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Abstract

Gaucher disease type 1, an inherited lysosomal storage disorder, is caused by mutations in GBA1 leading to defective
glucocerebrosidase (GCase) function and consequent excess accumulation of glucosylceramide/glucosylsphingosine in
visceral organs. Enzyme replacement therapy (ERT) with the biosimilars, imiglucerase (imig) or velaglucerase alfa (vela)
improves/reverses the visceral disease. Comparative transcriptomic effects (microarray and mRNA-Seq) of no ERT and ERT
(imig or vela) were done with liver, lung, and spleen from mice having Gba1 mutant alleles, termed D409V/null. Disease-
related molecular effects, dynamic ranges, and sensitivities were compared between mRNA-Seq and microarrays and their
respective analytic tools, i.e. Mixed Model ANOVA (microarray), and DESeq and edgeR (mRNA-Seq). While similar gene
expression patterns were observed with both platforms, mRNA-Seq identified more differentially expressed genes (DEGs)
(,3-fold) than the microarrays. Among the three analytic tools, DESeq identified the maximum number of DEGs for all
tissues and treatments. DESeq and edgeR comparisons revealed differences in DEGs identified. In 9V/null liver, spleen and
lung, post-therapy transcriptomes approximated WT, were partially reverted, and had little change, respectively, and were
concordant with the corresponding histological and biochemical findings. DEG overlaps were only 8–20% between mRNA-
Seq and microarray, but the biological pathways were similar. Cell growth and proliferation, cell cycle, heme metabolism,
and mitochondrial dysfunction were most altered with the Gaucher disease process. Imig and vela differentially affected
specific disease pathways. Differential molecular responses were observed in direct transcriptome comparisons from imig-
and vela-treated tissues. These results provide cross-validation for the mRNA-Seq and microarray platforms, and show
differences between the molecular effects of two highly structurally similar ERT biopharmaceuticals.
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Introduction

Gaucher disease type 1, a common glycolipid storage disease, is

caused by deleterious mutations in GBA1, which results in

dysfunction of the lysosomal enzyme, glucocerebrosidase (GCase)

and subsequent excess accumulation of glucosyl-ceramide (Glu-

Cer)/-sphingosine (GluSph) in various tissues [1]. In macrophages

of the liver, spleen, and lungs, large accumulations of GluCer and

lesser amount of GluSph lead to organ dysfunction. However, the

molecular relationships of these pathological accumulations are

poorly understood. In addition, the molecular pathogenesis of the

variants of Gaucher disease with central nervous system and

skeletal system involvement is elusive [2]. Gaucher disease type 1,

the most prevalent variant in the Western World, has highly

variable degrees of hepatosplenomegaly, cytopenias, and bone

disease. The availability of mannose-terminated GCases that

preferentially target macrophages, via the mannose receptor, has

provided enzyme replacement therapy (ERT) for disease man-

agement, which has become the standard of care for the visceral

disease of significantly affected patients [3,4].

ERT reverses or ameliorates many of the manifestations of

Gaucher disease type 1, including anemia, thrombocytopenia,

hepatosplenomegaly and organ dysfunction, growth retardation

and bone pain, and leads to dramatically improved quality of life

for many patients [5,6]. Pharmaco-kinetics and -dynamics of

recombinant GCases have been evaluated in the 9V/null mouse

[7–9]. This model is an analogue of human Gaucher disease that

has been used to test various treatment modalities including ERT,

substrate synthesis inhibition therapy, pharmacologic chaperone

therapy [8,10], and gene therapy [11]. Consistent with the human
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disease, ERT reduced GluCer storage in the visceral organs of

these mice [7,8]. However, little is known about the disease-related

molecular events during the course of ERT compared to untreated

individuals. End-stage gene expression profiles have been

described in brains from neuronopathic Gaucher disease patients

and mice [12,13]. The global and macrophage activation gene

expression profiles were defined in visceral organs of 9V/null mice

[14], but have not been explored in a therapeutic setting.

Here, two structurally/biochemically similar FDA approved

GCases, imiglucerase (imig, Genzyme/Sanofi) and velaglucerase

alfa (vela, Shire/HGT) were compared for their molecular

therapeutic effects in liver, lung, and spleen. Imig and vela have

essentially identical in vitro kinetic properties, interactions with

substrates and inhibitors [7,15] and very similar crystal structures

of the deglycosylated proteins [16,17]. A significant difference

between imig and vela is the number of mannoses contained in

oligosaccharides on each of their respective 4 occupied N-linked

glycosylaton sites. For vela expressed in human fibrosarcoma cells,

the predominant number of mannoses is 9 [16], whereas for imig

expressed in CHO cells, this is 3 [9]. These differences do not

affect the in vitro stabilities or the kinetic properties of either

enzyme [7,9]. Pharmaco-kinetic and -dynamic studies showed

essential similarities in tissue uptake and distribution between imig

and vela using specific antibody assessments [7,15]. Additionally,

only minor differences in biochemical and histological effects with

these drugs were found when 9V/null mice treated over a 12-fold

range with imig or vela. In these imig- or vela-treated mice, the

liver, lung, and spleen contents of GluCer and GluSph were not

significantly different when compared at the same dose (5, 15, or

60 U/kg/wk) [7]. The molecular effects of these two drugs on

gene expression in tissues have not been evaluated by transcrip-

tomic analyses.

Here, a comprehensive study was conducted to evaluate the

transcriptomic similarities and differences in the differentially

expressed genes (DEGs) in the 9V/null model using both mRNA-

Seq and microarray platforms. Also, the performance of the

different analytic tools, i.e., ANOVA for microarrays, edgeR and

DESeq for mRNA-Seq, were evaluated. The main objectives of

these studies were to determine the effects on the Gaucher disease

processes of imig and vela treatments, and to directly compare the

molecular differences elicited by these two highly similar ERTs.

The comparisons of the results with both platforms and analytic

approaches also highlighted their advantages/disadvantages in

identifying the DEGs profiles.

Results

Sample selection and data filtering
Comparative transcriptome analyses were performed in strain-

and age-matched 9V/null mice that received weekly injections

beginning at 20 wks of imig or vela (60 U/kg/wk for 8 wks,

n = 31) or of saline (n = 17), and untreated WT mice (n = 12). The

lungs, livers, and spleens were harvested one week after the last

injection (28-wk old). Organ GluCer levels, as indication of

correction of substrate accumulation in this model, were deter-

mined previously [7]. The ERTs resulted in almost complete

correction of histology and GluCer accumulation in the liver, but

the lung showed very little effect on these parameters. The ERTs

led to partial normalization of splenic histopathology and GluCer

levels [7].

The disease-related comparative transcriptomic changes as a

result of ERT were evaluated by mRNA-Seq and microarray in

the different tissues from 9V/null and WT mice. The data

obtained from the two platforms were analyzed with the three

appropriate analytic methods (see Methods and Fig. S1).

The biological replicates (n = 4–8) used here facilitated evalu-

ation of the sample homogeneity in each tissue group. Principle

Component Analyses (PCA) were used to show the overall

structure of the data and how replicates grouped. PCA indicated

general similarity in overall expression patterns within a tissue

group. The PCA of microarray and mRNA-Seq showed distinct

tissue separations in both platforms (Fig. S2). mRNA-Seq (55

samples) data showed 4 outlier samples of which 2 were from the

spleen, and 1 each were from liver and lung. In addition to these,

the microarray data identified 4 other splenic outliers. All the

outliers were removed from the downstream DEG analyses. Of

importance, including the outliers significantly affected identifica-

tion of DEGs by mRNA-Seq and resulted in a small number of

DEGs with random biological functions. This would have led to

high false negative and positive discoveries (data not shown).

Therefore, the PCA identification of outliers significantly reduced

biased results, implying that identification and removal of outliers

prior to down-stream DEGs detection is an important part of

analyses of transcriptome data.

Cross platform expression correlation
To validate the DEGs obtained from the microarray platform,

mRNA-Seq was performed on the identical samples and analyzed

by two different statistical methods. The analyses of the mRNA

from the treated 9V/null mice are referenced to WT transcrip-

tomes, which provided insight into the ERT effects on the disease-

related molecular events. The mRNA-Seq and the microarray

outputs are different; the former are discrete intensities of the read

counts, while the latter are continuous intensity distributions. To

perform correlations between the DEGs patterns from the two

platforms, common sets of genes were selected, which were above

the detectable threshold and common to both the platforms. Using

these criteria, 17,157 genes were identified. The correlations

(Fig. 1A) between the microarray and the mRNA-Seq data were

assessed with the log-transformed values of the number of

sequence reads mapped to each gene (mRNA-Seq) on the X-

axis with the corresponding log-transformed intensity values

(microarray) on the Y-axis. These two independent measures of

transcript abundance were highly correlated with Pearson’s

correlation coefficients of 0.808, 0.776, and 0.711 (P,0.05) for

spleen, liver, and lung, respectively, in saline treated 9V/null

tissues as a representative example (Fig. 1A).

Fold-Change (FC) based comparisons were also performed to

evaluate the ability of the two platforms to capture the different

responses of gene expressions among three analytical methods

under different condition. In 9V/null saline vs. WT data sets, the

FC values of 105 DEGs were determined by all three analytical

methods (Table S1), and were evaluated for correlation values

(Fig. 1B). Spleen data sets were chosen as representative to

compare these FC values. Several other subsets of genes were

evaluated in each tissue under different treatment conditions (data

not shown). In all cases the FCs of DEGs between the mRNA-Seq

methods edgeR and DESeq were highly correlated (Pearson’s

correlation coefficient = 0.904). Comparison of mRNA-Seq with

microarray showed lesser correlations with Pearson’s correlation

coefficients = 0.641 (DESeq and microarray) and 0.501 (edgeR

and microarray) (Fig. 1B); i.e., the magnitude of FC values from

the two platforms varied significantly.

Comparisons of DEGs from microarray and mRNA-Seq
DEGs from saline-, imig-, and vela-treated 9V/null tissues were

identified using three different analytical tools: Mixed Model

Transcriptome of Enzyme Treated Gaucher & WT Mice
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ANOVA (microarray), and edgeR and DESeq (mRNA-Seq). The

cut off criteria for selection of DEGs were based on a FC 61.5 and

an FDR (False discovery rate) = 0.05. DEGs are listed in

Tables S2, S3 and S4.

In the spleen, the DESeq and edgeR methods identified a larger

number of DEGs as compared to microarray by Mixed Model

ANOVA (termed microarray in the figures) (Fig. 2). These

comparative analyses confirmed the greater sensitivity of DEGs

analyses by DESeq and edgeR for mRNA-Seq compared with

Mixed Model ANOVA for microarray [18].

In liver, significantly fewer DEGs were identified (Fig. S3). The

DEGs were 36, 840, and 176 in 9V/null saline-treated vs. WT by

Mixed Model ANOVA/microarray, DESeq and edgeR, respec-

tively. Relative to saline-treated 9V/null livers, the numbers of

DEGs were significantly changed post-imig or -vela treatment

ranging from 68–95% decreased. In lung, DEGs were not

significantly changed post-ERT (Fig. S4).

Gene ontology and biological pathway analyses of
spleen DEGs

Different analytical techniques were used to evaluate the

transcriptome effects of imig or vela on the Gaucher disease

processes using the saline-, imig-, or vela-treated mice compared to

untreated WT. The functional categorizations were determined

using DAVID. Based on the p value and the number of DEGs

involved, cellular process genes contained 55–60% of the DEGs

identified by the three analytic methods (Table S5). However, the

numbers of DEGs in the different functional groups varied

significantly between mRNA-Seq and microarray.

With the combination of the two mRNA-Seq analytic methods,

most of the functional groups overlapped in the saline- and ERT-

treated spleens with a few exceptions (Table S5). Despite of the

few differences, the analyses of Gene Ontology (GO) terms were in

general agreement between mRNA-Seq and microarray, leading

to similar biological conclusions.

Functional significance of the core splenic genes in
saline-, imig-, and vela-treated samples

To evaluate the biological process, functions, and pathways in

the ERT-treated mice, the DEGs identified by at least two of the

three analytic methods were used. These were designated as core

DEGs and are represented by the regions of intersections of the

three-way proportional Venn diagram (Fig. 2A). The partial

response of the spleen to ERT was the primary focus here. The

number of core spleen DEGs were 545, 1923 and 615 with saline-,

imig-, and vela- treatment, respectively.

The interactions between the significant biological functions

under the different conditions are presented as an abstracted view

developed with ToppCluster and Cytoscape (Fig. 3A). The

numbers of common and unique functions associated with each

Figure 1. Correlations of microarray and mRNA-Seq and their DE analytic methods. (A) Correlation of signal intensity of saline treated 9V/
null tissues in microarray platform with mRNA-Seq platforms. The panels show the (Log2) mRNA-Seq read counts for each gene plotted on the X-axis
compared with the (Log2) intensities from the microarray data on the Y-axis. To avoid log of 0, 1 was added to each of the average counts prior to
taking logs. The Pearson’s coefficients (at the top of each panel) for each tissue show high correlation between the microarray and mRNA-Seq data.
(B) Correlations of three DE analytic methods. edgeR and DESeq for mRNA-Seq and Mixed Model ANOVA for microarray were employed to pick a
common subsets of genes from mRNA-Seq and microarray platforms. The genes that met the cut-off criteria (FDR = 0.05, and a FC $ 61.5) by all
three DE methods were interrogated.
doi:10.1371/journal.pone.0074912.g001

Transcriptome of Enzyme Treated Gaucher & WT Mice
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big node/treatment condition are represented by the Venn

diagram (Fig. 3B). There were 16 common functions shared by

all three treatment conditions. These functions focused primarily

on cell cycle processes and regulation, heme biosynthetic process,

and protein complex organization. There were 56 unique

functions associated with imig, 5 with vela, and 10 with saline

treatment (Table S6). Imig and vela treatments shared 69

common functions. Most of the common functions were related

to cell cycle regulation, mitochondrial ATP synthesis coupled with

electron transport, regulation of programmed cell death, and

regulation of protein ubiquitination. The genes in the cell cycle

function which is ,15% of the total DEGs in microarray and

mRNASeq, were absent in vela-treated samples. The number of

genes involved in cell death in imig-treated samples were twice

those in the saline- or vela-treated samples. Some of the cell death

genes (9 in saline, 8 in vela and 7 in imig) overlap with the

autophagy genes, of which 7 are common between imig- and vela-

treatment. They include Bcl2l1, Bnip3l, Camp, Cox5a, Nqo1, Snca

and Sod1. In addition, imig-treated spleen has Sphk1 and saline-

treated spleen has both Sphk1 and Usp1.

New functional groups, e.g., cellular growth and proliferation

and immune cell trafficking, were identified in the post-treatment

groups, suggesting relationships to disease repair mechanisms. In

the saline-, vela- and imig-treated spleens, there were 62 (11.4%),

80 (13%), and 98 (9.5%) hematopoietic DEGs, respectively. Of

these, 32 were common to imig-, vela-, and saline-treated spleen

and 17 (53%) were in the myelopoietic gene cluster (Table S7). All

the common hematopoietic genes had decreased expression levels

in both enzyme- and saline- treated conditions, except for Jak3.

Apart from its hematopoietic function Jak-3 is an important

component of the JAK/STAT signaling pathway, and additional

genes in this pathway showed abnormal expression. For example,

the Bcl2-like gene that is involved in a wide variety of cellular

activities had decreased expression levels in ERT and saline

treated spleens. Stat3 levels were increased by treatment with either

enzyme, whereas Socs (suppressor of cytokine signaling) showed

increased expression levels only in the imig-treated spleen.

The GATA1 (globin transcription factor 1) and PU.1/Sfpi1

(spleen focus forming virus pro viral integration oncogene) are the

two DEGs that are lineage specification genes for the erythropoi-

esis and myelopoiesis lines, respectively. Gata1 was within the core

DEGs in spleen (Table S2) and showed decreased expression levels

with either enzyme- or saline-treatment, but a greater decrease

was found in the imig-treated spleens. In comparison, Pu.1/Sfpi1

(Table S2) was identified by microarray only and showed

increased expression levels in saline-, imig-, and vela- treated

samples. Ten DEGs (Table S8) from saline, imig, and vela spleens

interact with Gata1 and Pu.1. All these interacting genes, except for

CD1d2, showed decreased levels of expression. These indicate an

imbalance between the lineage specifications with a repression of

the erythropoietic line and an enhancement of the myelopoietic

line.

The DEGs involved in the functional groups such as cell growth

and proliferation, cell cycle, heme metabolism, and inflammation

are altered during the course of ERT in Gaucher disease spleen.

Significant number of DEGs identified were associated with

mitochondrial dysfunction, oxidative phosphorylation and ubiqui-

none biosynthesis pathways. The DEGs in these pathways were

combined to form a network of 45 DEGs in saline-treated spleens

(Fig. 4A). All had decreased expression relative to WT, except for

Hspb1. Treatment with imig (Fig. 4B) showed a return to WT

levels in only two genes, Atp6v0d2 (ATP synthase, H+ transporting,

lysosomal 38 kDa, V0 subunit d2) and Hmox1 [hemeoxygenase

(decycling) 1]. Treatment with vela (Fig. 4C) had a similar effect

only on Hmox1. FC values of those DEGs are in Table S9.

The protein ubiquitination pathway was unique to imig-treated

spleen (Table S10). This pathway plays a major role in the

degradation of short-lived or regulatory proteins involved in a

variety of cellular processes, including cell cycle, cell proliferation,

apoptosis, DNA repair, transcription regulation, cell surface

receptors and ion channels regulation, and antigen processing.

Figure 2. Comparisons of the DEGs between microarray and the mRNA-Seq. DEGs were identified in 9V/null vs. WT spleen by Mixed Model
ANOVA (microarray) and DESeq and edgeR (mRNA-Seq). The colors indicate the analytic methods. (A) saline-treated, (B) imig-treated, and (C) vela-
treated 9V/null spleen. (D) The number of DEGs in 9V/null spleen identified by the different analytic methods in the saline-, imig-, and vela- treated
groups. The genes with increased expression levels are shown in dark grey and the genes with decreased expression levels are in light grey with the
corresponding number of genes indicated below.
doi:10.1371/journal.pone.0074912.g002

Transcriptome of Enzyme Treated Gaucher & WT Mice
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Regulation of eIF4 (eukaryotic translation initiation factor 4) and

p70S6K (p70 ribosomal S6 kinase) signaling, which is important for

cell cycle progression, and G (1) and translation regulation [19]

was among the most significant pathways in vela-treated spleen,

but was absent in imig-treated spleen (Table S10). These different

biological functions and pathways in each treatment indicate the

differences in the effects of these two biopharmaceuticals at the

molecular level derived either from elicited tissue reactions by imig

or vela themselves or indicate differential time-dependent effects of

the two enzyme treatments.

DEGs in 9V/null spleen identified several nuclear genes

important to mitochondrial function and are associated with

heme biosynthesis, including d-Alas2 (d-aminolevulinic acid

synthase 2), Glrx5 [glutaredoxin 5 homolog (S. cerevisiae)], Slc25a38

(solute carrier family 25, member 38) and solute carrier Slc25a39

(Table S11) [20]. These genes showed decreased expression levels

relative to WT in ERT and saline-treated 9V/null spleens.

Amongst the transcription factors, Myc (myelomatosis viral

oncogene homolog) and Mycn (myelomatosis viral oncogene

homolog neuroblastoma derived) were significantly altered in

saline-, imig- and vela-treated spleens. The protein encoded by

Myc plays a role in cell cycle progression, apoptosis and cellular

transformation. It functions to regulate transcription of specific

target genes. In addition Rbpjl (recombination signal binding

protein for immunoglobulin kappa J region-like); Nf2l2 (nuclear

factor erythroid derived 2-like 2) and Nrf1 (nuclear respiratory

factor 1) were unique to vela-treated spleens, whereas E2f4 (E2F

transcription factor 4) was unique to imig-treated spleens

(Table S12). Stat3 was a common transcription factor with a

significant p value overlap across all treatment conditions.

Functional correlation of spleen, liver and lung
Ingenuity Pathway Analysis was used to evaluate the correla-

tions of the biological functions, canonical pathways, networks,

and transcription factors involved in the core DEGs in the enzyme

and saline treated spleen, liver and lung tissues. The hematological

system development and function was the only pathway shared by

the core genes from these three tissues in the saline-treated 9V/

null mice (Table 1). In liver imig reduced the number of DEGs by

66% while vela decrease all genes to WT levels (Table 1b). In the

spleen and the lung the number of DEGs in this pathway

increased post ERT. Based on the p value by Fisher exact test the

top functional categories in the spleen (Table 1a), liver (Table 1b),

and lung (Table 1c) included cell death, cell growth and

proliferation, cell cycle, and heme metabolism pathways, suggest-

ing these groups to be the most significant functions associated

with the Gaucher disease and ERT processes.

In the liver, a significant reduction was found in the number of

DEGs (50%–100%) post-ERT compared to spleen in which the

number of DEGs related to these functions increased post-ERT

with either drug (Table 1a and 1b). Inflammatory response was a

top functional group in the liver and included 42 genes with

altered expression. Post-treatment, the expression of 30 genes

(71%) reverted to WT levels in imig-treated liver and all 42 genes

(100%) changed to WT level in vela-treated liver samples. The

DEGs involved in the top biological functions associated with the

9V/null treated and untreated lungs were hematological system

development, immunological disease, immunological response,

and cellular growth and maintenance. There was no reduction in

the number of DEGs in the lung post treatment; rather there was a

significant increase in the number of DEGs in these functional

groups relative to WT (Table 1c). The liver and lung shared 3

functional groups – Inflammatory response, tissue morphology,

Figure 3. Functional classifications of the DEGs in spleen. (A) Functional relationship of spleen core DEGs associated with each treatment. An
abstracted view shows the interaction of the biological functions by the core DEGs in 9V/null spleen compared with WT under different treatment
conditions. The biological functions associated with the core DEGs from saline (pink node), vela (blue node) and imig (green node) treated 9V/null
mouse spleens. Merged nodes indicate the shared functions between treatments. (B) 3-way Venn diagram presents the distribution of the biological
functions by the core DEGs in spleen with different treatments. Each color represents a treatment as labeled. The GO were identified with DAVID.
There were 16 functions common for 3 treatments. The unique functions for saline were 10, imig were 4, and vela were 56. The top biological
functions are listed against each treatment.
doi:10.1371/journal.pone.0074912.g003

Transcriptome of Enzyme Treated Gaucher & WT Mice
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and tissue development. For the first two functions, 70%–100%

correction to WT level occurred in the liver post-ERT.

Saline-treated spleen and liver shared three functional groups:

cell death, hematopoiesis and small molecule biochemistry. In the

spleen and liver several disease-related DEGs were shared and

derived from 3 pathways, including mitochondrial dysfunction,

oxidative phosphorylation and ubiquinone biosynthesis. In the

untreated liver, there were 10 DEGs with abnormal expression in

the network. Unlike the spleen, 100% correction of those genes to

WT levels was observed in the liver post imig- or vela-treatment

(Table S9). The FC values of the DEGs in the liver and spleen

show a differential molecular response to each ERT that is unique

to each tissue and is concordant with the GluCer data in 9V/null

spleen and liver post-ERT [7]. Thus, the molecular responses in

the liver and spleen correlated with their biochemical changes.

Molecular changes between imig and vela treatment
The above analyses were conducted to assess the disease-related

molecular changes as a result of ERT in the different tissues. To

explore the potential molecular effects of two similar, but different,

biopharmaceuticals, direct comparison were conducted with the

transcriptomic profiles of imig- vs. vela-treatment. For these

analyses, only the imig- and vela-data sets were used without

reference to the WT data set. This direct comparison of imig- and

vela-treatments would enable the detection of potential differences

at molecular level between the effects of the two enzymes. mRNA-

Seq analyses (DESeq statistics) showed 290, 78 and 12 more DEGs

in imig compared to vela- treated spleens, livers, and lungs.

Similarly, microarray analyses identified 97, 1, and 0 DEGs in the

respective tissues (Fig. 5A). Compared to vela-treated tissues, imig-

treated spleen, liver, and lung showed increased expression (by

mRNA-Seq) by 40% (115 of 290) in spleen, 88.5% (69 of 78) in

liver, and 100% (12 of 12) in lung of the DEGs (Fig. 5A).

Commonality of imig vs. vela DEGs identified by
microarray and mRNA-Seq

Direct comparison of the imig- and vela-treated spleen

identified 47 DEGs, which were common by both microarray

(47/97) and mRNA-Seq (47/290) analyses (Fig. 5B and Ta-

ble S13). There were 50 or 243 unique DEGs detected with

microarray or mRNA-Seq (Fig. 5B and Table S13). Among the 47

common DEGs, the most significant functional groups were

related to the cell division/proliferation (32%) and the hemato-

poietic systems (11%) (Fig. 5B and Table S13). Interestingly, the

unique DEGs in either microarray or mRNA-Seq also shared the

same functional groups associated with the 50 common DEGs in

both platforms. These groups included cell division/proliferation

(24% in microarray and 49% in mRNA-Seq DEGs) and the

hematopoietic system (26% in microarray and 7% in mRNA-Seq

DEGs) (Fig. 5B and Table S13). The results suggest that the cell

Figure 4. Spleen core DEGs forming network of mitochondrial
dysfunction, oxidative phosphorylation, and ubiquinone bio-
synthesis. The network consists of 50 mitochondrial genes related to
dysfunction, oxidative phosphorylation and ubiquinone biosynthesis.
Genes colored with green or red indicate altered expression in saline-
treated 9V/null spleen. Genes circled in black indicate the expression at
WT level. (A) In the saline-treated 9V/null spleen, all genes in the
network were abnormally expressed, shown in green or red. (B) The
expression level of genes in imig-treated spleen. The ATPase and heme
oxygenase circled in black were at WT levels. (C) In vela-treated spleen
the expression of ATPase (circled in black) was at WT levels. Red
indicates expression above normal and green indicates expression
below normal levels.
doi:10.1371/journal.pone.0074912.g004

Transcriptome of Enzyme Treated Gaucher & WT Mice
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division/proliferation and hematopoietic systems as the predom-

inant functions in the spleen that were altered in imig- vs. vela-

treatment groups. mRNA-Seq analyses also identified inflamma-

tory/macrophage response genes (10%) (Table S13). Taken

together, three functional categories were most significant in the

direct comparison of imig vs. vela treatment: 1) cell division/

proliferation (imig/vela ,1.5 FC, p = 2.03e-06 to 2.67e-02), 2)

hematopoietic system (imig/vela ,1.5 FC, p = 2.92e-10 to 2.53e-

02), and 3) inflammatory/macrophage (imig/vela .1.5 FC,

p = 5.53e-12 to 5.94e-03).

The DEGs involved in these three functional categories were

evaluated for network connections. The cell division/proliferation

network contained 14 DEGs from microarrays and 36 from

mRNA-Seq, 8 were detected with both platforms (Fig. 6A and

Table S14a). The hematopoietic system network contained 16

DEGs from microarray and 49 from mRNA-Seq, of which 11

DEGs were detected by both platforms (Fig. 6B and Table S14b).

This network had ,50% of the DEGs either increased or

decreased in the direct comparison of imig vs. vela (Table S14b).

The inflammatory/macrophage response network contained total

41 DEGs. Among them 5 DEGs were detected by microarray, 40

by mRNA-Seq, and 4 detected by both platforms (Fig. 6C and

Table S14c). Of 41 total DEGs detected by either or both

platforms, 79% (32/41) were increased in imig- vs. vela-treated

spleens. An additional 11 macrophage response-related genes were

found in the mRNA-Seq data sets with increased levels in imig vs.

vela, including Arg2, Cd77, Cd44, Cd00lb, Cdl, Ifi204, Il1f9, Irg1,

Ifi204, Mmp19, and Tarm1 (Table S14c).

The expression levels of Gata1 and numerous other transcription

factors involved in erythropoiesis were decreased in 9V/null

mouse spleens treated with saline, imig, or vela (Table S7). These

decreases were also evidenced in the direct comparison (without

WT reference) of imig- vs. vela-spleens (Table S14), indicating a

disrupted balance in erythropoiesis and myelopoiesis in the

Gaucher disease process and its treatment. In addition, these

DEG levels were more severely depressed in the imig-treated

spleens compared directly to vela-treated spleens. These results

demonstrate different molecular responses between two biosimilar

GCases, imig and vela, during the ERT process in this Gaucher

disease mouse model.

Figure 5. Comparative analyses of the DEGs identified by direct comparison of imig- vs. vela-treatment. For the analyses in this figure
imig- and vela- treated samples were directly compared without normalization to WT gene expression in the corresponding tissue. (A) The Y-axis
represents the number of DEGs in imig-treatment compared to the number with vela-treatment. The X-axis represents the different tissues.
Three times more genes were detected by mRNA-Seq than that by microarray analysis. The number of genes are color coded for increased
expression (dark grey) and decreased expression (light grey). Liver showed smaller DEG differences. In lung, The number of DEGs in imig- and vela-
treated samples were not different. (B) Common and unique DEGs identified by microarray and mRNA-Seq in spleens. The Venn diagram of DEGs in
the spleen compares the number of identified DEGs from microarray and mRNA-Seq that were different in imig- vs. vela-treatment. Compared to
vela-treated spleen, 50 and 243 unique genes were identified in microarray (left) or mRNA-Seq (right) data sets in the imig-treated spleens. Forty
seven genes (intersection) were common to both platforms. The GO annotation was performed using DAVID and the number of increased and
decreased DEGs in the top functions identified by IPA are listed in Table S13.
doi:10.1371/journal.pone.0074912.g005
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Discussion

With improvement in technologies and analysis algorithms,

microarray and mRNA-Seq hold great promise to reveal deeper

insights into the fundamentals of gene expression variations in

disease states and between therapeutics. mRNA-Seq platforms

have several advantages compared with microarray, chief among

which is its greater dynamic/detection range, particularly at low

expression levels. Here, two different analytical methods (DESeq

and edgeR) were applied in the analyses of mRNA-Seq data and

compared with that from cDNA microarrays. These studies were

designed to understand the molecular effects of Gaucher disease

and of two biosimilar ERTs on the disease processes in different

tissues and to compare the different platforms and statistical

approaches to their analyses. An unexpected result was the

transcriptomic effect differences between the two biosimilars, imig

and vela since they differ by only a few mannosyl residues on their

N-linked oligosaccharides. By direct comparison of these two

biosimilars without any normalization to the WT or saline-treated

9V/null mice, differences were clearly evident in the transcrip-

tomes. The molecular differences imply differential mechanisms

and molecular pathways in the therapeutic responses of Gaucher

disease to these two biopharmaceuticals.

Comparison of two gene expression platforms
mRNA-Seq allows a comprehensive evaluation and quantifica-

tion of all subtypes of RNAs in cells or tissues [21]. mRNA-Seq

technology can detect transcripts expressed at low levels [22] and

permits the identification of unannotated transcripts and new

spliced isoforms [21,23]. Previous transcriptomic studies using

microarray relied on hybridization-based technologies, which were

probe-based with limitations in detection range due to background

noise and signal saturation [21]. This approach also was limited to

the catalogue of molecules represented by the probes and

prespecified targets [24]. The cross-hybridization and detection

levels that effect the accuracy of microarray gene expression

estimations are not relevant to mRNA-Seq [25]. Several studies

have compared mRNA-Seq and microarray. These include the

proof of principal of the NGS platforms [21,26] and analyses

methodology development [27].

Several comparison studies of mRNA-Seq and microarrays

have addressed different biological questions, i.e., the relative

merits of the two techniques and their inherent biases [22],

expression differences between tissue types that focused on the

technical variance in NGS technology [18], genomics study

comparing the effect of Aristilochic acid on rat kidneys [28], and

transcriptional profiling of cerebro-osteodysplasia [29]. Such

studies showed mRNA-Seq was more sensitive than microarray,

but similar gene expression patterns were obtained with both

platforms. Results here with identical RNA samples showed only

,50% overlap in DEGs, but the biological interpretation was

largely consistent between the two platforms. Standard tools have

been established for the analyses of transcriptomes from micro-

array data. Importantly, comparisons of mRNA-Seq and micro-

array data are critical because of the existence of a plethora of data

from microarrays that could continue to be used for future studies

as mRNA-Seq becomes standard. Here, a strong congruence was

found between the different platforms (Fig. 1A). The relationship

was not quite linear, as there was a slight compression in the

microarray data at high expression levels, but the vast majority of

the derived expression values are similar. The scatter increases at

low expression, which is not surprising, as background correction

methods for microarrays are complicated when signal levels

approach noise levels. The present results also demonstrated that

mRNA-Seq platform was more sensitive than the microarray

platform and identified approximately three times more DEGs

than microarray using identical samples. mRNA-Seq has a larger

dynamic range of expression levels over which transcripts can be

detected, particularly the genes with low expression level. In

contrast, DNA microarrays lack sensitivity for genes expressed

either at low or very high levels and therefore have a much smaller

dynamic range (one-hundredfold to a few-hundredfold). This

increased dynamic range of mRNA-Seq facilitated the compari-

sons of genes involved in the disease processes in DEGs with low

Figure 6. DEGs in splenic networks. The networks were generated using IPA software and were from the direct comparisons of imig- vs. vela-
treated data sets without normalization to WT. The pathway included DEGs with decreased expression (imig/vela, green symbols) and the DEGs with
expression level-increased (imig/vela, red symbols). The gene symbols and their interactions are as indicated. (A) The cell division/proliferation
network is composed from total 42 DEGs determined by microarray (12 genes, red star) and mRNA-Seq (37 genes, blue star) which includs 7 common
genes (blue and red stars) (see gene list in Table S14a). A general decrease in DEG expression levels was found in cell division/proliferation network
from imig-treated vs. vela-treated spleen. (B) Hematopoietic system network was composed of total 54 DEGs determined by microarray (16 genes,
red star) and mRNA-Seq (49 genes, blue star). Among them, 11 were common genes (red and blue stars) (Table S14b). (C) Inflammatory response/
macrophage network was composed of total 41 DEGs determined by microarray (5 genes, red star) and mRNA-Seq (40 genes blue star), of those 4
were common genes (red and blue stars) (Table S14c).
doi:10.1371/journal.pone.0074912.g006
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levels of expression and similar DEGs in the comparative studies of

the biosimilars.

mRNA-Seq data analysis tools – edgeR and DESeq
The output from NGS mRNA-Seq gives a discrete intensity of

read counts and Poisson’s distribution is most suitable for mRNA-

Seq data [18,29,30]. To address the over dispersion problem, the

model for the count data was addressed with a negative binomial

(NB) distribution. Both edgeR and DESeq methods used here are

based on the NB. As a parametric distribution approach, the

generalized linear model in edgeR package with NB was included

to take into consideration the variability in sample replicates. In

the model, treatment specific differences within a particular tissue

were investigated as the main factor by controlling over-dispersed

variability of biological samples as nuisance factor.

DESeq is similarly modeled on the NB distribution. The main

difference between edgeR and DESeq is the different approaches

to estimate dispersion parameter [31,32] and normalization

procedures. The edgeR method uses quantile adjustment, while

DESeq adjusts counts by scaling [31–33]. Our choice of these DE

methods was based on the literature and robustness of these two

methods compared with other tools.

There was reasonable concordance of DEGs between DESeq

and edgeR for the liver, lung, and spleen mRNAs, thereby

facilitating identification of the tissue and treatment specific

transcriptomic alterations by either method. Pearson’s correlation

coefficients of the FC were used to assess similarity between

microarray/Mixed Model ANOVA, mRNA-Seq/DESeq and

mRNA-Seq/edgeR. All three methods showed good agreement

when using a subset of DEGs between all three tissues.

Molecular responses to imig- vs. vela-treatment
Based on the previous biochemical and histopathological

studies, the liver, spleen, and lungs of the 9V/null mice had

complete, partial, or little response, respectively, to either imig or

vela, and there were only small differences in these therapeutic

effects of these biosimilars [7]. Here, the tissue effects to two nearly

identical biopharmaceuticals were compared to the untreated and

WT for their transcriptomic effects using mRNA-Seq and

microarray platforms, and, importantly, the three standard

analytic statistical approaches were compared. Surprisingly,

substantial differences were found between the disease-related

transcriptomic effects of the two drugs in addition to the

differences between the technologies and analytic methods.

Biologically, both platforms indicate a tissue specific correlation

of the DEGs as observed in the PCA plots where the liver, lung,

and spleen are clustered into three distinct groups. Analyses of the

biological functions, pathways and networks with the core spleen

DEGs showed cell growth and proliferation, cell division, cell

death, and heme metabolism are common functions across all

tissues and treatment conditions in 9V/null spleen. The Gene

Ontologies for the common DEGs suggest that the top functions,

based on the number of DEGs involved and the p value, include

cell growth and proliferation, cell death and survival, and

inflammation. The unique genes in the imig and vela group

mainly coincided with the same functional groups with some

differences. The number of genes associated with the common

functions is greater in the imig treated group compared to vela.

This suggests that even though the two drugs are very similar

structurally and functionally there are differences at the molecular

level. Overall functional analyses suggest overlap of some

significant canonical pathways, i.e., the oxidative phosphorylation,

mitochondrial dysfunction and ubiquinone biosynthesis in the

saline-treated 9V/null liver and spleen samples (Table S8).

Interestingly, some of the mitochondrial dysfunction genes

overlapped with the heme biosynthesis pathway. The heme

biosynthesis pathway is a tightly orchestrated process that occurs

in all cells [34]. In most eukaryotes, the first step in heme synthesis

is the mitochondrial gene, d-aminolevulinic acid synthase (d-Alas),

which catalyzes the reaction between succinyl-CoA and glycine to

form d-aminolevulinic acid, dAla. Defects in d–Alas2, Abcb7 [ATP-

binding cassette, sub-family B (MDR/TAP), member 7], Glrx5

[glutaredoxin 5 homolog (S. cerevisiae)] and Slc25a38 (solute

carrier family 25, member 38) are causal to different forms of

sideroblastic anemias [35–37]. These exhibit mitochondrial iron

overload and impaired heme synthesis. The solute carrier Slc25a39

is important for maintaining mitochondrial iron homeostasis and

regulating heme levels [37].

Mitochondrial dysfunction has been reported in lysosomal

diseases in part due to the involvement of the autophagy/

mitophagy system(s) [38,39]. Recent studies suggest that mito-

chondrial dysfunction and subsequent ATP deficiency may be

responsible for the neuronal impairment in Niemann-Pick Type C

and Gaucher diseases [40,41]. Mitochondrial dysfunction increas-

es with aging and has been found in Parkinson’s and other

neurodegenerative diseases [42–44]. Indeed, heterozygotes for

GBA1 mutations occur with greater frequency in patients afflicted

with Parkinson’s disease [45] and there is a pathogenic relation-

ship between GCase alterations, mitochondrial dysfunction, and

Parkinson’s disease [41,46–48]. These observations and the

current data support the involvement of altered mitochondrial

function, hematopoiesis and myelopoiesis as important molecular

processes in the progression of Gaucher disease.

Jak3, in the JAK/STAT pathway, is the only hematopoietic

gene with increased expression in treatment with either enzyme or

saline. Both STAT3, and SOCS have been recognized for their

anti-inflammatory actions [49,50]. The imig and vela ERT

showed increased expression of both STAT3 and SOCS

suggesting that a reduction of the lipid mediated increases of

inflammatory immune response via this pathway. This provide a

pathway for development of therapeutics for Gaucher disease,

since involvement of JAK-STAT pathway and increases of the

cytokines are evident.

Function evaluation of DEGs in imig- vs. vela-treatment
by direct comparison

Direct comparison of the transcriptomes from imig- vs. vela-

treated spleen without reference to the WT data set identified total

90 genes involved in hematopoiesis. The majority (81/90) of these

network genes were also detected in the imig-spleen normalized to

WT controls (Table S14b), which indicates that the detected

DEGs by imig- vs. vela- direct comparison represent the valid

signals over the noise and their functional relevance. Surprisingly,

60% (54/90) of these network genes overlapped with the untreated

spleen suggesting their disease-related origins. The disease-related

genes from imig- vs. vela-spleens could be due to a ‘‘therapeutic-

lag’’ from slowly disappearing/healing processes underlying imig

treatment. Based upon the overlap with the untreated spleen

(Table S14), the 90 network DEGs from imig- vs. vela-spleens can

be assigned to disease-related (60%, 54 DEGs) and ERT-related

(40%, 36 DEGs). Most of these ERT-related genes were cytokine

and macrophage response genes, and their expression levels were

altered, which indicates a relatively active status of inflammatory/

cytokine genes in imig-treated spleen compared with vela-spleen.

The large numbers of inflammatory/macrophage response-

related genes in the imig- vs. vela- treated spleen indicate different

molecular events in the therapeutic pathways of these two highly

similar biologics. Interestingly, 5 DEGs (imig vs. vela) that showed
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decreased expression were present in all 3 networks. They include

Gata1, Gfi1b, Tal1, E2f2, and Birc5 that encode regulatory proteins

in erythroid lineage specification and cell division control. The

direct comparisons in spleens identified increased cytokine/

macrophage and decreased hematopoietic proliferation gene

expression in imig-treatment relative to vela-treatment. Thus,

two major molecular pathways were differentially responding in

the spleen with either imig- or vela- treatment.

The PU.1/GATA1 reciprocal effects
Gata1 expression levels were decreased across all 3 networks

derived from imig- vs. vela-treated spleen (Fig. 6). GATA1 (GATA

binding protein 1, globin transcription factor 1) is a zinc finger

protein that is involved in lineage commitment for erythropoiesis

[51,52], megakaryocytopoiesis [53], and myelopoiesis [54], as well

as in a variety of cell-cell signaling [55], cell development [56], and

eosinophil differentiation [57]. The transactivation activities of

GATA1 require interaction with Friend Of GATA (FOG)-1

cofactor [58] and other cofactors including EKLF, SP1, CBP/

p300, LMO2, LDB1, RUNX1, FLI1, and PU.1 [59–61]. These

cofactors constitute a complex network regulating erythropoiesis

and megakaryocytopoiesis by promoting or repressing GATA1

activity [52,62]. PU.1 is known to interact directly with GATA1 to

regulate lineage specification during erythropoiesis and myelopoi-

esis. Pu.1 was identified in this study only by the microarray

platform in the spleen and showed increased expression levels

under non-treatment (saline) and treatment (imig or vela)

conditions. PU.1 is a key transcription factor that, with GATA

1, regulates the balance between the myeloid/erythroid pathways.

The mRNAs encoding other important regulatory proteins in

erythroid development and proliferation control also were

identified: transcription factor Tal1 [52], erythrocyte structural

protein spectrin alpha (Spna1) [63], erythrocyte protein band 4.9

(Dematin/Epb4.9) [64], growth factor independent 1B (Gfi1b)

[65], hemoglobin-alpha (Hba-a1/b1) [66], erythroid differentia-

tion E2F transcription factors [67] and erythropoietin receptor

(EpoR) [68]. EpoR is activated by GATA1 and functions as the

receptor of EPO involved in EPOR/PI3K/AKT signaling

pathway for cell erythroid proliferation [68,69]. In addition,

GATA1 regulated Eklf/Klf1 (for erythroid Kruppel-like factor 1)

was down-regulated. Klf1 is a co-factor with GATA1 and SCL/

TAL-1 for both primitive and definitive erythropoiesis [59,70].

The decreased erythropoietic gene expression and increased

myelopoietic gene expression indicates a reciprocal interaction of

Pu.1/Gata1 expression and regulation in the spleen of Gaucher

disease.

Indeed, increased expression levels of multiple inflammatory/

macrophage activation genes correlated with increased expression

of Pu.1 in Gaucher disease. Here, 27 cytokine/macrophage genes

in hematopoietic and inflammatory/macrophage networks had

increased expression levels, which indicate the cellular and

molecular events favored myelopoiesis in the spleen of 9V/null

mice. Similar findings in our previous study showed many pro-

and anti-inflammatory cytokines/mediators were up-regulated

with macrophage proliferation in the visceral organs of 9V/null

mice [14]. In addition, affected Gaucher disease patients had

increased serum levels of pro-inflammatory cytokines, i.e., TNF-a,

IL-6, IL-8, IL-1b, sIL-2R and anti-inflammatory cytokines i.e., IL-

1rn, sCD14 [71–74], which could be the result of PU.1/GATA1

reciprocal effects in the erythropoietic/myelopoietic system and

lead to a general lower- expression profiles of genes involved in

erythroid proliferation and development [75]. These results imply

important cellular/molecular mechanisms in the disease patho-

physiologic process that may control the marrow suppression,

particularly the megakaryocytes and erythroid precursors. The

fundamental cellular/molecular mechanisms of this reciprocal

expression of Pu.1/Gata1 and their roles in the pathophysiology of

Gaucher disease are the subject of further study.

In conclusion, this study shows that NGS technologies are able

to assess the transcript abundance at the whole genome level and

their response to drug interventions. With continued cost

reduction and improved analytical methods, NGS has begun to

have a direct impact on biomedical discovery and clinical outcome

[76,77]. This provides great potential to advance our understand-

ing in the biological mechanism. Commonly, comparisons are

made in biological systems subjected to different stimuli or of

normal and diseased states to elucidate the differences in the

expression of genes that lead to altered endpoint phenotypes.

Various statistical algorithms have been developed for identifying

DEGs between different groups, and the choice of proper and

robust method can have a profound influence on the interpreta-

tion of the transcriptome data. However, careful analysis and

interpretation of the data should be taken. Using multiple methods

and platforms in this study provides a validation for robust and

convincing data output.

ERT in a Gaucher disease mouse model clearly demonstrated

that both imig and vela achieved similar therapeutic effects at

biochemical and histological levels [7], but at the molecular level

their paths to normalization are different and tissue specific. Thus,

these two structurally and functionally similar biopharmaceuticals

had unexpected molecular effects leading disease correction.

Materials and Methods

Materials
The following were from commercial sources: imiglucerase

(imig, CerezymeH, Cambridge, MA) is a recombinant human

GCase from overexpressing CHO cells; velaglucerase alfa (vela,

VPRIVTM, HGT/Shire, Cambridge, MA) is a gene-activated

GCase from human fibrosarcoma cells. RNA Later and

TOTALLY RNA kit (Ambion, Austin, TX). Trizol (Invitrogen,

Carlsbad, CA). Affymetrix Mouse Gene 1.0 ST chip (Affymetrix,

Santa Clara, CA). Illumina TruSeq RNA library preparation kit

and Illumina HiSeq2000 (Illumina, Inc., San Diego, CA). AvadisH
NGS software, Version 1.3.0, (Strand Scientific Intelligence, Inc.,

San Francisco, CA). JMP Genomics 5 (SAS Institute Inc., Cary,

NC) and Ingenuity Pathway Analysis (IPA) (Ingenuity Systems,

Mountain View, CA).

Mice with point-mutated GCase
Knock-in mice with a Gba1 point mutation encoding Valine (V)

409 for the WT Aspartate (D) on one missense allele and a null

heteroallele [D409V/null (9V/null)] and WT littermates were of

mixed, but matched, genetic backgrounds of C57BL/129Sv/FVB

[7]. The CCHMC Institutional Animal Care and Use Committee

(CCHMC IACUC) reviewed and approved these studies under

protocol 7C02017. All mice were housed in the pathogen-free

barrier facility and according to IACUC standard procedures at

Cincinnati Children’s Hospital Research Foundation. Mice were

monitored daily and weighed weekly.

Enzyme replacement/reconstitution therapy (ERT)
9V/null mice were injected weekly via tail-vein bolus with

60 U/kg of imig or vela for 8 wk [7]. Control 9V/null mice were

injected with the same volume of saline (vehicle). Mice were

sacrificed one week after the last injection, and lungs, livers, and

spleens were collected for lipid (GluCer, GluSph) and RNA

analyses.
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RNA sample preparation for microarray and mRNA-Seq
For total RNA isolation, the lungs, livers, and spleens were

collected from untreated WT, and saline and enzyme treated 9V/

null mice. The RNA sample sets were prepared by pooling of

mRNA from three individual mice for each tissue type in a

treatment cohort. Total RNA was isolated from the organs of

control and imig and vela injected 9V/null mice (28 wk of age)

and WT mice. Collected tissues were immediately immersed in

RNA Later and RNAs were extracted using the TOTALLY RNA

kit (lung and liver) or Trizol (spleen). Whole transcriptome

analyses of identical aliquots of RNA were performed using the

Affymetrix Mouse Gene 1.0 ST Array (microarray) and Illumina

TruSeq RNA Sequencing kit (mRNA-Seq). Each treatment cohort

was composed of 3 or 4 sets RNA samples: 2 to 3 single tissue

RNA samples from individual mice and one pooled RNA of those

individual samples.

Sample sets were as follows: 32 lung and liver sample sets

included 4 each of imig, vela, or saline from 9V null mice and 4

WT controls for each tissue. Twenty-three spleen sets included 4

imig, 4 vela, 7 saline from 9V/null mice and 8 WT mice. Whole

transcriptome analyses were performed using aliquots from

identical sample sets applied to the Affymetrix Mouse Gene 1.0

ST chip (microarray) at the Gene Expression Microarray Core

and the Illumina Hi-Seq2000 (mRNA-Seq) at the Genetic

Variation and Gene Discovery Core of CCHMC [78]. Microarray

hybridization and sequencing results from saline, imig, and vela

treated spleen, liver, and lung from 9V/null mice were compared

with untreated WT samples.

The microarray and mRNA-seq data set obtained from the 55

samples used in this study are available at the Gene Expression

Omnibus (GEO) accessible through GEO series accession

number: GSE44675. The subset of 23 samples used for the direct

comparion of the two enzymes are available in GEO with the

series accession number: GSE44641.

mRNA Sequencing
Total RNA concentration was determined by Qubit high

sensitivity spectrofluorometric assay. The polyA RNAs in the total

RNA samples (350 to 900 ng) were selected, sheared, and reverse

transcribed using the TruSeq RNA library preparation kit. Each

sample was fitted with one of 12 adapters containing a different 6

base molecular barcode to allow pooling of multiple samples

during sequencing. After 12 cycles of PCR amplification,

completed libraries were sequenced on an Illumina HiSeq2000,

generating 10 to 20 million of high quality 50 base-long reads per

sample.

mRNA-Seq reads were aligned to the mm9 version of the

mouse genome reference using the TopHat/Cufflinks pipeline.

First, sequences were aligned to the genome with TopHat [79],

which efficiently aligned reads spanning known or novel splice

junctions. Each sample was then independently processed with

Cufflinks [23] in order to generate an initial transcriptome.

Finally, the Cuffmerge tool was used to merge the known and any

novel isoforms into a single BAM file, and simultaneously

extended partial transcripts [80].

Microarray data normalization and analyses
Methods for microarray analyses were described previously

[14]. Data analyses were performed using Partek Genomics Suite

Version 6.4 (Partek, St Louis, MO, USA). The Affymetrix Mouse

Gene 1.0 ST chip data for the 9V/null mouse with 3 tissue types

of 3 different treatments and corresponding WT untreated

controls were loaded into Partek Genomics Suite 6.4 (Partek,

Inc., St Louis, MO). Normalization was performed using the

RMA (robust multiarray average) algorithm [78]. Sample

relationships were examined using Principal Components Analyses

(PCA) to reveal outliers. The outliers were removed from

subsequent analysis. Post normalization and PCA a Mixed Model

ANOVA was applied to all the qualifying samples in Partek

Genomic suite to identify DEGs between the groups. The contrast

comparisons: imig vs. WT control, vela vs. WT control and saline

vs. WT control. The genes at $1.5 fold change (FC) and a false

discovery rate (FDR) of 0.05 were considered as differentially

expressed between groups. FDR was used to further guard against

false positives because of multiple testing [81].

Exploratory analyses in mRNA-Seq data sets
Post Binary Alignment/Map (BAM) aligned files of mRNA-Seq

data were uploaded in Avadis NGS software. Data analysis was

performed using AvadisH NGS software, Version 1.3.0. Reads

were filtered to remove a) duplicate reads, b) non-primary-

matched reads and c) reads with alignment scores ,95.

Quantification was performed on the filtered reads against the

RefSeq annotation. The initial number of reads was 632783594,

which dropped to 292320998 post filtering amounting to 46.19%

of the original read counts. PCA and multivariate correlations

were performed to access reproducibility and variability among

biological replicates. The outliers identified were subsequently

removed.

DEGs analyses with mRNA-Seq data sets
DESeq and edgeR were used to evaluate the DEGs from the

mRNA-Seq data. DESeq via R script was performed on the

filtered reads by Avadis NGS software using three functions

(estimate size factors, estimate dispersions and negative binomial

test).

For DESeq normalization, the sequencing depth is estimated by

the read count of the gene with the median read count ratio across

all genes. The normalized counts are computed:

N For each sample Sj, the normalization factor Nj is calculated as

the median of the values r’
ij where r’

ij = rij/mi. rij is the read

count of gene gi in sample Sj. For each gene gi, the geometric

mean of the read counts of all the samples for that gene is

calculated. Let it be mi. While computing this median, the

genes with mi = 0 are ignored.

N Finally the normalized counts nij for gene gi in sample Sj are

computed as rij/Nj.

The method is based on the negative binomial distribution,

which allows for less restrictive variance parameter assumptions

than does the Poisson distribution [32]. Negative binomial (NB)

distribution is commonly used to model count data when over

dispersion is present [82].

The threshold for detection of the DEGs was set at 61.5 FC

and a FDR of 0.05. Imig, vela, and saline-treated samples from

9V/null spleen, liver and lung were compared with their age and

strain matched untreated WT tissue. edgeR (Empirical analysis of

digital gene expression data in R) is available from Bioconductor at

the URL: http://www.bioconductor.org/packages/2.11/bioc/

html/edgeR.html. edgeR is based on a NB underlying distribution

to account for variability of replicates on gene-wise dispersions.

The Trimmed Mean of M value normalization (TMM) method is

incorporated in the package, where different library sizes across

samples are adjusted with scaling factors prior to DE analyses to

avoid biased detection. DE analysis in edgeR includes two factors

in the generalized linear model (glmFit), the treatment specific

effect (main factor) and a nuisance factor, to address the variation
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in the biological replicates which may affect the measured changes

of gene expression, and therefore needs to be controlled in the

model. Under the null hypothesis, there is no significant difference

in change of expression for each tissue between two different

biopharmaceuticals for a given gene; glmLRT function is next

performed to carry out the likelihood ratio test in edgeR.

Correlation between mRNA expression levels measured
by microarray and mRNA-Seq

Correlations between the signals obtained from microarray and

the mRNA-Seq data were evaluated with two-way Venn diagrams

on the RefSeq genes common to both platforms and above the

detection threshold. The genes in the overlapping region were

selected for performing the scatterplot.

Scatter plots were developed from log-transformed intensity and

read count values of the selected genes common to the microarray

and mRNA-Seq in liver, lung, and spleen samples. Correlation

plots on FC values were generated on the DEGs common to all

three DE methods in liver, lung and spleen tissues. Correlation

between the two platforms and the correlation of the FC values

between the three DE methods was evaluated by the Pearson’s

correlation coefficient and statistical significance with the JMP5

Genomics software.

Identification of core DEGs
Various statistical algorithms have been developed for identi-

fying DEGs between different groups. Each of these methods use

different strategies and thus identify different gene set, which

overlap in part. The choice of proper method can have a profound

influence on the DEGs identified. We expect that the genes

identified by more than one method/algorithm are more likely to

be true DEGs. As such our final lists of DEGs were identified in at

least two of the algorithms. This approach should result in a more

consistent set of DEGs than relying on a single algorithm. The

core DEGs are the DEGs which overlap between any two

methods.

To identify the core DEGs, a three-way proportional Venn

diagram was developed with each circle representing the DEGs

determined by one of the DE methods. The overlapping region

between any two circles represented the core DEGs. The total

number of core DEGs were arrived at by combining the DEGs in

all the overlapping regions. These core DEGs were used for

functional analyses.

Functional classification of DEGs
The functional classifications were performed using the Gene

Ontology (GO) classification obtained through the DAVID

Bioinformatics Resources 6.7 [83,84] available at http://david.

abcc.ncifcrf.gov/home.jsp, ToppCluster, and public information

and literature references. For DAVID, the hypergeometric

distribution was performed to detect the referenced significant

functional categories (p,0.05). For ToppCluster a p#0.05 was

chosen as the cutoff value.

The functional analyses were done in two stages as described

in Fig. S1. In the first stage the DEGs identified by the three

different DE methods under different treatment or no treatment

conditions were used directly to identify biological functions.

This was performed to evaluate the common and unique

features of the functional groups associated with the DEGs

identified with each DE methods. For the second stage of

functional analyses, the core DEGs for each tissue were

determined from the Venn diagrams. The core DEGs was

loaded into IPA to identify biological functions, transcriptional

regulators, pathways, and global networks. Fisher’s exact test

with a threshold P#0.05 was used as a cutoff to identify signi-

ficant functions and pathways. The functional groups identified

from the core DEGs had fewer numbers of false positives. The

pathways and networks were constructed from published

literature and the IPA database.

Identification of DEGs between imig and vela treated
samples

For direct comparison a total of 23 RNA sample sets were

analyzed: 8 lung sets including 4 (imig) and 4 (vela); 8 liver sets: 4

(imig) and 4 (vela); 7 spleen sets: 4 (imig) and 3 (vela), and were

interrogated using the microarray and mRNA-Sequencing as

described above. To identify the differential expression between

the drugs, imig and vela, imig-treated samples were compared

with their vela-treated counterparts in the liver, lung and spleen.

Mixed Model ANOVA (microarray) and DESeq (mRNA-Seq)

were used to identify DEGs of imig/vela, a 61.5 FC with an FDR

of 0.05 was used as selection criteria. GO and network analysis was

performed in the DEGs as described above.

Supporting Information

Figure S1 Flowchart of microarray and mRNA-Seq data
analysis methodology. The analysis performed simultaneously

on two platforms, microarray and mRNA-Seq, to identify DEGs

and associated biological functions.

(TIF)

Figure S2 Principal Component Analysis (PCA). a) Eight

outliers were identified from total 55 sample sets from the

microarray data. b) Four outliers out of 55 sample sets were found

in mRNA-Seq data. Green circles indicate the outliers. PCA was

applied to assess the variables in the data set. The proportion of

variables in each component (X, Y or Z axis) shown under the

graph. The addition of three components yielded 82.1% for

microarray data and 67.6% for mRNA-Seq data of variation in

measure correlations. The first principal component accounts for

as much of the variability in the data as possible, the linear

combination of X-variables that has maximum variance (among

all linear combinations), and each succeeding component accounts

for as much of the remaining variability as possible.

(TIF)

Figure S3 Comparisons of the liver DEGs between
microarray and mRNA-Seq. DEGs were identified by Mixed

Model ANOVA (microarray) and DESeq and edgeR (mRNA-

Seq). The colors correspond to the analytic methods. (a) saline-

treated, (b) imig-treated, (c) vela-treated 9V/null livers. d) The

number of DEGs in 9V/null liver identified by DE methods in

imig-, vela- and saline-treatment. The genes with increased

expression level are shown in dark grey and the genes with

decreased expression level are in light grey.

(TIF)

Figure S4 Comparison of the lung DEGs between
microarray and mRNA-Seq by Venn diagrams. DEGs

were identified by Mixed Model ANOVA (microarray) and

DESeq and edgeR (mRNA-Seq). The colors correspond to each

method. (a) saline-treated, (b) imig-treated and (c) vela-treated 9V/

null lung. d) The number of DEGs in 9V/null lung identified by

DE methods in imig-, vela- and saline-treatment. The genes with

increased expression level are shown in dark grey and the genes

with decreased expression level in light grey.

(TIF)
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