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Abstract

A repetitive crystal-like pattern is spontaneously formed upon the twisting of straight ribbons. The pattern is akin to a
tessellation with isosceles triangles, and it can easily be demonstrated with ribbons cut from an overhead transparency. We
give a general description of developable ribbons using a ruled procedure where ribbons are uniquely described by two
generating functions. This construction defines a differentiable frame, the ribbon frame, which does not have singular
points, whereby we avoid the shortcomings of the Frenet–Serret frame. The observed spontaneous pattern is modeled
using planar triangles and cylindrical arcs, and the ribbon structure is shown to arise from a maximization of the end-to-end
length of the ribbon, i.e. from an optimal use of ribbon length. The phenomenon is discussed in the perspectives of
incompatible intrinsic geometries and of the emergence of long-range order.
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Introduction

Recently, Korte, Starostin, and van der Heijden reported on the

fascinating occurrence of triangular buckling patterns in ribbons

[1]. Following the method used in the study of the equilibrium

shape of the Möbius strip [2], they elegantly built an analysis of the

pattern on the triangular region of the Möbius strip [2] and used it

to form a repetitive structure of triangular regions for the twisted

ribbons [1]. The Möbius strip was modeled as a developable

surface, and at a critical ratio of length to width it collapses into the

expected triple covered equilateral triangle. At larger lengths it

resembles the conical dislocations known from crumpling

phenomena [2–4].

Here, we study the triangular tessellations of ribbons from a

geometrical point of view and show that they are formed in the

limit of an optimal (minimal) use of ribbon length. The

spontaneous pattern partitions the ribbon, similarly to a tessella-

tion, thereby transforming the continuous translational symmetry

of a straight ribbon into a discrete symmetry where repeating

ribbon segments are mapped onto each other via a screw

translation. Further, we consider the properties of frames that

can be associated with ribbons, and suggest the use of one which

leads to a natural generation of all ribbons, henceforth denoted the

ribbon frame.

The occurrence of long-range order is playing a significant role

in many physical phenomena and structural phase transitions, e.g.

in solidification into crystalline phases. In biology ordered and

disordered tessellations appear ubiquitously. In mathematics there

are numerous open questions in discrete geometry regarding

tilings with concurrent elements [5]. In three dimensions new

families of polyhedral tilings have recently been described [6,7],

and materials with interesting properties have been constructed

with folded textured sheets [8,9]. DNA ribbons have been formed

from multiple molecules placed next to each other facilitating

DNA origami and the formation of Möbius strips [10]. The

differential geometry of ribbons have been considered in

connection with statistical models for polymers [11–13]. An

interesting recent application of ribbons is the reconstruction of

two-dimensional surfaces from ribbon curves [14].

Results and Discussion

Figure 1 shows the spontaneous partitioning of a straight ribbon

into repeating triangular-like structures upon a relatively small

twisting of the ribbon. The ribbon, 18 mm wide, was cut from a

commercially available size A4 overhead transparency (Xerox

Premium Transparencies, Part no. 003R98202). Two paper grip

clips mounted on standard laboratory stands are used to hold the

ends of the ribbon, to control their relative rotation to each other,

and to adjust the distance. With care the experiment can also be

performed holding the ribbon just by hand using e.g. an edge of a

table to fix one end of the ribbon. Figure 2 shows a more twisted

ribbon where the triangles are also present. Visible are the two

paper grip clips used to hold the ribbon in place. Also visible on

the figures are what appear to be narrow strips of bent ribbon

between the triangles. The visibility of the triangles is enhanced by

lighting using an office lamp.

Intrinsically flat ribbons are characterized by having zero Gauss

curvature and a Euclidian metric, i.e. they are developable

surfaces that can be flattened without stretching and compressing.

In contrast, the helicoid can not be flattened in this way, it is

formed by the continuous twisting of a line as one propagates

along the helicoid axis. The helicoid is also a ruled surface spanned

by straight lines, but it has a negative Gauss curvature. Therefore,

the ribbon and the helicoid are not isometric with each other – in

the same way as a sphere is not isometric with a plane. However,

the tessellations reported here allow the twisted ribbon to obtain a

discrete geometry that approximately follows the helicoid surface
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without introducing stretching and compressions within the

ribbon.

Ribbon description
We present a few introductory remarks concerning the

description and construction of all ribbons. The center curve of

a ribbon will be described by a unit speed parameterization c(s),
and the ribbon itself will be described as a developable surface

parametrization U(s,u) supported by the center curve in such a

way that the center curve itself becomes a geodesic in the ribbon

surface. The width of a ribbon is assumed to be constant and will

in the following be denoted 2b.

To construct any ribbon – and hence its center curve – we will

use two continuous functions, w(s) and h(s) defined in the interval

s[½0,L�, where L is the intrinsic length of the ribbon under

construction. Throughout we assume that h(s)[ �0,p½ for all s so

that in particular sin (h(s))w0 for all s. In our construction a key

role is played by a unit vector field A(s), which is a field tangent to

the ribbon and defined by having the angle h(s) to the center curve

of the ribbon. In fact, A(s) will be the direction field for the

Darboux vector D(s) with the generating function w(s) as a

multiplying factor, i.e. D(s)~w(s)A(s) .

We let fe(s),f (s),g(s)g denote the unique orthonormal triple of

vector solutions to the following differential system:

_ee(s) ~w(s)A(s)|e(s)

_ff (s) ~w(s)A(s)|f (s)

_gg(s) ~w(s)A(s)|g(s),

ð1Þ

where the unit vector field A(s) is defined in terms of e(s) and g(s)
as follows:

A(s)~ cos (h(s))e(s)z sin (h(s))g(s), ð2Þ

and where – for uniqueness purposes – we also apply the following

arbitrary initial conditions referring to a given fixed coordinate

system and basis in R3
:

fe(0),f (0),g(0)g~f(1,0,0),(0,1,0),(0,0,1)g: ð3Þ

The system (1) can be written explicitly as follows:

_ee(s) ~w(s) sin (h(s))f (s)

_ff (s) ~{w(s) sin (h(s))e(s)zw(s) cos (h(s))g(s)

_gg(s) ~{w(s) cos (h(s))f (s),

ð4Þ

where the dot notation means differentiation with respect to the

unit speed parameter s. In compact matrix notation:

_RR(s)~R(s)J(s), ð5Þ

where R(s) is the orthogonal matrix (with 2det(R(s))~1) whose

columns are the coordinate functions of fe(s), f (s), and g(s)g
respectively, and where

J(s)~

0 {w(s) sin (h(s)) 0

w(s) sin (h(s)) 0 {w(s) cos (h(s))

0 w(s) cos (h(s)) 0

2
6664

3
7775: ð6Þ

The corresponding ribbon R of width D~2b and length L can

be constructed as follows:

c(s) ~
Ð s

0
e(t)dt~

Ð s

0
(R11(t),R21(t),R31(t))dt

R : U(s,u)~c(s) z
u

sin (h(s))

� �
A(s) , s[ ½0,L� , u[ ½{b,b�:

ð7Þ

We will refer to the frame fe(s),f (s),g(s)g as the ribbon frame of

the ribbon R. Figure 3 depicts a section of the ribbon with the

A(s) vector shown together with e(s), f (s), and g(s). The Jacobian

deformation function J of the parametrization U(s,u) is non-

singular where the ribbon surface is regular (see e.g. ref. [15]);

Moreover, later we shall also need this function in order to

integrate the Willmore energy along the ribbon, see equation (19).

J(s ,u)~E _UUs(s,u)| _UUu(s,u)E~D1{
u _hh(s)

sin2 (h(s))

 !
D: ð8Þ

Figure 1. Triangular tessellation. Section of the triangular
tessellation observed on a slightly twisted 18 mm wide ribbon cut
from an overhead transparency. The ribbon is held in place by two
paper grip clips and twisted about 1/3 turn over a length of 287 mm.
Material: Xerox Premium Transparencies, Part no. 003R98202.
doi:10.1371/journal.pone.0074932.g001

Figure 2. Ribbon with paper clips. Ribbon twisted about one full
rotation over a length of 200 mm, ribbon width 18 mm. Visible is the
two mechanical holders made from a set of paper grip clips.
doi:10.1371/journal.pone.0074932.g002

Ribbon Crystals
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Hence, in order for the ribbon to be a regular surface for

u[�{b,b½ we must impose the following condition on the

instantaneous direction of the field A(s), i.e. h(s), the derivative
_hh(s), and the half-width of the ribbon b:

D _hh(s)D
sin2 (h(s))

ƒ

1

b
: ð9Þ

The intrinsic metric tensor of the ribbon is – with respect to the

(s,u) induced ribbon basis fe(s),A(s)= sin (h(s))g:

F I ~

E F

F G

2
64

3
75

~

u _hh(s){ sin2 (h(s)
� �2

sin4 (h(s))

{ cos (h(s)) u _hh(s){ sin2 (h(s)
� �

sin3 (h(s))

{ cos (h(s)) u _hh(s){ sin2 (h(s)
� �

sin3 (h(s))

1

sin2 (h(s))

2
6666664

3
7777775
:

ð10Þ

And, the matrix of the second fundamental form is:

F II~

L M

M N

2
64

3
75~

w(s) u _hh(s){ sin2 (h(s)
� �

sin (h(s))
0

0 0

2
6664

3
7775: ð11Þ

The corresponding Weingarten matrix becomes:

W~F{1
I F II~

w(s) sin (h(s))

u _hh(s){ sin2 (h(s))
0

w(s) cos (h(s)) 0

2
664

3
775: ð12Þ

Therefore the Gaussian curvature, K , and mean curvature, H,

of R are, respectively:

K ~2det(W )~0 ,

H ~
1

2

� �
2trace(W )~

1

2

� �
w(s) sin (h(s))

u _hh(s){ sin2 (h(s))
:
ð13Þ

The two principal curvatures k1(s), k2(s) and corresponding

principal directions t1(s), t2(s) of the center curve of the ribbon are

then:

k1(s) ~
{w(s)

sin (h(s))
, t1(s)~ sin (h(s))e(s){ cos (h(s))g(s),

k2(s) ~0 , t2(s)~A(s):

ð14Þ

The normal curvature of the center line is, according to Euler’s

theorem:

kn(s)~k1(s) sin2 (h(s))zk2(s) cos2 (h(s))~{w(s) sin (h(s)): ð15Þ

The curvature and the torsion (where k(s) is defined to be

positive, or zero, everywhere) of the center curve (considered as a

space curve), are respectively:

k(s) ~E _ee(s)E~Dw(s)D sin (h(s)),

t(s) ~ e(s)| _ee(s)ð Þ:€ee(s)~w(s) cos (h(s)):
ð16Þ

Since k2
n(s)~k2(s) the geodesic curvature, kg(s), of the center

curve of the ribbon vanishes:

kg(s)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2(s){k2

n(s)
q

~0 for all s : ð17Þ

The surface R is clearly a ruled surface by construction. It is

developable since the Gauss curvature vanishes identically. Hence,

as the geodesic curvature of the center curve vanishes everywhere,

and as we assume its half-width to be constant, R is a ribbon. The

vector fields e(s),g(s) are parallelly transported (in the intrinsic

metric) along the center curve.

The ribbon frame versus the Frenet–Serret frame
When the ribbon has w(s)=0 the curvature k(s) of the center

curve is positive, so there exists a unique Frenet–Serret frame

fT(s),N(s),B(s)g and a unique Darboux vector

D(s)~t(s)T(s)zk(s)B(s)~w(s)A(s) which is the instantaneous

rotation vector for the Frenet–Serret frame along the center curve.

We always have T(s)~e(s) and in terms of the ribbon frame

and the ribbon data we have the following correspondence with

the other parts of the Frenet–Serret frame. We assume first that

w(s)=0 for all s in some subinterval �a,b½ of ½0,L�. There are only

two possibilities: If N(a)~f (a) then N(s)~f (s), B(s)~g(s), and

D(s)~w(s)A(s) for all s[ �a,b½. If N(a)~{f (a) then

N(s)~{f (s), B(s)~{g(s), and again D(s)~w(s)A(s) for all

s[ �a,b½. For a given ribbon the two frames can thus be identified

across points with w(s)~0 via such shifts of signs from one ‘‘side’’

of the 0-set to the other.

All the curves which can be ‘‘dressed’’ with a ribbon will be

called ribbon curves. The set of C3 curves for which the second

and the third derivatives are not simultaneously zero is one large

class of ribbon curves. The differential rotations of the moving

frame for the Frenet–Serret Frame, the Ribbon Frame, and the

sister frame to the Frenet–Serret Frame are all three identical. I.e.

they have the same vector representation, the Darboux Vector

D(s). The Frenet–Serret frame is not defined at points where the

curvature is zero and unfortunately it can not always be

differentially patched together – some points are frame switching

Figure 3. Ribbon frame. Standard setting for general ribbons with
ribbon data w(s), h(s). On display: A(s), e(s), f (s), g(s), and h(s).
doi:10.1371/journal.pone.0074932.g003

(10)
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points. These shortcomings have been discussed in the concept of

statistical models with suggestions to use a material frame

[13,16,17] and the Darboux frame of the center line [18]. An

early study involving the counting of the frame switching points

gave rise to the Randrup-Røgen condition [19]. The ribbon frame

discussed in this paper is obtained using two generating functions,

w(s), and h(s) and is shown to be well behaved. Where the Frenet-

Serret frame is defined we have the following relationship between

the two frames. Locally they are identical except with the

possibility of an inverted sign for N(s) and B(s). The frame

switching points occur where w(s) changes sign. Moreover,

ks(s)~w(s) sin (h(s)) provides a convenient way to define a signed

curvature for the ribbon center curve, which is a natural extension

of the signed curvature conventionally assigned to planar curves.

Short flat ribbons
Flat knotted ribbons have been studied for the Möbius band

[20], the trefoil knot [21], the figure eight knot [21], and for

general torus knots [22], with the purpose of finding the shortest

ribbon length that can form these knot structures as flat ribbons for

a given ribbon width. One way to look at such short ribbons is in

the perspective of Kirchhoff-Love isotropic shells. Ribbons that

can not be be shortened shall remain stationary under strain and

thus support torque and forces necessary for the static equilibrium.

Isotropic ribbons without any bending rigidity must therefore be

either locally flat, or locally have sharp turns where our generating

function w(s) takes the value of a d-function. Plane knots are

folded at these latter points while for 3-dimensional structures two

tangent planes can meet along a bend. Summarizing this means

that such ribbons must contain flat sections connected by bends, or

folds, which resemble the observed structures in figures 1 and 2.

A similar line of reasoning supports and motivates our modeling

assumptions in the next section. For a shortest ribbon we can

assume that Eq. (9) must hold in the limit where an equality sign is

obtained, i.e.:

bD _hh(s)D~ sin2 (h(s)) ð18Þ

If this were not the case then a wider ribbon than the current

one would have the same length. This can not be true for a twisted

ribbon of minimal length.

A different perspective, though with a similar result, is obtained

by studying the total Willmore energy [2]:

WR ~
1

4

ð
R

H2 dm

~
1

4

ðb

{b

ðL

0

H2(s,u)J(s,u)dsdu

~
1

4

ðb

{b

ðL

0

w2(s)

sin2 (h(s)){u _hh(s)
dsdu

~
1

4

ðL

0

w2(s)

_hh(s)

� �
ln

sin2 (h(s))zb _hh(s)

sin2 (h(s)){b _hh(s)

 !
ds:

ð19Þ

Now consider the short twisted ribbons, i.e. those for which the

width can not be increased without modifying the center line, then

it follows that for the stretches in s where Eq. (19) holds one can

conclude that w(s)~0 wherever _hh(s)=0 in order to prevent a

divergence of WR. Hence, for short twisted ribbons we will assume

in the following section that w(s)=0 only for intervals of s where

h(s) is constant, so that all the bending of the ribbon takes place as

cylindrical bends. Interestingly, the assumption that a twisted

ribbon is short enforces a discretization of its geometry!

Ribbon crystals
We now discuss the observed ribbons. First their half-width

parameter b determines the scale of their structure. I.e. a ribbon

scaled down by a factor of two would have half the length and half

the width, but could absorb the same amount of winding for the

same relative shortening. This means that two ribbons of different

width but of the same length would shorten differently when

twisted: The wider ribbon would shorten the most. The governing

equations described above are independent of the half-width, b,

except for the inequality, Eq. (9). We can therefore conclude that

the maximum length occurs when at least for part of the ribbon

the limiting condition, which corresponds to an equal sign in the

inequality, is valid as discussed above. We will model the limiting

structure which corresponds to an upper limit for the extrinsic

length as consisting of consecutive flat triangular sections merged

at the edges to a full length ribbon. As will be shown below, the

ideal limiting structure consists of an infinite number of triangles,

which are not in accordance with observations in Figures 1 and 2.

One possibility to more realistically model the material property of

the ribbon is to introduce an elastic energy and minimize with

respect to it [2,23]. We choose a different strategy, namely, to

introduce material properties through a geometrical parameter.

This will allow us to study the phenomenon in the limit of short

ribbons.

In the following, it is assumed that the radius of curvature is

restricted by a lower bound, �U, and we will study the optimum

ribbon crystals as a function of r. This type of assumption is a

natural choice for ribbons of finite thickness, d , since such a

condition conserves the local ribbon volume. For many materials

this is a fair limit to consider, it restricts the main principal

curvature accordingly Dk1Dƒ2=d. The maximally curved surfaces

we can consider is then cylinder surfaces with radius d=2. We now

model the ribbon as formed by planar triangles joined together by

cylinder surfaces and proceed to optimize their extrinsic length.

For a typical ribbon dvvDvvL, where D~2b and L are the

ribbon width and the (intrinsic) length, respectively. Figure 4

shows a schematic drawing with planar triangles and sections of

cylindrical ribbons. The ribbon is repeatedly constructed of planar

triangles with edges running across the ribbon. These edges make

an angle h with the centerline of the ribbon. The triangles are then

patched together with a thin circular cylinder surface of radius r
rotating around the cylinder through the angle Q. The value

Q~2p corresponds to one complete rotation around the cylinder –

the orientation of the angle is given by a vector along the cylinder

axis. The procedure is repeated again and again. There is a screw

symmetry and the screw axis is easily found using the first two

triangles. The resulting extrinsic length, Lee, can hence be

calculated and compared with the intrinsic length of the ribbon

and with the total winding of the ribbon.

The ribbons that maximize Lee are symmetric under a discrete

screw translation as well as under discrete C2 rotations. The base

median of each of the isosceles triangles is a symmetry axis upon

the operation of a 1800 rotation. The tessellation structure is

subject to a screw symmetry by which operation every isosceles

triangle is mapped upon the next triangle. By two successive screw

operations every triangle is mapped upon the next nearest

neighbor, and then the ribbon front and back faces are also

conserved. If one rotate the ribbon around one of the base

medians of the isosceles triangles by 180u then the ribbon and its

screw axis is maintained. Therefore, the screw axis is intersecting

Ribbon Crystals
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the base medians and is perpendicular to these. In this sense the

discrete set of base medians mimic the continuous ruling of the

smooth helicoid. Both the ribbon and the helicoid are described by

the same pitch.

Discrete ribbons
In the following the short ribbons for a given value of r are

constructed. From above, it follows that w(s)~0 wherever _hh(s)=0

and hence we may apply w(s)=0 wherever _hh(s)~0 and that this

latter condition holds for s in a number n of subintervals ½si,siz1�
of ½0,L�, i~1,:::,n. We now briefly describe the construction of

ribbons with constant data. In the subintervals h(s) is a constant

h(s)~hi and w(s)~wi(s)=0 for s[½si,siz1�, and we assume that

the two sequences cos (hi) and wi(s) both are chosen with

alternating sign so that the respective torsion-contributions

wi(s) cos (hi) from these intervals are all positive, and that the

absolute non-zero values are h and w0.

The ribbon is built as n consecutive geometric units each

consisting of a flat isosceles triangle with straight line center curve

of length b cot (h) followed by a right handed bending around a

cylinder of radius r, the bending having angle Q, resulting in the

extra contribution to the center curve length: d~rQ= sin (h). The

total intrinsic length of the center curve of this construction

consisting of n such units is then L~n(b cot (h)z U Q= sin (h)).

Every geometric unit for the ribbon constructed in the above

way is mapped into the next unit by a screw translation whose axis

is determined as follows: Suppose the center curve of the first flat

triangle in the first unit is in the direction (1,0,0) and that the

triangle itself has unit normal vector (0,0,1). Then the axis vector

of the ribbon construction is determined by the following vector:

a~ 1,0,
sin (h)(1{ cos (Q))

sin (Q)

� �
ð20Þ

The projection of the center curve of one unit (the first, say)

onto the axis has the length Lee=n, so that the expression of the

total extrinsic length is easily obtained from there, see equation

(21), and can be directly compared with the total intrinsic length L

of the ribbon. For simplicity we give the expression for L2
ee:

L2
ee~

L2 2r sin2 (h)zrQ cos2 (h) sin (Q){2r sin2 (h) cos (Q)zD cos (h) sin (Q)
� �2

QrzD cos (h)ð Þ2 1z sin2 (h){2 cos (Q) sin2 (h){ cos2 (h) cos2 (Q)
� � ,

ð21Þ

where D~2b is the width of the ribbon, where the angle of

rotation around the cylinder surfaces, Q, is given by

Q~
D cos (h)

L=2pWð Þ cos (h) sin (h){U
ð22Þ

and where W is the winding of one end of the ribbon relative to the

other (W~1 corresponds to one full turn). The winding is giving as

the sum from the torsional contributions from the helical turns

around the cylinders. Each one of these turns contributes an equal

amount of (1=2p)Q cos (h).

Figure 5 depicts L=(L{Lee) as a function of h for the case

r~0:07D, see the red curve. Notice the optimum use of ribbon at

around hO*490. The relationship between the optimized hO and

the value of U is shown with the blue curve (see right hand y-axis).

We notice the very slow dependence of hO with r for which reason

a logarithmic scale is used on the r-axis. For typical physical

ribbons one obtains values for hO a few degrees larger than 450.
E.g. for the ribbon in Figure 2, hO*46:50. This is far from the

hO?900 solution which corresponds to the limit U?0. This

particular short ribbon has an infinite zig-zag structure. The

reason that even a minute finite r can make a significant difference

to the value of hO, over simply using U~0, is that the contribution

to L{Lee per unit of the tessellation is itself small. If one considers

elastic effects then the cylinder with U~0 will be suppressed by the

Willmore energy:

Figure 4. Schematic tessellation. Schematic computer drawing of a
twisted triangular tessellation including the bending around thin
cylindrical tubes.
doi:10.1371/journal.pone.0074932.g004

Figure 5. Optimal ribbon length. Left vertical axis: the red curve
shows L=(L{Lee) versus h, i.e. the inverse of the shortening of the
extrinsic length compared with the intrinsic length as a function of the
constant base angle h of the isosceles triangles. In the depicted
calculation the cylinder radius is r~0:07, the length L~10, the ribbon
width D~1, and the winding W~1=(2p). The optimum appears at the
apex (hO~48:920) of the red curve. For smaller windings the apex
moves towards 45u marked on the figure as a vertical grey line. Right
vertical axis: the blue curve shows ln (r=D) versus the optimum angle
hO . A logarithmic scale is used for the vertical axis since this is a very
slow dependence. The apex of the red curve is related to the blue curve
at the point ln (0:07)~{2:66 (right axis).
doi:10.1371/journal.pone.0074932.g005

(21)

Ribbon Crystals
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WR ~
bW

2r sin (h) cos (h)
§

bW

U
, ð23Þ

where the last inequality is obtained for hO~p=4 for any given

value of the cylinder radius r. We note that the infinite zig-zag

structure discussed above has an infinite Willmore energy and will

therefore not appear in an elastic material.

Conclusion

The tessellation phenomenon can be explained to result from a

geometrical optimization of the end-to-end (extrinsic) length, Lee.

The tessellation phenomenon can be observed with different

materials including paper. One needs to use materials that are

characterized by being good model systems for isometric ribbons,

i.e. they bend more easily than they stretch. The observed

tessellations are invariant under scaling and may be relevant for

ribbons on the micro, nano, or molecular scale such as cholesterol

helical ribbons [24,25], graphene ribbons [26], and topological

crystals [27]. Edge modifications of graphene ribbons [28] have

been suggested to modify their twisting, and models of kinked

graphene have been studied for possible new properties [29,30].

Twisting graphene under tensile stress, as we describe above, can

be an alternative way to modify its properties. Considering the

about 3 Å thickness of a graphene sheet it seems interesting to

work with graphene ribbons with a width of the order of 30 Å, or

more. The stability of non-isometric deformations of helical

ribbons has previously been subject to studies of various elastic

descriptions [31–33]. A different example of a one-dimensional

repetitive discrete structure is found in the cylindrical foam [34].

Recently, the problem of wrapping a sphere with a sheet was

revisited [35,36]. For this sheet-on-sphere challenge there is an

incompatibility of the two metrics, which is also the case for the

ribbon-on-helicoid system discussed here. Further, helicoids are

subject to a continuous screw symmetry, the triangular tessellation

described above are instead subject to a discrete screw symmetry.

Interestingly, high symmetry solutions appear in several instances

for the minimal ribbon length solutions. I.e. for the the non-twisted

ribbon the minimal solution is a planar and straight ribbon with

continuous translational symmetry. For the ribbon crystals

discussed in this paper the minimal solution is invariant under a

discrete screw translation. Further, for the flat torus ribbon knot

[22] the minimal solution can be shown to have the symmetry of a

discrete screw translation. Ribbon theory may be applicable in

DNA and protein folding studies [37,38]. Perhaps in some way not

elucidated yet the relative high degree of symmetry sometimes

seen in protein structures is connected with the phenomenon of

being short.

It is worthwhile to comment on the long-range order of the

tessellation. For the ribbon, all it takes for the tessellation to appear

is a finite but arbitrary small amount of winding, W~e. In the limit

e?0 the base angles of the isosceles triangles, h, approach p=4.

Therefore, upon an infinitesimal twisting of the ribbon the

appearing tessellation has long-range order with the fundamental

wave vector q~p=D. The twisted ribbon is one example which

shows that an attempt to match a Euclidian geometry with a non-

Euclidian geometry can generate a tessellation with long-range

order. In this specific case the intrinsic structure is two-

dimensional and the co-dimension is one. One may well speculate

whether a similar interplay of two incompatible geometries plays a

rôle in the formation of order in other systems e.g. in

crystallization of crystals and quasicrystals, where indeed the

latter cases are known to require several additional dimensions for

their proper description [39–41].
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