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A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a
tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We
give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two
generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular
points, whereby we avoid the shortcomings of the Frenet-Serret frame. The observed spontaneous pattern is modeled
using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end
length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of
incompatible intrinsic geometries and of the emergence of long-range order.

Citation: Bohr J, Markvorsen S (2013) Ribbon Crystals. PLoS ONE 8(10): €74932. doi:10.1371/journal.pone.0074932

Received May 4, 2013; Accepted August 7, 2013; Published October 3, 2013

Copyright: © 2013 Bohr, Markvorsen. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work is supported by the Villum Foundation (villumfoundation. dk). The foundation had no role in study design, data collection and analysis,

Competing Interests: The authors have declared that no competing interests exist.

Introduction

Recently, Korte, Starostin, and van der Heijden reported on the
fascinating occurrence of triangular buckling patterns in ribbons
[1]. Following the method used in the study of the equilibrium
shape of the Mobius strip [2], they elegantly built an analysis of the
pattern on the triangular region of the Mobius strip [2] and used it
to form a repetitive structure of triangular regions for the twisted
ribbons [1]. The Mobius strip was modeled as a developable
surface, and at a critical ratio of length to width it collapses into the
expected triple covered equilateral triangle. At larger lengths it
resembles the conical dislocations known from crumpling
phenomena [2—4].

Here, we study the triangular tessellations of ribbons from a
geometrical point of view and show that they are formed in the
limit of an optimal (minimal) use of ribbon length. The
spontanecous pattern partitions the ribbon, similarly to a tessella-
tion, thereby transforming the continuous translational symmetry
of a straight ribbon into a discrete symmetry where repeating
ribbon segments are mapped onto each other via a screw
translation. Further, we consider the properties of frames that
can be associated with ribbons, and suggest the use of one which
leads to a natural generation of all ribbons, henceforth denoted the
ribbon frame.

The occurrence of long-range order is playing a significant role
in many physical phenomena and structural phase transitions, e.g.
in solidification into crystalline phases. In biology ordered and
disordered tessellations appear ubiquitously. In mathematics there
are numerous open questions in discrete geometry regarding
tilings with concurrent elements [5]. In three dimensions new
families of polyhedral tilings have recently been described [6,7],
and materials with interesting properties have been constructed
with folded textured sheets [8,9]. DNA ribbons have been formed
from multiple molecules placed next to each other facilitating
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DNA origami and the formation of Mobius strips [10]. The
differential geometry of ribbons have been considered in
connection with statistical models for polymers [11-13]. An
interesting recent application of ribbons is the reconstruction of
two-dimensional surfaces from ribbon curves [14].

Results and Discussion

Figure 1 shows the spontaneous partitioning of a straight ribbon
into repeating triangular-like structures upon a relatively small
twisting of the ribbon. The ribbon, 18 mm wide, was cut from a
commercially available size A4 overhead transparency (Xerox
Premium Transparencies, Part no. 003R98202). Two paper grip
clips mounted on standard laboratory stands are used to hold the
ends of the ribbon, to control their relative rotation to each other,
and to adjust the distance. With care the experiment can also be
performed holding the ribbon just by hand using e.g. an edge of a
table to fix one end of the ribbon. Figure 2 shows a more twisted
ribbon where the triangles are also present. Visible are the two
paper grip clips used to hold the ribbon in place. Also visible on
the figures are what appear to be narrow strips of bent ribbon
between the triangles. The visibility of the triangles is enhanced by
lighting using an office lamp.

Intrinsically flat ribbons are characterized by having zero Gauss
curvature and a FEuclidian metric, ie. they are developable
surfaces that can be flattened without stretching and compressing.
In contrast, the helicoid can not be flattened in this way, it is
formed by the continuous twisting of a line as one propagates
along the helicoid axis. The helicoid is also a ruled surface spanned
by straight lines, but it has a negative Gauss curvature. Therefore,
the ribbon and the helicoid are not isometric with each other — in
the same way as a sphere is not isometric with a plane. However,
the tessellations reported here allow the twisted ribbon to obtain a
discrete geometry that approximately follows the helicoid surface
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Figure 1. Triangular tessellation. Section of the triangular
tessellation observed on a slightly twisted 18 mm wide ribbon cut
from an overhead transparency. The ribbon is held in place by two
paper grip clips and twisted about 1/3 turn over a length of 287 mm.
Material: Xerox Premium Transparencies, Part no. 003R98202.
doi:10.1371/journal.pone.0074932.g001

without introducing stretching and compressions within the
ribbon.

Ribbon description

We present a few introductory remarks concerning the
description and construction of all ribbons. The center curve of
a ribbon will be described by a unit speed parameterization y(s),
and the ribbon itself will be described as a developable surface
parametrization Y'(s,u) supported by the center curve in such a
way that the center curve itself becomes a geodesic in the ribbon
surface. The width of a ribbon is assumed to be constant and will
in the following be denoted 2b.

To construct any ribbon — and hence its center curve — we will
use two continuous functions, w(s) and 0(s) defined in the interval
s€[0,L], where L is the intrinsic length of the ribbon under
construction. Throughout we assume that 0(s)e]0,n] for all s so
that in particular sin (6(s)) >0 for all s. In our construction a key
role is played by a unit vector field A(s), which is a field tangent to
the ribbon and defined by having the angle 6(s) to the center curve
of the ribbon. In fact, A(s) will be the direction field for the
Darboux vector D(s) with the generating function w(s) as a
multiplying factor, i.e. D(s)=w(s)A(s).

We let {e(s).,f(5),g(s)} denote the unique orthonormal triple of
vector solutions to the following differential system:

e(s) =w(s)A(s) x e(s)
f(5)  =w(s)A(s)x f(s5) (1)
&(s)  =w(s)A(s) x g(s),

where the unit vector field A(s) is defined in terms of e(s) and g(s)
as follows:

A(s) = cos (6(s)) e(s) + sin (6(s)) g(s), 2

and where — for uniqueness purposes — we also apply the following
arbitrary initial conditions referring to a given fixed coordinate

system and basis in R?

{e(0).£(0).£(0)} ={(1.0,0).(0,1,0),(0,0,1) }. 3)
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Figure 2. Ribbon with paper clips. Ribbon twisted about one full
rotation over a length of 200 mm, ribbon width 18 mm. Visible is the
two mechanical holders made from a set of paper grip clips.
doi:10.1371/journal.pone.0074932.g002

The system (1) can be written explicitly as follows:

e(s) =w(s)sin(0(s))f(s)
f(s) = —w(s)sin (0(s)) e(s) + w(s) cos (0(s)) g(s) 4)
&(s) =—w(s)cos (0(s)f(s),

where the dot notation means differentiation with respect to the
unit speed parameter s. In compact matrix notation:

R(s)=R(5)E(s), (5)

where R(s) is the orthogonal matrix (with 2det(R(s))=1) whose
columns are the coordinate functions of {e(s), f(s), and g(s)}
respectively, and where

0 —w(s) sin (6(s)) 0
=(5)= w(s) sin (6(s)) 0 —w(s) cos (6(s)) 6)
0 w(s) cos (0(s)) 0

The corresponding ribbon R of width D =2b and length L can
be constructed as follows:

¥(s) = Jye(ndt= [} (Ri1(1),Ra1(1),R31 (1)) dt

7
R Y(u)=y(s) + <W”9(S)))A(s),se [0,L] , ue[—b.b]. @

We will refer to the frame {e(s).f(s).g(s)} as the ribbon frame of
the ribbon R. Figure 3 depicts a section of the ribbon with the
A(s) vector shown together with e(s), f(s), and g(s). The Jacobian
deformation function J of the parametrization Y'(s,u) is non-
singular where the ribbon surface is regular (see e.g. ref. [15]);
Moreover, later we shall also need this function in order to
integrate the Willmore energy along the ribbon, see equation (19).

v . i u@(s)
J(s,u)=[Y(s,u) xYu(s,) | =1 (Tnz (0(s))> I (8)
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Figure 3. Ribbon frame. Standard setting for general ribbons with
ribbon data w(s), 0(s). On display: A(s), e(s), £(s), g(s), and 0(s).
doi:10.1371/journal.pone.0074932.g003

Hence, in order for the ribbon to be a regular surface for
ue]—b,b[ we must impose the following condition on the
instantaneous direction of the field A(s), i.e. 0(s), the derivative
Q(S), and the half-width of the ribbon b:

o)1
S (0) ~ b ®)

The intrinsic metric tensor of the ribbon is — with respect to the

(s,u) induced ribbon basis {e(s),A4(s)/ sin (0(s))}:

(E F
Fo=
F G
I (ué(s)—sinz((?(s))z —cos(e(s))(u('a(s)—sin2 (o(s)) (10)
B sin* (6(s)) sin® (6(s))
— cos (0(s)) (ud(s) — sin’ (0(s)) {
L sin® (0(s)) sin® (0(s))

And, the matrix of the second fundamental form is:

(o) () sin? 005
; 0
sin (0(s)) - (1
0 0

L M
Fn= =
M N

The corresponding Weingarten matrix becomes:
w(s) sin (0(s))
Wy = ub(s)— sin? (0(s)) . (12)
w(s) cos (0(s)) 0

Therefore the Gaussian curvature, K, and mean curvature, H,
of R are, respectively:

K =2det(W)=0 |,

 (Namacerm— (1) _r@sin@s)  (13)
H = (2) 2trace(W) (2> 250)— S (06)
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The two principal curvatures ki(s), ka2(s) and corresponding
principal directions #1(s), £2(s) of the center curve of the ribbon are
then:

e =

= S (00) s 11(5) = sin (0(s))e(s) — cos (6(s)g(s),

Ka(s) =0, t(s)=A(s).

The normal curvature of the center line is, according to Euler’s
theorem:

Ken(8) =K1 (5) sin (0(s)) + k2(s) cos? (0(s)) = —w(s) sin (6(s)). (15)

The curvature and the torsion (where x(s) is defined to be
positive, or zero, everywhere) of the center curve (considered as a
space curve), are respectively:

k(s) =le(s)] =|w(s)|sin (0(s)),
(s)  =(e(s) x é(s))-é(s) =w(s) cos (0(s)).

Since Kﬁ(s)= 1>(s) the geodesic curvature, Kq(s), of the center
curve of the ribbon vanishes:

Ko(s)=1/K2(s) —x2(s)=0 foralls. (17)

The surface R is clearly a ruled surface by construction. It is
developable since the Gauss curvature vanishes identically. Hence,
as the geodesic curvature of the center curve vanishes everywhere,
and as we assume its half-width to be constant, R is a ribbon. The
vector fields e(s),g(s) are parallelly transported (in the intrinsic
metric) along the center curve.

The ribbon frame versus the Frenet-Serret frame

When the ribbon has w(s)#0 the curvature x(s) of the center
curve is positive, so there exists a unique Frenet-Serret frame
{T(s),N(s),B(s)} and a  unique Darboux  vector
D(s)=1(s)T(s)+ r(s)B(s) =w(s)A(s) which is the instantaneous
rotation vector for the Frenet-Serret frame along the center curve.

We always have T(s)=e(s) and in terms of the ribbon frame
and the ribbon data we have the following correspondence with
the other parts of the Frenet—Serret frame. We assume first that
w(s)#0 for all s in some subinterval ]a,b][ of [0,L]. There are only
two possibilities: If N(a)=f(a) then N(s)=f(s), B(s)=g(s), and
D(s)=w(s)A(s) for all sela,b]. If N(a)=—f(a) then
N(s)=—f(s), B(s)=—g(s), and again D(s)=w(s)A(s) for all
s€)a,b[. For a given ribbon the two frames can thus be identified
across points with w(s) =0 via such shifts of signs from one “side”
of the O-set to the other.

All the curves which can be “dressed” with a ribbon will be

called ribbon curves. The set of C* curves for which the second
and the third derivatives are not simultaneously zero is one large
class of ribbon curves. The differential rotations of the moving
frame for the Frenet—Serret Frame, the Ribbon Frame, and the
sister frame to the Frenet—Serret Frame are all three identical. Le.
they have the same vector representation, the Darboux Vector
D(s). The Frenet—Serret frame is not defined at points where the
curvature is zero and unfortunately it can not always be
differentially patched together — some points are frame switching
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points. These shortcomings have been discussed in the concept of
statistical models with suggestions to use a material frame
[13,16,17] and the Darboux frame of the center line [18]. An
early study involving the counting of the frame switching points
gave rise to the Randrup-Regen condition [19]. The ribbon frame
discussed in this paper is obtained using two generating functions,
w(s), and 0(s) and is shown to be well behaved. Where the Frenet-
Serret frame is defined we have the following relationship between
the two frames. Locally they are identical except with the
possibility of an inverted sign for N(s) and B(s). The frame
switching points occur where w(s) changes sign. Moreover,
K5(8) =w(s) sin (6(s)) provides a convenient way to define a signed
curvature for the ribbon center curve, which is a natural extension
of the signed curvature conventionally assigned to planar curves.

Short flat ribbons

Flat knotted ribbons have been studied for the Mébius band
[20], the trefoil knot [21], the figure eight knot [21], and for
general torus knots [22], with the purpose of finding the shortest
ribbon length that can form these knot structures as flat ribbons for
a given ribbon width. One way to look at such short ribbons is in
the perspective of Kirchhoff-Love isotropic shells. Ribbons that
can not be be shortened shall remain stationary under strain and
thus support torque and forces necessary for the static equilibrium.
Isotropic ribbons without any bending rigidity must therefore be
either locally flat, or locally have sharp turns where our generating
function w(s) takes the value of a J-function. Plane knots are
folded at these latter points while for 3-dimensional structures two
tangent planes can meet along a bend. Summarizing this means
that such ribbons must contain flat sections connected by bends, or
folds, which resemble the observed structures in figures 1 and 2.

A similar line of reasoning supports and motivates our modeling
assumptions in the next section. For a shortest ribbon we can
assume that Eq. (9) must hold in the limit where an equality sign is
obtained, i.e.:

blo(s)| = sin® (0(s)) (18)

If this were not the case then a wider ribbon than the current
one would have the same length. This can not be true for a twisted
ribbon of minimal length.

A different perspective, though with a similar result, is obtained
by studying the total Willmore energy [2]:

Wr = lj H*dy

J H?(s,u)J (s,u) dsdu

o sin’ (0(5)) ub(s)
J (wz(s)> sin® (0(s)) + bO(s) s
o) ) \sin (0(s))— hOGs)

Now consider the short twisted ribbons, i.e. those for which the
width can not be increased without modifying the center line, then
it follows that for the stretches in s where Eq. (19) holds one can

-lM»—‘ -M

4>|~

conclude that w(s)=0 wherever 0(s)#0 in order to prevent a
divergence of Wx. Hence, for short twisted ribbons we will assume
in the following section that w(s) #0 only for intervals of s where
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0(s) is constant, so that all the bending of the ribbon takes place as
cylindrical bends. Interestingly, the assumption that a twisted
ribbon is short enforces a discretization of its geometry!

Ribbon crystals

We now discuss the observed ribbons. First their half-width
parameter b determines the scale of their structure. Le. a ribbon
scaled down by a factor of two would have half the length and half
the width, but could absorb the same amount of winding for the
same relative shortening. This means that two ribbons of different
width but of the same length would shorten differently when
twisted: The wider ribbon would shorten the most. The governing
equations described above are independent of the half-width, b,
except for the inequality, Eq. (9). We can therefore conclude that
the maximum length occurs when at least for part of the ribbon
the limiting condition, which corresponds to an equal sign in the
inequality, is valid as discussed above. We will model the limiting
structure which corresponds to an upper limit for the extrinsic
length as consisting of consecutive flat triangular sections merged
at the edges to a full length ribbon. As will be shown below, the
ideal limiting structure consists of an infinite number of triangles,
which are not in accordance with observations in Figures 1 and 2.
One possibility to more realistically model the material property of
the ribbon is to introduce an elastic energy and minimize with
respect to it [2,23]. We choose a different strategy, namely, to
introduce material properties through a geometrical parameter.
This will allow us to study the phenomenon in the limit of short
ribbons.

In the following, it is assumed that the radius of curvature is
restricted by a lower bound, 1Y, and we will study the optimum
ribbon crystals as a function of r. This type of assumption is a
natural choice for ribbons of finite thickness, d, since such a
condition conserves the local ribbon volume. For many materials
this is a fair limit to consider, it restricts the main principal
curvature accordingly |kj|<2/d. The maximally curved surfaces
we can consider is then cylinder surfaces with radius d/2. We now
model the ribbon as formed by planar triangles joined together by
cylinder surfaces and proceed to optimize their extrinsic length.
For a typical ribbon d < <D< <L, where D=2b and L are the
ribbon width and the (intrinsic) length, respectively. Figure 4
shows a schematic drawing with planar triangles and sections of
cylindrical ribbons. The ribbon is repeatedly constructed of planar
triangles with edges running across the ribbon. These edges make
an angle 0 with the centerline of the ribbon. The triangles are then
patched together with a thin circular cylinder surface of radius r
rotating around the cylinder through the angle ¢. The value
@ =27 corresponds to one complete rotation around the cylinder —
the orientation of the angle is given by a vector along the cylinder
axis. The procedure is repeated again and again. There is a screw
symmetry and the screw axis is easily found using the first two
triangles. The resulting extrinsic length, L., can hence be
calculated and compared with the intrinsic length of the ribbon
and with the total winding of the ribbon.

The ribbons that maximize L, are symmetric under a discrete
screw translation as well as under discrete C, rotations. The base
median of each of the isosceles triangles is a symmetry axis upon
the operation of a 180" rotation. The tessellation structure is
subject to a screw symmetry by which operation every isosceles
triangle is mapped upon the next triangle. By two successive screw
operations every triangle is mapped upon the next nearest
neighbor, and then the ribbon front and back faces are also
conserved. If one rotate the ribbon around one of the base
medians of the isosceles triangles by 180° then the ribbon and its
screw axis 1s maintained. Therefore, the screw axis is intersecting
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Figure 4. Schematic tessellation. Schematic computer drawing of a
twisted triangular tessellation including the bending around thin
cylindrical tubes.

doi:10.1371/journal.pone.0074932.9g004

the base medians and is perpendicular to these. In this sense the
discrete set of base medians mimic the continuous ruling of the
smooth helicoid. Both the ribbon and the helicoid are described by
the same pitch.

Discrete ribbons

In the following the short ribbons for a given value of r are
constructed. From above, it follows that w(s) =0 wherever 0(s) # 0
and hence we may apply w(s) #0 wherever 0(s)=0 and that this
latter condition holds for s in a number 7 of subintervals [s;,5;4 1]
of [0,L], i=1,....n. We now briefly describe the construction of
ribbons with constant data. In the subintervals 6(s) is a constant
0(s)=0; and w(s)=w;(s)#0 for s€[s;,s;+1], and we assume that
the two sequences cos(6;) and w;(s) both are chosen with
alternating sign so that the respective torsion-contributions
wi(s)cos (0;) from these intervals are all positive, and that the
absolute non-zero values are 0 and wy.

The ribbon is built as 7 consecutive geometric units each
consisting of a flat isosceles triangle with straight line center curve
of length bcot (0) followed by a right handed bending around a
cylinder of radius r, the bending having angle ¢, resulting in the
extra contribution to the center curve length: d =rg/ sin (). The
total intrinsic length of the center curve of this construction
consisting of 7 such units is then L=n(bcot(0)+ Y ¢/ sin (0)).

Every geometric unit for the ribbon constructed in the above
way is mapped into the next unit by a screw translation whose axis
is determined as follows: Suppose the center curve of the first flat
triangle in the first unit is in the direction (1,0,0) and that the
triangle itself has unit normal vector (0,0,1). Then the axis vector
of the ribbon construction is determined by the following vector:

_ sin (0)(1 — cos(p))
a= (1,0, T((ﬂ)) (20)

The projection of the center curve of one unit (the first, say)
onto the axis has the length L,./n, so that the expression of the
total extrinsic length is easily obtained from there, see equation
(21), and can be directly compared with the total intrinsic length L
of the ribbon. For simplicity we give the expression for Li,:

2 _
LL’87

, (2rsin? (0) +r¢ cos? (0) sin (p) — 2 sin’ (0) cos (p) + D cos (0) sin (go))z(2 1)
(¢r+D cos (0))* (1+ sin® (0) —2 cos (p) sin® (0) — cos? (0) cos? ()
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Figure 5. Optimal ribbon length. Left vertical axis: the red curve
shows L/(L—L,) versus 0, i.e. the inverse of the shortening of the
extrinsic length compared with the intrinsic length as a function of the
constant base angle 6 of the isosceles triangles. In the depicted
calculation the cylinder radius is ¥=0.07, the length L =10, the ribbon
width D=1, and the winding ®=1/(2x). The optimum appears at the
apex (0o =48.92°) of the red curve. For smaller windings the apex
moves towards 45° marked on the figure as a vertical grey line. Right
vertical axis: the blue curve shows In(r/D) versus the optimum angle
0o. A logarithmic scale is used for the vertical axis since this is a very
slow dependence. The apex of the red curve is related to the blue curve
at the point In(0.07)= —2.66 (right axis).
doi:10.1371/journal.pone.0074932.g005

where D=2b is the width of the ribbon, where the angle of
rotation around the cylinder surfaces, @, is given by

B D cos (0)
7= (L)21®) cos (0) sin (0)—Y

(22)

and where ® is the winding of one end of the ribbon relative to the
other (@ =1 corresponds to one full turn). The winding is giving as
the sum from the torsional contributions from the helical turns
around the cylinders. Each one of these turns contributes an equal
amount of (1/2m)g cos (0).

Figure 5 depicts L/(L—L.) as a function of 0 for the case
r=0.07D, see the red curve. Notice the optimum use of ribbon at
around 0o ~49°. The relationship between the optimized 0 and
the value of Y" is shown with the blue curve (see right hand y-axis).
We notice the very slow dependence of 0p with r for which reason
a logarithmic scale is used on the r-axis. For typical physical
ribbons one obtains values for 0o a few degrees larger than 45°.
E.g. for the ribbon in Figure 2, 0o ~46.5". This is far from the
00—90" solution which corresponds to the limit ¥'—0. This
particular short ribbon has an infinite zig-zag structure. The
reason that even a minute finite 7 can make a significant difference
to the value of Op, over simply using Y'=0, is that the contribution
to L— L, per unit of the tessellation is itself small. If one considers
elastic effects then the cylinder with Y'=0 will be suppressed by the
Willmore energy:
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bd bd

e = 2r sin () cos (0) = Y

(23)

where the last inequality is obtained for 0o =m/4 for any given
value of the cylinder radius r. We note that the infinite zig-zag
structure discussed above has an infinite Willmore energy and will
therefore not appear in an elastic material.

Conclusion

The tessellation phenomenon can be explained to result from a
geometrical optimization of the end-to-end (extrinsic) length, L.

The tessellation phenomenon can be observed with different
materials including paper. One needs to use materials that are
characterized by being good model systems for isometric ribbons,
i.e. they bend more easily than they stretch. The observed
tessellations are invariant under scaling and may be relevant for
ribbons on the micro, nano, or molecular scale such as cholesterol
helical ribbons [24,25], graphene ribbons [26], and topological
crystals [27]. Edge modifications of graphene ribbons [28] have
been suggested to modify their twisting, and models of kinked
graphene have been studied for possible new properties [29,30].
Twisting graphene under tensile stress, as we describe above, can
be an alternative way to modify its properties. Considering the
about 3 A thickness of a graphene sheet it seems interesting to
work with graphene ribbons with a width of the order of 30 A, or
more. The stability of non-isometric deformations of helical
ribbons has previously been subject to studies of various elastic
descriptions [31-33]. A different example of a one-dimensional
repetitive discrete structure is found in the cylindrical foam [34].

Recently, the problem of wrapping a sphere with a sheet was
revisited [35,36]. For this sheet-on-sphere challenge there is an
incompatibility of the two metrics, which is also the case for the
ribbon-on-helicoid system discussed here. Further, helicoids are
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subject to a continuous screw symmetry, the triangular tessellation
described above are instead subject to a discrete screw symmetry.
Interestingly, high symmetry solutions appear in several instances
for the minimal ribbon length solutions. L.e. for the the non-twisted
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discussed in this paper the minimal solution is invariant under a
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[22] the minimal solution can be shown to have the symmetry of a
discrete screw translation. Ribbon theory may be applicable in
DNA and protein folding studies [37,38]. Perhaps in some way not
elucidated yet the relative high degree of symmetry sometimes
seen in protein structures is connected with the phenomenon of
being short.

It is worthwhile to comment on the long-range order of the
tessellation. For the ribbon, all it takes for the tessellation to appear
is a finite but arbitrary small amount of winding, ®=¢. In the limit
&¢—0 the base angles of the isosceles triangles, 0, approach /4.
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appearing tessellation has long-range order with the fundamental
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whether a similar interplay of two incompatible geometries plays a
role in the formation of order in other systems e.g. in
crystallization of crystals and quasicrystals, where indeed the
latter cases are known to require several additional dimensions for
their proper description [39-41].
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