsis, and rice, exhibit differences in sequence

between individuals maintained in different regions or laborato-

ries, probably due to accumulated spontaneous mutations and

chromosomal rearrangements [44,45], as well as to intrinsic

sequencing errors in public reference sequences. This leads to the

problem of classification of substantial numbers of SNPs and indels

as false positives in a simulation test. Although the substitution step

of endogenous variants involves the replacement of a small

number of false-positive bases, which could also decrease real

(error-derived) false positives in subsequent simulation tests, this

would be minimized by substituting endogenous DNA variants

selected using aligners and reads that are different from those used

for the simulation tests (Table S2).

Our filtering method copes not only with sequencing errors but

also with alignment errors. When whole-genome sequencing reads

are aligned to a local chromosome region, we have observed many

wrongly mapped reads that should have been aligned to other

regions. This causes an alignment with a much higher depth of

read coverage than a normal whole genome alignment, as shown

in Figure 3. These wrongly aligned reads tend to have a higher

number of mismatches against the reference than truly aligned

reads. Coval can improve such poor alignments by filtering

potentially misaligned reads with multiple mismatches. ‘Targeted’

alignments using reads from whole-genome sequencing, RNA-

Seq, or metagenomic sequencing have been performed in many

cases, and sequencing from libraries containing contaminated

genomes or mRNA increases the chance of misalignment. Coval
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could be particularly useful when conducting alignment experi-

ments with sequences such as this that are susceptible to

misalignment.

Accurate calling of SNPs/indels by Coval is largely due to the

strategy that eliminates and repairs poorly or wrongly aligned

reads. This alignment improvement cannot be attained through a

quality-based filtering strategy, such as pre-filtering or trimming of

low-quality reads and filtering of aligned reads with low mapping

quality. The Coval-Call component is not designed for calling

DNA variants from exon-captured data, RNA-Seq data, pooled

samples, or some specific samples such as DNA from human

tumors. Therefore, other DNA variant callers that are designed for

these specific purposes should be used, and pre-treatment of

alignments with Coval-Refine could improve the performance of

these other DNA variant callers. Moreover, the enhancement of

alignments by Coval should be applicable to other alignment-

based analyses, including RNA-Seq, Chip-Seq, and bisulfite

sequencing.

Supporting Information

Figure S1 Outline of Coval pipeline and schematic
description of Coval-Refine algorithm.
(PDF)

Figure S2 Algorithm of Coval-Refine error correction.
(PDF)

Figure S3 Snapshot view of Illumina short read align-
ments.
(PDF)

Figure S4 Base quality distribution of rice Illumina
paired-end reads used for this study.
(PDF)

Figure S5 Abundance of high-mismatch reads in low to
high read-depth regions.
(PDF)

Figure S6 Coval-Refine in ‘basic’ and ‘error correction’
modes.
(PDF)

Figure S7 SNP/indel calling performance of Coval for
alignment data generated by different aligners.
(PDF)

Figure S8 SNP/indel calling from alignment data
generated from different numbers of reads.
(PDF)

Figure S9 SNP/indel calling accuracy depending on
threshold number of supporting reads.
(PDF)

Figure S10 Alignments targeted to local chromosomal
regions have increased misaligned reads.
(PDF)

Table S1 Dataset used in this study.
(PDF)

Table S2 Simulation test with consensus references
generated by different strategies.
(PDF)

Table S3 Commands and options of DNA variant
callers used in this study.

(PDF)

Table S4 Number of mismatches in rice reads aligned
with different alignment tools.

(PDF)

Table S5 SNP calling accuracy for different numbers of
covered reads.

(PDF)

Table S6 SNP/indel calling accuracy for real (experi-
mental) and simulated reads.

(PDF)

Table S7 SNP/indel calling accuracy for alignment
using filtered/trimmed reads.

(PDF)

Table S8 Application of Coval to simulated rice ge-
nomes with different content of SNP.

(PDF)

Table S9 Application of Coval to simulated rice ge-
nomes with different content of indel.

(PDF)

Table S10 Call of clustered variants with Coval.

(PDF)

Table S11 Calling accuracy of heterozygous SNPs with
simulated reads.

(PDF)

Table S12 Calling accuracy of heterozygous SNPs with
experimentally obtained reads.

(PDF)

Table S13 Improvement of SNP calling accuracies of
various SNP callers by Coval-Refine.

(PDF)

Table S14 Improvement of indel calling accuracies of
various indel callers by Coval-Refine.

(PDF)

Table S15 Improvement by Coval-Refine of SNP/indel
calling tools for mouse alignment data.

(PDF)

Table S16 SNP/indel calling accuracy of Coval for
nematode alignment data.

(PDF)

Table S17 Effect of filtering with alignment mapping
quality for SNP/indel calling from targeted alignment
data.

(PDF)

Acknowledgments

We thank Satoshi Tabata for providing computational resources at the

Kazusa DNA Research Institute for several analyses. We thank Shigeru

Kuroda for general support of the work.

Author Contributions

Conceived and designed the experiments: S. Kosugi S. Kamoun RT.

Performed the experiments: S. Kosugi. Analyzed the data: S. Kosugi SN.

Contributed reagents/materials/analysis tools: S. Kosugi KY DM LC.

Wrote the paper: S. Kosugi RT.

Improved Alignment for Next-Generation Sequencing

PLOS ONE | www.plosone.org 10 October 2013 | Volume 8 | Issue 10 | e75402



References

1. Chan EY (2009) Next-generation sequencing methods: impact of sequencing

accuracy on SNP discovery. Methods Mol Biol 578: 95–111.
2. Nakamura K, Oshima T, Morimoto T, Ikeda S, Yoshikawa H, et al. (2011)

Sequence-specific error profile of Illumina sequencers. Nucleic Acids Res 39:
e90.

3. Gilles A, Meglecz E, Pech N, Ferreira S, Malausa T, et al. (2011) Accuracy and

quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics
12: 245.

4. Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-
Wheeler transform. Bioinformatics 25: 1754–1760.

5. Li H, Ruan J, Durbin R (2008) Mapping short DNA sequencing reads and

calling variants using mapping quality scores. Genome research 18: 1851–1858.
6. Ning Z, Cox AJ, Mullikin JC (2001) SSAHA: a fast search method for large

DNA databases. Genome Res 11: 1725–1729.
7. Li R, Li Y, Kristiansen K, Wang J (2008) SOAP: short oligonucleotide

alignment program. Bioinformatics 24: 713–714.
8. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-

efficient alignment of short DNA sequences to the human genome. Genome Biol

10: R25.
9. Smith AD, Xuan Z, Zhang MQ (2008) Using quality scores and longer reads

improves accuracy of Solexa read mapping. BMC Bioinformatics 9: 128.
10. Homer N, Merriman B, Nelson SF (2009) BFAST: an alignment tool for large

scale genome resequencing. PLoS One 4: e7767.

11. Rumble SM, Lacroute P, Dalca AV, Fiume M, Sidow A, et al. (2009) SHRiMP:
accurate mapping of short color-space reads. PLoS Comput Biol 5: e1000386.

12. Lunter G, Goodson M (2011) Stampy: a statistical algorithm for sensitive and
fast mapping of Illumina sequence reads. Genome Res 21: 936–939.

13. Li H, Homer N (2010) A survey of sequence alignment algorithms for next-
generation sequencing. Brief Bioinform 11: 473–483.

14. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, et al. (2009) The Sequence

Alignment/Map format and SAMtools. Bioinformatics 25: 2078–2079.
15. Li R, Li Y, Fang X, Yang H, Wang J, et al. (2009) SNP detection for massively

parallel whole-genome resequencing. Genome Res 19: 1124–1132.
16. Langmead B, Schatz MC, Lin J, Pop M, Salzberg SL (2009) Searching for SNPs

with cloud computing. Genome Biol 10: R134.

17. Shen Y, Wan Z, Coarfa C, Drabek R, Chen L, et al. (2010) A SNP discovery
method to assess variant allele probability from next-generation resequencing

data. Genome Res 20: 273–280.
18. Koboldt DC, Chen K, Wylie T, Larson DE, McLellan MD, et al. (2009)

VarScan: variant detection in massively parallel sequencing of individual and
pooled samples. Bioinformatics 25: 2283–2285.

19. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, et al. (2012)

VarScan 2: somatic mutation and copy number alteration discovery in cancer by
exome sequencing. Genome Res 22: 568–576.

20. Malhis N, Jones SJ (2010) High quality SNP calling using Illumina data at
shallow coverage. Bioinformatics 26: 1029–1035.

21. Druley TE, Vallania FL, Wegner DJ, Varley KE, Knowles OL, et al. (2009)

Quantification of rare allelic variants from pooled genomic DNA. Nat Methods
6: 263–265.

22. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, et al. (2011) A
framework for variation discovery and genotyping using next-generation DNA

sequencing data. Nat Genet 43: 491–498.
23. Martin ER, Kinnamon DD, Schmidt MA, Powell EH, Zuchner S, et al. (2010)

SeqEM: an adaptive genotype-calling approach for next-generation sequencing

studies. Bioinformatics 26: 2803–2810.
24. Goya R, Sun MG, Morin RD, Leung G, Ha G, et al. (2010) SNVMix:

predicting single nucleotide variants from next-generation sequencing of tumors.
Bioinformatics 26: 730–736.

25. Simola DF, Kim J (2011) Sniper: improved SNP discovery by multiply mapping

deep sequenced reads. Genome Biol 12: R55.
26. Larson DE, Harris CC, Chen K, Koboldt DC, Abbott TE, et al. (2012)

SomaticSniper: identification of somatic point mutations in whole genome
sequencing data. Bioinformatics 28: 311–317.

27. You N, Murillo G, Su X, Zeng X, Xu J, et al. (2012) SNP calling using genotype

model selection on high-throughput sequencing data. Bioinformatics 28: 643–
650.

28. Reumers J, De Rijk P, Zhao H, Liekens A, Smeets D, et al. (2012) Optimized
filtering reduces the error rate in detecting genomic variants by short-read

sequencing. Nat Biotechnol 30: 61–68.

29. Zhang Y (2013) A dynamic Bayesian Markov model for phasing and
characterizing haplotypes in next-generation sequencing. Bioinformatics 29:

878–885.
30. Albers CA, Lunter G, MacArthur DG, McVean G, Ouwehand WH, et al.

(2011) Dindel: accurate indel calls from short-read data. Genome Res 21: 961–
973.

31. Ye K, Schulz MH, Long Q, Apweiler R, Ning Z (2009) Pindel: a pattern growth

approach to detect break points of large deletions and medium sized insertions
from paired-end short reads. Bioinformatics 25: 2865–2871.

32. Zhang J, Wu Y (2011) SVseq: an approach for detecting exact breakpoints of
deletions with low-coverage sequence data. Bioinformatics 27: 3228–3234.

33. Abyzov A, Gerstein M (2011) AGE: defining breakpoints of genomic structural

variants at single-nucleotide resolution, through optimal alignments with gap
excision. Bioinformatics 27: 595–603.

34. Grimm D, Hagmann J, Koenig D, Weigel D, Borgwardt K (2013) Accurate
indel prediction using paired-end short reads. BMC Genomics 14: 132.

35. Homer N, Nelson SF (2010) Improved variant discovery through local re-
alignment of short-read next-generation sequencing data using SRMA. Genome

Biol 11: R99.

36. Schmieder R, Edwards R (2011) Quality control and preprocessing of
metagenomic datasets. Bioinformatics 27: 863–864.

37. Zhao Z, Boerwinkle E (2002) Neighboring-nucleotide effects on single nucleotide
polymorphisms: a study of 2.6 million polymorphisms across the human

genome. Genome Res 12: 1679–1686.

38. Fujimoto A, Nakagawa H, Hosono N, Nakano K, Abe T, et al. (2010) Whole-
genome sequencing and comprehensive variant analysis of a Japanese individual

using massively parallel sequencing. Nat Genet 42: 931–936.
39. Langmead B, Salzberg SL (2012) Fast gapped-read alignment with Bowtie 2.

Nat Methods 9: 357–359.
40. Hu X, Yuan J, Shi Y, Lu J, Liu B, et al. (2012) pIRS: Profile based Illumina pair-

end Reads Simulator. Bioinformatics.

41. Abe A, Kosugi S, Yoshida K, Natsume S, Takagi H, et al. (2012) Genome
sequencing reveals agronomically important loci in rice using MutMap. Nat

Biotechnol 30: 174–178.
42. Smeds L, Kunstner A (2011) ConDeTri–a content dependent read trimmer for

Illumina data. PLoS One 6: e26314.

43. Liu Q, Guo Y, Li J, Long J, Zhang B, et al. (2012) Steps to ensure accuracy in
genotype and SNP calling from Illumina sequencing data. BMC Genomics 13

Suppl 8: S8.
44. Ossowski S, Schneeberger K, Lucas-Lledo JI, Warthmann N, Clark RM, et al.

(2010) The rate and molecular spectrum of spontaneous mutations in
Arabidopsis thaliana. Science 327: 92–94.

45. Miyao A, Nakagome M, Ohnuma T, Yamagata H, Kanamori H, et al. (2012)

Molecular spectrum of somaclonal variation in regenerated rice revealed by
whole-genome sequencing. Plant Cell Physiol 53: 256–264.

46. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, et al.
(2011) Integrative genomics viewer. Nat Biotechnol 29: 24–26.

Improved Alignment for Next-Generation Sequencing

PLOS ONE | www.plosone.org 11 October 2013 | Volume 8 | Issue 10 | e75402


